Properties

Label 375.3.k.a.7.2
Level $375$
Weight $3$
Character 375.7
Analytic conductor $10.218$
Analytic rank $0$
Dimension $80$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [375,3,Mod(7,375)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("375.7"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(375, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 17])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 375 = 3 \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 375.k (of order \(20\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,-4,0,0,0,0,4,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.2180099135\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 75)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 7.2
Character \(\chi\) \(=\) 375.7
Dual form 375.3.k.a.268.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.73870 + 1.39544i) q^{2} +(-1.71073 + 0.270952i) q^{3} +(3.20210 - 4.40731i) q^{4} +(4.30707 - 3.12927i) q^{6} +(0.250082 + 0.250082i) q^{7} +(-0.696119 + 4.39513i) q^{8} +(2.85317 - 0.927051i) q^{9} +(-2.45351 + 7.55112i) q^{11} +(-4.28374 + 8.40731i) q^{12} +(10.5776 + 5.38954i) q^{13} +(-1.03387 - 0.335926i) q^{14} +(2.50710 + 7.71607i) q^{16} +(-24.0906 - 3.81558i) q^{17} +(-6.52034 + 6.52034i) q^{18} +(-15.4606 - 21.2797i) q^{19} +(-0.495582 - 0.360061i) q^{21} +(-3.81770 - 24.1040i) q^{22} +(5.83489 + 11.4516i) q^{23} -7.70747i q^{24} -36.4896 q^{26} +(-4.62981 + 2.35900i) q^{27} +(1.90297 - 0.301401i) q^{28} +(-27.7376 + 38.1776i) q^{29} +(27.8697 - 20.2485i) q^{31} +(-30.2198 - 30.2198i) q^{32} +(2.15129 - 13.5827i) q^{33} +(71.3015 - 23.1673i) q^{34} +(5.05032 - 15.5433i) q^{36} +(3.75426 - 7.36815i) q^{37} +(72.0364 + 36.7044i) q^{38} +(-19.5556 - 6.35401i) q^{39} +(-14.5062 - 44.6455i) q^{41} +(1.85969 + 0.294547i) q^{42} +(-1.08084 + 1.08084i) q^{43} +(25.4237 + 34.9928i) q^{44} +(-31.9601 - 23.2203i) q^{46} +(-6.73620 - 42.5307i) q^{47} +(-6.37966 - 12.5208i) q^{48} -48.8749i q^{49} +42.2463 q^{51} +(57.6237 - 29.3608i) q^{52} +(28.7572 - 4.55469i) q^{53} +(9.38781 - 12.9212i) q^{54} +(-1.27323 + 0.925055i) q^{56} +(32.2146 + 32.2146i) q^{57} +(22.6907 - 143.263i) q^{58} +(71.3918 - 23.1966i) q^{59} +(26.0031 - 80.0294i) q^{61} +(-48.0713 + 94.3452i) q^{62} +(0.945365 + 0.481688i) q^{63} +(94.0684 + 30.5647i) q^{64} +(13.0621 + 40.2009i) q^{66} +(41.9801 + 6.64899i) q^{67} +(-93.9570 + 93.9570i) q^{68} +(-13.0848 - 18.0096i) q^{69} +(49.0998 + 35.6731i) q^{71} +(2.08836 + 13.1854i) q^{72} +(-43.1099 - 84.6079i) q^{73} +25.4180i q^{74} -143.292 q^{76} +(-2.50198 + 1.27482i) q^{77} +(62.4237 - 9.88694i) q^{78} +(-62.3659 + 85.8393i) q^{79} +(7.28115 - 5.29007i) q^{81} +(102.028 + 102.028i) q^{82} +(15.0878 - 95.2606i) q^{83} +(-3.17380 + 1.03123i) q^{84} +(1.45185 - 4.46832i) q^{86} +(37.1072 - 72.8270i) q^{87} +(-31.4802 - 16.0400i) q^{88} +(-163.312 - 53.0634i) q^{89} +(1.29743 + 3.99309i) q^{91} +(69.1547 + 10.9530i) q^{92} +(-42.1911 + 42.1911i) q^{93} +(77.7974 + 107.079i) q^{94} +(59.8858 + 43.5096i) q^{96} +(-16.8062 - 106.110i) q^{97} +(68.2019 + 133.854i) q^{98} +23.8192i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q - 4 q^{2} + 4 q^{7} + 12 q^{8} + 24 q^{12} - 32 q^{13} + 80 q^{16} + 100 q^{17} + 48 q^{18} - 100 q^{19} + 100 q^{22} + 96 q^{23} - 40 q^{26} - 196 q^{28} + 200 q^{29} - 636 q^{32} - 216 q^{33} + 100 q^{34}+ \cdots + 92 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(251\)
\(\chi(n)\) \(e\left(\frac{17}{20}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.73870 + 1.39544i −1.36935 + 0.697719i −0.975200 0.221327i \(-0.928961\pi\)
−0.394151 + 0.919046i \(0.628961\pi\)
\(3\) −1.71073 + 0.270952i −0.570242 + 0.0903175i
\(4\) 3.20210 4.40731i 0.800524 1.10183i
\(5\) 0 0
\(6\) 4.30707 3.12927i 0.717845 0.521545i
\(7\) 0.250082 + 0.250082i 0.0357260 + 0.0357260i 0.724744 0.689018i \(-0.241958\pi\)
−0.689018 + 0.724744i \(0.741958\pi\)
\(8\) −0.696119 + 4.39513i −0.0870149 + 0.549391i
\(9\) 2.85317 0.927051i 0.317019 0.103006i
\(10\) 0 0
\(11\) −2.45351 + 7.55112i −0.223046 + 0.686466i 0.775438 + 0.631424i \(0.217529\pi\)
−0.998484 + 0.0550418i \(0.982471\pi\)
\(12\) −4.28374 + 8.40731i −0.356978 + 0.700609i
\(13\) 10.5776 + 5.38954i 0.813659 + 0.414580i 0.810733 0.585416i \(-0.199069\pi\)
0.00292573 + 0.999996i \(0.499069\pi\)
\(14\) −1.03387 0.335926i −0.0738481 0.0239947i
\(15\) 0 0
\(16\) 2.50710 + 7.71607i 0.156694 + 0.482254i
\(17\) −24.0906 3.81558i −1.41710 0.224446i −0.599563 0.800327i \(-0.704659\pi\)
−0.817533 + 0.575881i \(0.804659\pi\)
\(18\) −6.52034 + 6.52034i −0.362241 + 0.362241i
\(19\) −15.4606 21.2797i −0.813715 1.11998i −0.990740 0.135776i \(-0.956647\pi\)
0.177024 0.984206i \(-0.443353\pi\)
\(20\) 0 0
\(21\) −0.495582 0.360061i −0.0235991 0.0171458i
\(22\) −3.81770 24.1040i −0.173532 1.09564i
\(23\) 5.83489 + 11.4516i 0.253691 + 0.497897i 0.982367 0.186962i \(-0.0598641\pi\)
−0.728676 + 0.684858i \(0.759864\pi\)
\(24\) 7.70747i 0.321145i
\(25\) 0 0
\(26\) −36.4896 −1.40344
\(27\) −4.62981 + 2.35900i −0.171474 + 0.0873705i
\(28\) 1.90297 0.301401i 0.0679634 0.0107643i
\(29\) −27.7376 + 38.1776i −0.956470 + 1.31647i −0.00787767 + 0.999969i \(0.502508\pi\)
−0.948593 + 0.316500i \(0.897492\pi\)
\(30\) 0 0
\(31\) 27.8697 20.2485i 0.899023 0.653179i −0.0391915 0.999232i \(-0.512478\pi\)
0.938215 + 0.346053i \(0.112478\pi\)
\(32\) −30.2198 30.2198i −0.944367 0.944367i
\(33\) 2.15129 13.5827i 0.0651905 0.411597i
\(34\) 71.3015 23.1673i 2.09710 0.681390i
\(35\) 0 0
\(36\) 5.05032 15.5433i 0.140287 0.431758i
\(37\) 3.75426 7.36815i 0.101466 0.199139i −0.834692 0.550716i \(-0.814355\pi\)
0.936159 + 0.351577i \(0.114355\pi\)
\(38\) 72.0364 + 36.7044i 1.89569 + 0.965905i
\(39\) −19.5556 6.35401i −0.501426 0.162923i
\(40\) 0 0
\(41\) −14.5062 44.6455i −0.353810 1.08892i −0.956696 0.291088i \(-0.905983\pi\)
0.602886 0.797827i \(-0.294017\pi\)
\(42\) 1.85969 + 0.294547i 0.0442784 + 0.00701302i
\(43\) −1.08084 + 1.08084i −0.0251357 + 0.0251357i −0.719563 0.694427i \(-0.755658\pi\)
0.694427 + 0.719563i \(0.255658\pi\)
\(44\) 25.4237 + 34.9928i 0.577812 + 0.795291i
\(45\) 0 0
\(46\) −31.9601 23.2203i −0.694784 0.504790i
\(47\) −6.73620 42.5307i −0.143323 0.904909i −0.949621 0.313399i \(-0.898532\pi\)
0.806298 0.591509i \(-0.201468\pi\)
\(48\) −6.37966 12.5208i −0.132910 0.260850i
\(49\) 48.8749i 0.997447i
\(50\) 0 0
\(51\) 42.2463 0.828360
\(52\) 57.6237 29.3608i 1.10815 0.564630i
\(53\) 28.7572 4.55469i 0.542589 0.0859376i 0.120877 0.992668i \(-0.461429\pi\)
0.421712 + 0.906730i \(0.361429\pi\)
\(54\) 9.38781 12.9212i 0.173848 0.239282i
\(55\) 0 0
\(56\) −1.27323 + 0.925055i −0.0227362 + 0.0165188i
\(57\) 32.2146 + 32.2146i 0.565169 + 0.565169i
\(58\) 22.6907 143.263i 0.391218 2.47005i
\(59\) 71.3918 23.1966i 1.21003 0.393163i 0.366588 0.930383i \(-0.380526\pi\)
0.843442 + 0.537221i \(0.180526\pi\)
\(60\) 0 0
\(61\) 26.0031 80.0294i 0.426281 1.31196i −0.475481 0.879726i \(-0.657726\pi\)
0.901762 0.432232i \(-0.142274\pi\)
\(62\) −48.0713 + 94.3452i −0.775343 + 1.52170i
\(63\) 0.945365 + 0.481688i 0.0150058 + 0.00764583i
\(64\) 94.0684 + 30.5647i 1.46982 + 0.477573i
\(65\) 0 0
\(66\) 13.0621 + 40.2009i 0.197910 + 0.609105i
\(67\) 41.9801 + 6.64899i 0.626568 + 0.0992386i 0.461641 0.887067i \(-0.347261\pi\)
0.164927 + 0.986306i \(0.447261\pi\)
\(68\) −93.9570 + 93.9570i −1.38172 + 1.38172i
\(69\) −13.0848 18.0096i −0.189634 0.261009i
\(70\) 0 0
\(71\) 49.0998 + 35.6731i 0.691546 + 0.502438i 0.877168 0.480183i \(-0.159430\pi\)
−0.185622 + 0.982621i \(0.559430\pi\)
\(72\) 2.08836 + 13.1854i 0.0290050 + 0.183130i
\(73\) −43.1099 84.6079i −0.590547 1.15901i −0.972078 0.234657i \(-0.924603\pi\)
0.381532 0.924356i \(-0.375397\pi\)
\(74\) 25.4180i 0.343486i
\(75\) 0 0
\(76\) −143.292 −1.88543
\(77\) −2.50198 + 1.27482i −0.0324932 + 0.0165561i
\(78\) 62.4237 9.88694i 0.800303 0.126756i
\(79\) −62.3659 + 85.8393i −0.789442 + 1.08657i 0.204736 + 0.978817i \(0.434366\pi\)
−0.994177 + 0.107756i \(0.965634\pi\)
\(80\) 0 0
\(81\) 7.28115 5.29007i 0.0898908 0.0653095i
\(82\) 102.028 + 102.028i 1.24425 + 1.24425i
\(83\) 15.0878 95.2606i 0.181781 1.14772i −0.712984 0.701180i \(-0.752657\pi\)
0.894765 0.446538i \(-0.147343\pi\)
\(84\) −3.17380 + 1.03123i −0.0377834 + 0.0122766i
\(85\) 0 0
\(86\) 1.45185 4.46832i 0.0168819 0.0519572i
\(87\) 37.1072 72.8270i 0.426520 0.837092i
\(88\) −31.4802 16.0400i −0.357730 0.182272i
\(89\) −163.312 53.0634i −1.83497 0.596218i −0.998864 0.0476516i \(-0.984826\pi\)
−0.836107 0.548567i \(-0.815174\pi\)
\(90\) 0 0
\(91\) 1.29743 + 3.99309i 0.0142575 + 0.0438801i
\(92\) 69.1547 + 10.9530i 0.751681 + 0.119055i
\(93\) −42.1911 + 42.1911i −0.453668 + 0.453668i
\(94\) 77.7974 + 107.079i 0.827632 + 1.13914i
\(95\) 0 0
\(96\) 59.8858 + 43.5096i 0.623811 + 0.453225i
\(97\) −16.8062 106.110i −0.173259 1.09392i −0.909044 0.416701i \(-0.863186\pi\)
0.735784 0.677216i \(-0.236814\pi\)
\(98\) 68.2019 + 133.854i 0.695938 + 1.36585i
\(99\) 23.8192i 0.240598i
\(100\) 0 0
\(101\) −107.110 −1.06049 −0.530247 0.847843i \(-0.677901\pi\)
−0.530247 + 0.847843i \(0.677901\pi\)
\(102\) −115.700 + 58.9522i −1.13431 + 0.577962i
\(103\) −94.2525 + 14.9281i −0.915073 + 0.144933i −0.596174 0.802855i \(-0.703313\pi\)
−0.318899 + 0.947789i \(0.603313\pi\)
\(104\) −31.0510 + 42.7380i −0.298567 + 0.410942i
\(105\) 0 0
\(106\) −72.4016 + 52.6028i −0.683034 + 0.496253i
\(107\) −128.543 128.543i −1.20134 1.20134i −0.973761 0.227575i \(-0.926920\pi\)
−0.227575 0.973761i \(-0.573080\pi\)
\(108\) −4.42823 + 27.9587i −0.0410021 + 0.258877i
\(109\) −89.3002 + 29.0154i −0.819268 + 0.266196i −0.688518 0.725219i \(-0.741738\pi\)
−0.130750 + 0.991415i \(0.541738\pi\)
\(110\) 0 0
\(111\) −4.42609 + 13.6221i −0.0398747 + 0.122722i
\(112\) −1.30267 + 2.55663i −0.0116310 + 0.0228271i
\(113\) 13.1461 + 6.69828i 0.116337 + 0.0592768i 0.511191 0.859467i \(-0.329205\pi\)
−0.394853 + 0.918744i \(0.629205\pi\)
\(114\) −133.180 43.2727i −1.16824 0.379585i
\(115\) 0 0
\(116\) 79.4417 + 244.497i 0.684843 + 2.10773i
\(117\) 35.1760 + 5.57133i 0.300649 + 0.0476182i
\(118\) −163.151 + 163.151i −1.38264 + 1.38264i
\(119\) −5.07043 6.97885i −0.0426086 0.0586458i
\(120\) 0 0
\(121\) 46.8913 + 34.0685i 0.387531 + 0.281558i
\(122\) 40.4613 + 255.462i 0.331650 + 2.09395i
\(123\) 36.9130 + 72.4458i 0.300105 + 0.588990i
\(124\) 187.668i 1.51345i
\(125\) 0 0
\(126\) −3.26124 −0.0258828
\(127\) −36.2034 + 18.4466i −0.285066 + 0.145249i −0.590677 0.806908i \(-0.701139\pi\)
0.305611 + 0.952157i \(0.401139\pi\)
\(128\) −131.432 + 20.8168i −1.02681 + 0.162631i
\(129\) 1.55616 2.14187i 0.0120632 0.0166036i
\(130\) 0 0
\(131\) 121.554 88.3139i 0.927890 0.674152i −0.0175852 0.999845i \(-0.505598\pi\)
0.945475 + 0.325694i \(0.105598\pi\)
\(132\) −52.9745 52.9745i −0.401322 0.401322i
\(133\) 1.45525 9.18808i 0.0109417 0.0690833i
\(134\) −124.249 + 40.3710i −0.927232 + 0.301276i
\(135\) 0 0
\(136\) 33.5399 103.225i 0.246617 0.759010i
\(137\) 7.33780 14.4013i 0.0535606 0.105119i −0.862675 0.505759i \(-0.831212\pi\)
0.916235 + 0.400641i \(0.131212\pi\)
\(138\) 60.9665 + 31.0640i 0.441786 + 0.225101i
\(139\) 45.4296 + 14.7610i 0.326832 + 0.106194i 0.467837 0.883815i \(-0.345033\pi\)
−0.141005 + 0.990009i \(0.545033\pi\)
\(140\) 0 0
\(141\) 23.0476 + 70.9332i 0.163458 + 0.503072i
\(142\) −184.249 29.1822i −1.29753 0.205509i
\(143\) −66.6492 + 66.6492i −0.466079 + 0.466079i
\(144\) 14.3064 + 19.6910i 0.0993499 + 0.136743i
\(145\) 0 0
\(146\) 236.130 + 171.559i 1.61733 + 1.17506i
\(147\) 13.2428 + 83.6116i 0.0900869 + 0.568786i
\(148\) −20.4522 40.1397i −0.138190 0.271214i
\(149\) 108.380i 0.727379i −0.931520 0.363690i \(-0.881517\pi\)
0.931520 0.363690i \(-0.118483\pi\)
\(150\) 0 0
\(151\) −59.8487 −0.396349 −0.198175 0.980167i \(-0.563501\pi\)
−0.198175 + 0.980167i \(0.563501\pi\)
\(152\) 104.289 53.1380i 0.686114 0.349592i
\(153\) −72.2719 + 11.4468i −0.472366 + 0.0748154i
\(154\) 5.07324 6.98271i 0.0329431 0.0453423i
\(155\) 0 0
\(156\) −90.6231 + 65.8415i −0.580917 + 0.422061i
\(157\) 87.1877 + 87.1877i 0.555336 + 0.555336i 0.927976 0.372640i \(-0.121547\pi\)
−0.372640 + 0.927976i \(0.621547\pi\)
\(158\) 51.0181 322.116i 0.322900 2.03871i
\(159\) −47.9616 + 15.5837i −0.301645 + 0.0980105i
\(160\) 0 0
\(161\) −1.40464 + 4.32305i −0.00872449 + 0.0268512i
\(162\) −12.5589 + 24.6483i −0.0775243 + 0.152150i
\(163\) −82.9386 42.2593i −0.508826 0.259260i 0.180677 0.983542i \(-0.442171\pi\)
−0.689503 + 0.724283i \(0.742171\pi\)
\(164\) −243.217 79.0259i −1.48303 0.481865i
\(165\) 0 0
\(166\) 91.6093 + 281.944i 0.551863 + 1.69846i
\(167\) 234.911 + 37.2062i 1.40665 + 0.222792i 0.813156 0.582046i \(-0.197748\pi\)
0.593495 + 0.804837i \(0.297748\pi\)
\(168\) 1.92750 1.92750i 0.0114732 0.0114732i
\(169\) −16.4979 22.7075i −0.0976209 0.134364i
\(170\) 0 0
\(171\) −63.8390 46.3818i −0.373328 0.271238i
\(172\) 1.30263 + 8.22451i 0.00757346 + 0.0478169i
\(173\) −15.0135 29.4657i −0.0867833 0.170322i 0.843536 0.537073i \(-0.180470\pi\)
−0.930319 + 0.366751i \(0.880470\pi\)
\(174\) 251.232i 1.44386i
\(175\) 0 0
\(176\) −64.4162 −0.366001
\(177\) −115.847 + 59.0268i −0.654501 + 0.333485i
\(178\) 521.311 82.5675i 2.92871 0.463862i
\(179\) 157.338 216.558i 0.878985 1.20982i −0.0977154 0.995214i \(-0.531153\pi\)
0.976701 0.214605i \(-0.0688465\pi\)
\(180\) 0 0
\(181\) −32.1635 + 23.3682i −0.177699 + 0.129106i −0.673079 0.739570i \(-0.735029\pi\)
0.495380 + 0.868676i \(0.335029\pi\)
\(182\) −9.12538 9.12538i −0.0501395 0.0501395i
\(183\) −22.8001 + 143.954i −0.124591 + 0.786634i
\(184\) −54.3931 + 17.6734i −0.295615 + 0.0960510i
\(185\) 0 0
\(186\) 56.6737 174.424i 0.304697 0.937762i
\(187\) 87.9186 172.550i 0.470153 0.922727i
\(188\) −209.016 106.499i −1.11179 0.566483i
\(189\) −1.74778 0.567887i −0.00924749 0.00300469i
\(190\) 0 0
\(191\) −40.9280 125.963i −0.214283 0.659495i −0.999204 0.0398988i \(-0.987296\pi\)
0.784921 0.619596i \(-0.212704\pi\)
\(192\) −169.207 26.7997i −0.881286 0.139582i
\(193\) 31.7199 31.7199i 0.164352 0.164352i −0.620140 0.784491i \(-0.712924\pi\)
0.784491 + 0.620140i \(0.212924\pi\)
\(194\) 194.097 + 267.151i 1.00050 + 1.37707i
\(195\) 0 0
\(196\) −215.407 156.502i −1.09901 0.798480i
\(197\) 26.9222 + 169.980i 0.136661 + 0.862844i 0.956814 + 0.290700i \(0.0938881\pi\)
−0.820153 + 0.572144i \(0.806112\pi\)
\(198\) −33.2382 65.2336i −0.167870 0.329462i
\(199\) 26.7052i 0.134197i −0.997746 0.0670985i \(-0.978626\pi\)
0.997746 0.0670985i \(-0.0213742\pi\)
\(200\) 0 0
\(201\) −73.6179 −0.366258
\(202\) 293.342 149.465i 1.45219 0.739927i
\(203\) −16.4842 + 2.61084i −0.0812030 + 0.0128613i
\(204\) 135.277 186.193i 0.663122 0.912709i
\(205\) 0 0
\(206\) 237.298 172.407i 1.15193 0.836928i
\(207\) 27.2642 + 27.2642i 0.131711 + 0.131711i
\(208\) −15.0670 + 95.1294i −0.0724376 + 0.457353i
\(209\) 198.618 64.5350i 0.950326 0.308780i
\(210\) 0 0
\(211\) 4.07202 12.5324i 0.0192987 0.0593952i −0.940943 0.338564i \(-0.890059\pi\)
0.960242 + 0.279169i \(0.0900589\pi\)
\(212\) 72.0094 141.326i 0.339667 0.666634i
\(213\) −93.6620 47.7232i −0.439728 0.224052i
\(214\) 531.414 + 172.667i 2.48324 + 0.806855i
\(215\) 0 0
\(216\) −7.14522 21.9907i −0.0330797 0.101809i
\(217\) 12.0335 + 1.90592i 0.0554540 + 0.00878305i
\(218\) 204.077 204.077i 0.936134 0.936134i
\(219\) 96.6740 + 133.060i 0.441434 + 0.607581i
\(220\) 0 0
\(221\) −234.256 170.197i −1.05998 0.770123i
\(222\) −6.88706 43.4832i −0.0310228 0.195870i
\(223\) 99.4164 + 195.116i 0.445814 + 0.874958i 0.999118 + 0.0419796i \(0.0133665\pi\)
−0.553305 + 0.832979i \(0.686634\pi\)
\(224\) 15.1148i 0.0674769i
\(225\) 0 0
\(226\) −45.3503 −0.200665
\(227\) −133.983 + 68.2679i −0.590235 + 0.300740i −0.723482 0.690343i \(-0.757460\pi\)
0.133247 + 0.991083i \(0.457460\pi\)
\(228\) 245.134 38.8254i 1.07515 0.170287i
\(229\) −218.119 + 300.215i −0.952483 + 1.31098i −0.00206788 + 0.999998i \(0.500658\pi\)
−0.950415 + 0.310983i \(0.899342\pi\)
\(230\) 0 0
\(231\) 3.93478 2.85879i 0.0170337 0.0123757i
\(232\) −148.487 148.487i −0.640028 0.640028i
\(233\) −11.6039 + 73.2641i −0.0498021 + 0.314438i 0.950194 + 0.311659i \(0.100885\pi\)
−0.999996 + 0.00277928i \(0.999115\pi\)
\(234\) −104.111 + 33.8277i −0.444918 + 0.144563i
\(235\) 0 0
\(236\) 126.369 388.923i 0.535461 1.64798i
\(237\) 83.4326 163.746i 0.352036 0.690910i
\(238\) 23.6249 + 12.0375i 0.0992644 + 0.0505777i
\(239\) 216.055 + 70.2006i 0.903996 + 0.293726i 0.723885 0.689920i \(-0.242354\pi\)
0.180111 + 0.983646i \(0.442354\pi\)
\(240\) 0 0
\(241\) −106.433 327.566i −0.441629 1.35919i −0.886139 0.463420i \(-0.846622\pi\)
0.444510 0.895774i \(-0.353378\pi\)
\(242\) −175.962 27.8696i −0.727115 0.115164i
\(243\) −11.0227 + 11.0227i −0.0453609 + 0.0453609i
\(244\) −269.450 370.866i −1.10430 1.51994i
\(245\) 0 0
\(246\) −202.187 146.898i −0.821899 0.597145i
\(247\) −48.8478 308.413i −0.197764 1.24863i
\(248\) 69.5942 + 136.586i 0.280622 + 0.550751i
\(249\) 167.053i 0.670895i
\(250\) 0 0
\(251\) −210.120 −0.837130 −0.418565 0.908187i \(-0.637467\pi\)
−0.418565 + 0.908187i \(0.637467\pi\)
\(252\) 5.15009 2.62410i 0.0204369 0.0104131i
\(253\) −100.789 + 15.9633i −0.398374 + 0.0630962i
\(254\) 73.4094 101.039i 0.289013 0.397793i
\(255\) 0 0
\(256\) 10.8275 7.86664i 0.0422949 0.0307290i
\(257\) 181.816 + 181.816i 0.707456 + 0.707456i 0.966000 0.258544i \(-0.0832426\pi\)
−0.258544 + 0.966000i \(0.583243\pi\)
\(258\) −1.27301 + 8.03746i −0.00493414 + 0.0311529i
\(259\) 2.78151 0.903768i 0.0107394 0.00348945i
\(260\) 0 0
\(261\) −43.7476 + 134.641i −0.167615 + 0.515867i
\(262\) −209.662 + 411.486i −0.800238 + 1.57056i
\(263\) −68.9955 35.1550i −0.262340 0.133669i 0.317874 0.948133i \(-0.397031\pi\)
−0.580214 + 0.814464i \(0.697031\pi\)
\(264\) 58.2001 + 18.9104i 0.220455 + 0.0716301i
\(265\) 0 0
\(266\) 8.83590 + 27.1941i 0.0332177 + 0.102233i
\(267\) 293.761 + 46.5271i 1.10023 + 0.174259i
\(268\) 163.728 163.728i 0.610926 0.610926i
\(269\) −187.609 258.221i −0.697430 0.959931i −0.999977 0.00679606i \(-0.997837\pi\)
0.302546 0.953135i \(-0.402163\pi\)
\(270\) 0 0
\(271\) 286.845 + 208.405i 1.05847 + 0.769022i 0.973804 0.227387i \(-0.0730184\pi\)
0.0846638 + 0.996410i \(0.473018\pi\)
\(272\) −30.9564 195.451i −0.113810 0.718571i
\(273\) −3.30149 6.47953i −0.0120934 0.0237346i
\(274\) 49.6802i 0.181314i
\(275\) 0 0
\(276\) −121.273 −0.439393
\(277\) −295.312 + 150.469i −1.06611 + 0.543209i −0.896837 0.442360i \(-0.854141\pi\)
−0.169271 + 0.985570i \(0.554141\pi\)
\(278\) −145.016 + 22.9683i −0.521641 + 0.0826198i
\(279\) 60.7456 83.6092i 0.217726 0.299674i
\(280\) 0 0
\(281\) −87.3274 + 63.4471i −0.310774 + 0.225790i −0.732228 0.681059i \(-0.761520\pi\)
0.421455 + 0.906849i \(0.361520\pi\)
\(282\) −162.103 162.103i −0.574835 0.574835i
\(283\) −20.9100 + 132.020i −0.0738868 + 0.466503i 0.922808 + 0.385261i \(0.125889\pi\)
−0.996694 + 0.0812417i \(0.974111\pi\)
\(284\) 314.444 102.169i 1.10720 0.359751i
\(285\) 0 0
\(286\) 89.5275 275.537i 0.313033 0.963417i
\(287\) 7.53730 14.7928i 0.0262624 0.0515428i
\(288\) −114.237 58.2068i −0.396657 0.202107i
\(289\) 290.945 + 94.5339i 1.00673 + 0.327107i
\(290\) 0 0
\(291\) 57.5015 + 176.971i 0.197600 + 0.608149i
\(292\) −510.935 80.9242i −1.74978 0.277138i
\(293\) 255.208 255.208i 0.871017 0.871017i −0.121566 0.992583i \(-0.538792\pi\)
0.992583 + 0.121566i \(0.0387917\pi\)
\(294\) −152.943 210.508i −0.520214 0.716013i
\(295\) 0 0
\(296\) 29.7705 + 21.6295i 0.100576 + 0.0730728i
\(297\) −6.45386 40.7481i −0.0217302 0.137199i
\(298\) 151.237 + 296.819i 0.507506 + 0.996037i
\(299\) 152.578i 0.510293i
\(300\) 0 0
\(301\) −0.540595 −0.00179600
\(302\) 163.908 83.5152i 0.542741 0.276540i
\(303\) 183.236 29.0217i 0.604738 0.0957811i
\(304\) 125.434 172.645i 0.412612 0.567912i
\(305\) 0 0
\(306\) 181.958 132.200i 0.594634 0.432027i
\(307\) 299.563 + 299.563i 0.975775 + 0.975775i 0.999713 0.0239382i \(-0.00762048\pi\)
−0.0239382 + 0.999713i \(0.507620\pi\)
\(308\) −2.39304 + 15.1091i −0.00776962 + 0.0490555i
\(309\) 157.195 51.0759i 0.508723 0.165294i
\(310\) 0 0
\(311\) −11.4518 + 35.2451i −0.0368226 + 0.113328i −0.967778 0.251804i \(-0.918976\pi\)
0.930956 + 0.365132i \(0.118976\pi\)
\(312\) 41.5397 81.5263i 0.133140 0.261302i
\(313\) −374.766 190.953i −1.19734 0.610073i −0.262424 0.964953i \(-0.584522\pi\)
−0.934912 + 0.354880i \(0.884522\pi\)
\(314\) −360.446 117.116i −1.14792 0.372981i
\(315\) 0 0
\(316\) 178.618 + 549.731i 0.565248 + 1.73966i
\(317\) −162.025 25.6622i −0.511119 0.0809533i −0.104452 0.994530i \(-0.533309\pi\)
−0.406667 + 0.913577i \(0.633309\pi\)
\(318\) 109.606 109.606i 0.344674 0.344674i
\(319\) −220.229 303.119i −0.690373 0.950218i
\(320\) 0 0
\(321\) 254.731 + 185.073i 0.793554 + 0.576550i
\(322\) −2.18565 13.7996i −0.00678772 0.0428560i
\(323\) 291.261 + 571.632i 0.901738 + 1.76976i
\(324\) 49.0296i 0.151326i
\(325\) 0 0
\(326\) 286.114 0.877652
\(327\) 144.906 73.8335i 0.443139 0.225790i
\(328\) 206.321 32.6780i 0.629027 0.0996280i
\(329\) 8.95156 12.3208i 0.0272084 0.0374491i
\(330\) 0 0
\(331\) 265.305 192.756i 0.801527 0.582343i −0.109835 0.993950i \(-0.535032\pi\)
0.911362 + 0.411607i \(0.135032\pi\)
\(332\) −371.530 371.530i −1.11907 1.11907i
\(333\) 3.88089 24.5030i 0.0116543 0.0735825i
\(334\) −695.269 + 225.907i −2.08164 + 0.676367i
\(335\) 0 0
\(336\) 1.53578 4.72666i 0.00457079 0.0140674i
\(337\) −207.965 + 408.154i −0.617107 + 1.21114i 0.345035 + 0.938590i \(0.387867\pi\)
−0.962142 + 0.272550i \(0.912133\pi\)
\(338\) 76.8697 + 39.1671i 0.227425 + 0.115879i
\(339\) −24.3043 7.89696i −0.0716942 0.0232949i
\(340\) 0 0
\(341\) 84.5206 + 260.128i 0.247861 + 0.762838i
\(342\) 239.559 + 37.9424i 0.700465 + 0.110943i
\(343\) 24.4768 24.4768i 0.0713608 0.0713608i
\(344\) −3.99802 5.50280i −0.0116221 0.0159965i
\(345\) 0 0
\(346\) 82.2351 + 59.7473i 0.237674 + 0.172680i
\(347\) −60.7454 383.531i −0.175059 1.10528i −0.906137 0.422984i \(-0.860983\pi\)
0.731078 0.682293i \(-0.239017\pi\)
\(348\) −202.150 396.742i −0.580891 1.14006i
\(349\) 160.925i 0.461103i −0.973060 0.230552i \(-0.925947\pi\)
0.973060 0.230552i \(-0.0740530\pi\)
\(350\) 0 0
\(351\) −61.6860 −0.175744
\(352\) 302.338 154.049i 0.858913 0.437638i
\(353\) 70.5532 11.1745i 0.199868 0.0316559i −0.0556979 0.998448i \(-0.517738\pi\)
0.255565 + 0.966792i \(0.417738\pi\)
\(354\) 234.901 323.313i 0.663562 0.913315i
\(355\) 0 0
\(356\) −756.809 + 549.854i −2.12587 + 1.54453i
\(357\) 10.5650 + 10.5650i 0.0295940 + 0.0295940i
\(358\) −128.710 + 812.643i −0.359525 + 2.26995i
\(359\) 96.8130 31.4565i 0.269674 0.0876225i −0.171058 0.985261i \(-0.554719\pi\)
0.440733 + 0.897638i \(0.354719\pi\)
\(360\) 0 0
\(361\) −102.240 + 314.661i −0.283212 + 0.871638i
\(362\) 55.4774 108.881i 0.153253 0.300775i
\(363\) −89.4491 45.5766i −0.246416 0.125555i
\(364\) 21.7533 + 7.06806i 0.0597617 + 0.0194177i
\(365\) 0 0
\(366\) −138.436 426.063i −0.378241 1.16411i
\(367\) −414.375 65.6306i −1.12909 0.178830i −0.436183 0.899858i \(-0.643670\pi\)
−0.692906 + 0.721028i \(0.743670\pi\)
\(368\) −73.7328 + 73.7328i −0.200361 + 0.200361i
\(369\) −82.7774 113.933i −0.224329 0.308762i
\(370\) 0 0
\(371\) 8.33070 + 6.05261i 0.0224547 + 0.0163143i
\(372\) 50.8492 + 321.049i 0.136691 + 0.863035i
\(373\) −179.734 352.748i −0.481861 0.945705i −0.996115 0.0880667i \(-0.971931\pi\)
0.514254 0.857638i \(-0.328069\pi\)
\(374\) 595.248i 1.59157i
\(375\) 0 0
\(376\) 191.617 0.509620
\(377\) −499.156 + 254.333i −1.32402 + 0.674623i
\(378\) 5.57908 0.883640i 0.0147595 0.00233767i
\(379\) −364.178 + 501.248i −0.960892 + 1.32255i −0.0143757 + 0.999897i \(0.504576\pi\)
−0.946516 + 0.322657i \(0.895424\pi\)
\(380\) 0 0
\(381\) 56.9360 41.3665i 0.149438 0.108573i
\(382\) 287.864 + 287.864i 0.753570 + 0.753570i
\(383\) −38.3398 + 242.068i −0.100104 + 0.632031i 0.885716 + 0.464227i \(0.153668\pi\)
−0.985820 + 0.167804i \(0.946332\pi\)
\(384\) 219.204 71.2237i 0.570844 0.185478i
\(385\) 0 0
\(386\) −42.6081 + 131.134i −0.110384 + 0.339726i
\(387\) −2.08182 + 4.08580i −0.00537937 + 0.0105576i
\(388\) −521.474 265.704i −1.34401 0.684805i
\(389\) 21.1457 + 6.87066i 0.0543591 + 0.0176624i 0.336070 0.941837i \(-0.390902\pi\)
−0.281711 + 0.959499i \(0.590902\pi\)
\(390\) 0 0
\(391\) −96.8717 298.141i −0.247754 0.762508i
\(392\) 214.811 + 34.0228i 0.547988 + 0.0867928i
\(393\) −184.016 + 184.016i −0.468234 + 0.468234i
\(394\) −310.929 427.957i −0.789159 1.08618i
\(395\) 0 0
\(396\) 104.978 + 76.2712i 0.265097 + 0.192604i
\(397\) 27.3358 + 172.591i 0.0688559 + 0.434739i 0.997900 + 0.0647705i \(0.0206315\pi\)
−0.929044 + 0.369968i \(0.879368\pi\)
\(398\) 37.2654 + 73.1375i 0.0936317 + 0.183763i
\(399\) 16.1126i 0.0403824i
\(400\) 0 0
\(401\) −352.160 −0.878204 −0.439102 0.898437i \(-0.644703\pi\)
−0.439102 + 0.898437i \(0.644703\pi\)
\(402\) 201.618 102.729i 0.501536 0.255545i
\(403\) 403.924 63.9753i 1.00229 0.158748i
\(404\) −342.976 + 472.066i −0.848951 + 1.16848i
\(405\) 0 0
\(406\) 41.5021 30.1530i 0.102222 0.0742685i
\(407\) 46.4267 + 46.4267i 0.114070 + 0.114070i
\(408\) −29.4085 + 185.678i −0.0720797 + 0.455093i
\(409\) −454.282 + 147.605i −1.11071 + 0.360893i −0.806217 0.591620i \(-0.798489\pi\)
−0.304498 + 0.952513i \(0.598489\pi\)
\(410\) 0 0
\(411\) −8.65092 + 26.6248i −0.0210485 + 0.0647805i
\(412\) −236.013 + 463.201i −0.572846 + 1.12427i
\(413\) 23.6548 + 12.0527i 0.0572756 + 0.0291834i
\(414\) −112.714 36.6230i −0.272256 0.0884613i
\(415\) 0 0
\(416\) −156.781 482.522i −0.376877 1.15991i
\(417\) −81.7172 12.9427i −0.195965 0.0310377i
\(418\) −453.901 + 453.901i −1.08589 + 1.08589i
\(419\) 362.429 + 498.840i 0.864985 + 1.19055i 0.980358 + 0.197227i \(0.0631937\pi\)
−0.115373 + 0.993322i \(0.536806\pi\)
\(420\) 0 0
\(421\) 374.959 + 272.424i 0.890639 + 0.647087i 0.936044 0.351882i \(-0.114458\pi\)
−0.0454057 + 0.998969i \(0.514458\pi\)
\(422\) 6.33613 + 40.0047i 0.0150145 + 0.0947980i
\(423\) −58.6477 115.103i −0.138647 0.272110i
\(424\) 129.562i 0.305571i
\(425\) 0 0
\(426\) 323.107 0.758467
\(427\) 26.5168 13.5110i 0.0621003 0.0316417i
\(428\) −978.134 + 154.921i −2.28536 + 0.361966i
\(429\) 95.9598 132.077i 0.223683 0.307873i
\(430\) 0 0
\(431\) −19.0751 + 13.8589i −0.0442578 + 0.0321552i −0.609694 0.792637i \(-0.708708\pi\)
0.565436 + 0.824792i \(0.308708\pi\)
\(432\) −29.8096 29.8096i −0.0690038 0.0690038i
\(433\) 17.5716 110.943i 0.0405810 0.256218i −0.959054 0.283222i \(-0.908597\pi\)
0.999635 + 0.0270038i \(0.00859661\pi\)
\(434\) −35.6158 + 11.5723i −0.0820640 + 0.0266642i
\(435\) 0 0
\(436\) −158.068 + 486.483i −0.362541 + 1.11579i
\(437\) 153.476 301.213i 0.351203 0.689276i
\(438\) −450.439 229.510i −1.02840 0.523995i
\(439\) 519.678 + 168.854i 1.18378 + 0.384632i 0.833768 0.552114i \(-0.186179\pi\)
0.350008 + 0.936747i \(0.386179\pi\)
\(440\) 0 0
\(441\) −45.3095 139.448i −0.102743 0.316210i
\(442\) 879.057 + 139.229i 1.98882 + 0.314998i
\(443\) 165.809 165.809i 0.374287 0.374287i −0.494749 0.869036i \(-0.664740\pi\)
0.869036 + 0.494749i \(0.164740\pi\)
\(444\) 45.8640 + 63.1264i 0.103297 + 0.142177i
\(445\) 0 0
\(446\) −544.544 395.634i −1.22095 0.887072i
\(447\) 29.3657 + 185.408i 0.0656951 + 0.414782i
\(448\) 15.8811 + 31.1685i 0.0354490 + 0.0695725i
\(449\) 201.205i 0.448119i −0.974576 0.224059i \(-0.928069\pi\)
0.974576 0.224059i \(-0.0719309\pi\)
\(450\) 0 0
\(451\) 372.715 0.826419
\(452\) 71.6165 36.4904i 0.158444 0.0807311i
\(453\) 102.385 16.2162i 0.226015 0.0357973i
\(454\) 271.677 373.931i 0.598407 0.823636i
\(455\) 0 0
\(456\) −164.013 + 119.162i −0.359677 + 0.261320i
\(457\) −449.591 449.591i −0.983788 0.983788i 0.0160822 0.999871i \(-0.494881\pi\)
−0.999871 + 0.0160822i \(0.994881\pi\)
\(458\) 178.431 1126.57i 0.389587 2.45976i
\(459\) 120.536 39.1645i 0.262606 0.0853258i
\(460\) 0 0
\(461\) −130.749 + 402.403i −0.283620 + 0.872892i 0.703189 + 0.711003i \(0.251759\pi\)
−0.986809 + 0.161889i \(0.948241\pi\)
\(462\) −6.78694 + 13.3201i −0.0146903 + 0.0288314i
\(463\) 585.996 + 298.580i 1.26565 + 0.644881i 0.952418 0.304795i \(-0.0985880\pi\)
0.313233 + 0.949676i \(0.398588\pi\)
\(464\) −364.122 118.310i −0.784746 0.254979i
\(465\) 0 0
\(466\) −70.4559 216.841i −0.151193 0.465324i
\(467\) 649.664 + 102.897i 1.39114 + 0.220335i 0.806634 0.591052i \(-0.201287\pi\)
0.584509 + 0.811387i \(0.301287\pi\)
\(468\) 137.191 137.191i 0.293144 0.293144i
\(469\) 8.83566 + 12.1612i 0.0188394 + 0.0259302i
\(470\) 0 0
\(471\) −172.778 125.531i −0.366832 0.266519i
\(472\) 52.2547 + 329.923i 0.110709 + 0.698990i
\(473\) −5.50968 10.8134i −0.0116484 0.0228612i
\(474\) 564.875i 1.19172i
\(475\) 0 0
\(476\) −46.9939 −0.0987267
\(477\) 77.8267 39.6547i 0.163159 0.0831336i
\(478\) −689.671 + 109.233i −1.44283 + 0.228521i
\(479\) −394.709 + 543.270i −0.824026 + 1.13418i 0.164979 + 0.986297i \(0.447244\pi\)
−0.989006 + 0.147878i \(0.952756\pi\)
\(480\) 0 0
\(481\) 79.4218 57.7033i 0.165118 0.119965i
\(482\) 748.584 + 748.584i 1.55308 + 1.55308i
\(483\) 1.23162 7.77614i 0.00254994 0.0160997i
\(484\) 300.301 97.5736i 0.620456 0.201598i
\(485\) 0 0
\(486\) 14.8064 45.5694i 0.0304658 0.0937642i
\(487\) 47.8556 93.9218i 0.0982660 0.192858i −0.836640 0.547753i \(-0.815483\pi\)
0.934906 + 0.354895i \(0.115483\pi\)
\(488\) 333.638 + 169.997i 0.683685 + 0.348355i
\(489\) 153.336 + 49.8218i 0.313570 + 0.101885i
\(490\) 0 0
\(491\) 52.5414 + 161.706i 0.107009 + 0.329340i 0.990197 0.139680i \(-0.0446073\pi\)
−0.883188 + 0.469020i \(0.844607\pi\)
\(492\) 437.490 + 69.2916i 0.889207 + 0.140836i
\(493\) 813.888 813.888i 1.65089 1.65089i
\(494\) 564.150 + 776.486i 1.14200 + 1.57183i
\(495\) 0 0
\(496\) 226.111 + 164.280i 0.455870 + 0.331209i
\(497\) 3.35778 + 21.2002i 0.00675609 + 0.0426563i
\(498\) −233.112 457.508i −0.468096 0.918690i
\(499\) 290.197i 0.581557i −0.956790 0.290779i \(-0.906086\pi\)
0.956790 0.290779i \(-0.0939143\pi\)
\(500\) 0 0
\(501\) −411.949 −0.822254
\(502\) 575.455 293.209i 1.14632 0.584081i
\(503\) −129.151 + 20.4555i −0.256762 + 0.0406671i −0.283488 0.958976i \(-0.591492\pi\)
0.0267264 + 0.999643i \(0.491492\pi\)
\(504\) −2.77516 + 3.81969i −0.00550628 + 0.00757874i
\(505\) 0 0
\(506\) 253.754 184.363i 0.501490 0.364354i
\(507\) 34.3761 + 34.3761i 0.0678029 + 0.0678029i
\(508\) −34.6272 + 218.627i −0.0681637 + 0.430369i
\(509\) −88.4961 + 28.7541i −0.173863 + 0.0564914i −0.394655 0.918830i \(-0.629136\pi\)
0.220792 + 0.975321i \(0.429136\pi\)
\(510\) 0 0
\(511\) 10.3779 31.9399i 0.0203090 0.0625048i
\(512\) 222.975 437.613i 0.435498 0.854713i
\(513\) 121.778 + 62.0492i 0.237385 + 0.120954i
\(514\) −751.653 244.227i −1.46236 0.475150i
\(515\) 0 0
\(516\) −4.45690 13.7169i −0.00863741 0.0265832i
\(517\) 337.682 + 53.4836i 0.653157 + 0.103450i
\(518\) −6.35658 + 6.35658i −0.0122714 + 0.0122714i
\(519\) 33.6678 + 46.3398i 0.0648706 + 0.0892867i
\(520\) 0 0
\(521\) −55.2207 40.1202i −0.105990 0.0770062i 0.533528 0.845782i \(-0.320866\pi\)
−0.639518 + 0.768776i \(0.720866\pi\)
\(522\) −68.0720 429.789i −0.130406 0.823351i
\(523\) −390.574 766.544i −0.746795 1.46567i −0.880199 0.474605i \(-0.842591\pi\)
0.133404 0.991062i \(-0.457409\pi\)
\(524\) 818.513i 1.56205i
\(525\) 0 0
\(526\) 238.015 0.452499
\(527\) −748.660 + 381.461i −1.42061 + 0.723835i
\(528\) 110.199 17.4537i 0.208709 0.0330563i
\(529\) 213.845 294.332i 0.404243 0.556393i
\(530\) 0 0
\(531\) 182.188 132.368i 0.343104 0.249280i
\(532\) −35.8348 35.8348i −0.0673587 0.0673587i
\(533\) 87.1784 550.423i 0.163562 1.03269i
\(534\) −869.448 + 282.501i −1.62818 + 0.529028i
\(535\) 0 0
\(536\) −58.4463 + 179.879i −0.109042 + 0.335595i
\(537\) −210.486 + 413.102i −0.391967 + 0.769278i
\(538\) 874.136 + 445.395i 1.62479 + 0.827871i
\(539\) 369.061 + 119.915i 0.684713 + 0.222477i
\(540\) 0 0
\(541\) −6.85938 21.1110i −0.0126791 0.0390222i 0.944517 0.328463i \(-0.106531\pi\)
−0.957196 + 0.289441i \(0.906531\pi\)
\(542\) −1076.40 170.485i −1.98598 0.314548i
\(543\) 48.6913 48.6913i 0.0896710 0.0896710i
\(544\) 612.707 + 843.319i 1.12630 + 1.55022i
\(545\) 0 0
\(546\) 18.0836 + 13.1385i 0.0331201 + 0.0240632i
\(547\) −67.8821 428.590i −0.124099 0.783529i −0.968718 0.248162i \(-0.920173\pi\)
0.844620 0.535367i \(-0.179827\pi\)
\(548\) −39.9744 78.4541i −0.0729459 0.143164i
\(549\) 252.444i 0.459825i
\(550\) 0 0
\(551\) 1241.25 2.25272
\(552\) 88.2631 44.9723i 0.159897 0.0814715i
\(553\) −37.0634 + 5.87027i −0.0670225 + 0.0106153i
\(554\) 598.801 824.179i 1.08087 1.48769i
\(555\) 0 0
\(556\) 210.526 152.956i 0.378644 0.275101i
\(557\) 161.067 + 161.067i 0.289169 + 0.289169i 0.836752 0.547583i \(-0.184452\pi\)
−0.547583 + 0.836752i \(0.684452\pi\)
\(558\) −49.6927 + 313.747i −0.0890550 + 0.562271i
\(559\) −17.2578 + 5.60740i −0.0308727 + 0.0100311i
\(560\) 0 0
\(561\) −103.652 + 319.007i −0.184763 + 0.568641i
\(562\) 150.627 295.623i 0.268020 0.526019i
\(563\) 169.572 + 86.4014i 0.301194 + 0.153466i 0.598056 0.801454i \(-0.295940\pi\)
−0.296862 + 0.954920i \(0.595940\pi\)
\(564\) 386.425 + 125.557i 0.685151 + 0.222619i
\(565\) 0 0
\(566\) −126.960 390.743i −0.224311 0.690358i
\(567\) 3.14384 + 0.497935i 0.00554468 + 0.000878192i
\(568\) −190.967 + 190.967i −0.336210 + 0.336210i
\(569\) −249.297 343.128i −0.438132 0.603036i 0.531664 0.846955i \(-0.321567\pi\)
−0.969796 + 0.243919i \(0.921567\pi\)
\(570\) 0 0
\(571\) −148.638 107.992i −0.260312 0.189128i 0.449972 0.893042i \(-0.351434\pi\)
−0.710285 + 0.703914i \(0.751434\pi\)
\(572\) 80.3264 + 507.161i 0.140431 + 0.886645i
\(573\) 104.147 + 204.400i 0.181757 + 0.356718i
\(574\) 51.0308i 0.0889039i
\(575\) 0 0
\(576\) 296.728 0.515153
\(577\) −675.710 + 344.292i −1.17108 + 0.596693i −0.927732 0.373248i \(-0.878244\pi\)
−0.243343 + 0.969940i \(0.578244\pi\)
\(578\) −928.728 + 147.096i −1.60680 + 0.254492i
\(579\) −45.6694 + 62.8586i −0.0788764 + 0.108564i
\(580\) 0 0
\(581\) 27.5961 20.0498i 0.0474977 0.0345091i
\(582\) −404.432 404.432i −0.694900 0.694900i
\(583\) −36.1630 + 228.324i −0.0620292 + 0.391637i
\(584\) 401.872 130.576i 0.688137 0.223589i
\(585\) 0 0
\(586\) −342.811 + 1055.07i −0.585002 + 1.80045i
\(587\) 123.904 243.176i 0.211081 0.414269i −0.761055 0.648687i \(-0.775318\pi\)
0.972136 + 0.234418i \(0.0753184\pi\)
\(588\) 410.907 + 209.367i 0.698821 + 0.356067i
\(589\) −861.765 280.004i −1.46310 0.475389i
\(590\) 0 0
\(591\) −92.1131 283.495i −0.155860 0.479687i
\(592\) 66.2655 + 10.4954i 0.111935 + 0.0177287i
\(593\) −367.718 + 367.718i −0.620098 + 0.620098i −0.945556 0.325458i \(-0.894481\pi\)
0.325458 + 0.945556i \(0.394481\pi\)
\(594\) 74.5366 + 102.591i 0.125482 + 0.172712i
\(595\) 0 0
\(596\) −477.662 347.042i −0.801446 0.582284i
\(597\) 7.23584 + 45.6853i 0.0121203 + 0.0765247i
\(598\) −212.913 417.865i −0.356041 0.698770i
\(599\) 654.311i 1.09234i −0.837675 0.546170i \(-0.816085\pi\)
0.837675 0.546170i \(-0.183915\pi\)
\(600\) 0 0
\(601\) −233.449 −0.388434 −0.194217 0.980959i \(-0.562217\pi\)
−0.194217 + 0.980959i \(0.562217\pi\)
\(602\) 1.48053 0.754367i 0.00245935 0.00125310i
\(603\) 125.940 19.9470i 0.208856 0.0330795i
\(604\) −191.641 + 263.772i −0.317287 + 0.436708i
\(605\) 0 0
\(606\) −461.330 + 335.176i −0.761270 + 0.553095i
\(607\) −581.645 581.645i −0.958229 0.958229i 0.0409329 0.999162i \(-0.486967\pi\)
−0.999162 + 0.0409329i \(0.986967\pi\)
\(608\) −175.851 + 1110.28i −0.289229 + 1.82612i
\(609\) 27.4926 8.93287i 0.0451438 0.0146681i
\(610\) 0 0
\(611\) 157.968 486.176i 0.258541 0.795706i
\(612\) −180.972 + 355.178i −0.295706 + 0.580357i
\(613\) 636.056 + 324.087i 1.03761 + 0.528689i 0.887898 0.460040i \(-0.152165\pi\)
0.149713 + 0.988729i \(0.452165\pi\)
\(614\) −1238.44 402.392i −2.01700 0.655361i
\(615\) 0 0
\(616\) −3.86133 11.8839i −0.00626838 0.0192921i
\(617\) 261.364 + 41.3960i 0.423605 + 0.0670924i 0.364598 0.931165i \(-0.381207\pi\)
0.0590070 + 0.998258i \(0.481207\pi\)
\(618\) −359.238 + 359.238i −0.581291 + 0.581291i
\(619\) −159.169 219.077i −0.257138 0.353921i 0.660857 0.750512i \(-0.270193\pi\)
−0.917995 + 0.396591i \(0.870193\pi\)
\(620\) 0 0
\(621\) −54.0288 39.2543i −0.0870030 0.0632114i
\(622\) −17.8192 112.506i −0.0286482 0.180878i
\(623\) −27.5713 54.1117i −0.0442557 0.0868566i
\(624\) 166.823i 0.267344i
\(625\) 0 0
\(626\) 1292.84 2.06523
\(627\) −322.295 + 164.218i −0.514028 + 0.261910i
\(628\) 663.446 105.080i 1.05644 0.167324i
\(629\) −118.556 + 163.179i −0.188484 + 0.259426i
\(630\) 0 0
\(631\) −777.204 + 564.672i −1.23170 + 0.894884i −0.997017 0.0771869i \(-0.975406\pi\)
−0.234686 + 0.972071i \(0.575406\pi\)
\(632\) −333.860 333.860i −0.528260 0.528260i
\(633\) −3.57043 + 22.5428i −0.00564049 + 0.0356127i
\(634\) 479.547 155.814i 0.756384 0.245764i
\(635\) 0 0
\(636\) −84.8956 + 261.282i −0.133484 + 0.410821i
\(637\) 263.413 516.978i 0.413522 0.811582i
\(638\) 1026.13 + 522.837i 1.60835 + 0.819494i
\(639\) 173.161 + 56.2634i 0.270987 + 0.0880491i
\(640\) 0 0
\(641\) 252.698 + 777.724i 0.394224 + 1.21330i 0.929564 + 0.368661i \(0.120184\pi\)
−0.535340 + 0.844637i \(0.679816\pi\)
\(642\) −955.889 151.398i −1.48892 0.235822i
\(643\) −865.400 + 865.400i −1.34588 + 1.34588i −0.455794 + 0.890085i \(0.650644\pi\)
−0.890085 + 0.455794i \(0.849356\pi\)
\(644\) 14.5552 + 20.0335i 0.0226012 + 0.0311079i
\(645\) 0 0
\(646\) −1595.35 1159.09i −2.46959 1.79426i
\(647\) −26.7458 168.866i −0.0413381 0.260999i 0.958360 0.285562i \(-0.0921803\pi\)
−0.999698 + 0.0245637i \(0.992180\pi\)
\(648\) 18.1820 + 35.6841i 0.0280586 + 0.0550681i
\(649\) 596.001i 0.918338i
\(650\) 0 0
\(651\) −21.1025 −0.0324155
\(652\) −451.827 + 230.218i −0.692987 + 0.353094i
\(653\) −774.910 + 122.734i −1.18669 + 0.187954i −0.718407 0.695623i \(-0.755128\pi\)
−0.468286 + 0.883577i \(0.655128\pi\)
\(654\) −293.825 + 404.416i −0.449274 + 0.618373i
\(655\) 0 0
\(656\) 308.119 223.862i 0.469694 0.341253i
\(657\) −201.436 201.436i −0.306599 0.306599i
\(658\) −7.32278 + 46.2342i −0.0111289 + 0.0702648i
\(659\) 259.236 84.2308i 0.393377 0.127816i −0.105648 0.994404i \(-0.533692\pi\)
0.499025 + 0.866588i \(0.333692\pi\)
\(660\) 0 0
\(661\) 212.501 654.010i 0.321484 0.989426i −0.651519 0.758632i \(-0.725868\pi\)
0.973003 0.230793i \(-0.0741321\pi\)
\(662\) −457.613 + 898.117i −0.691259 + 1.35667i
\(663\) 446.864 + 227.688i 0.674002 + 0.343421i
\(664\) 408.179 + 132.625i 0.614728 + 0.199737i
\(665\) 0 0
\(666\) 23.5638 + 72.5218i 0.0353810 + 0.108892i
\(667\) −599.041 94.8788i −0.898113 0.142247i
\(668\) 916.186 916.186i 1.37154 1.37154i
\(669\) −222.941 306.853i −0.333246 0.458673i
\(670\) 0 0
\(671\) 540.513 + 392.706i 0.805534 + 0.585255i
\(672\) 4.09540 + 25.8573i 0.00609435 + 0.0384782i
\(673\) −34.3821 67.4786i −0.0510878 0.100265i 0.864051 0.503404i \(-0.167919\pi\)
−0.915139 + 0.403139i \(0.867919\pi\)
\(674\) 1408.01i 2.08904i
\(675\) 0 0
\(676\) −152.907 −0.226193
\(677\) 753.672 384.015i 1.11325 0.567230i 0.202127 0.979359i \(-0.435215\pi\)
0.911125 + 0.412129i \(0.135215\pi\)
\(678\) 77.5820 12.2878i 0.114428 0.0181236i
\(679\) 22.3333 30.7391i 0.0328914 0.0452711i
\(680\) 0 0
\(681\) 210.712 153.091i 0.309415 0.224803i
\(682\) −594.469 594.469i −0.871655 0.871655i
\(683\) 174.888 1104.20i 0.256059 1.61669i −0.439513 0.898236i \(-0.644849\pi\)
0.695572 0.718457i \(-0.255151\pi\)
\(684\) −408.837 + 132.839i −0.597715 + 0.194209i
\(685\) 0 0
\(686\) −32.8787 + 101.190i −0.0479282 + 0.147508i
\(687\) 291.798 572.685i 0.424742 0.833602i
\(688\) −11.0496 5.63004i −0.0160604 0.00818319i
\(689\) 328.729 + 106.811i 0.477110 + 0.155022i
\(690\) 0 0
\(691\) −326.956 1006.27i −0.473163 1.45625i −0.848419 0.529325i \(-0.822445\pi\)
0.375257 0.926921i \(-0.377555\pi\)
\(692\) −177.939 28.1828i −0.257137 0.0407266i
\(693\) −5.95674 + 5.95674i −0.00859559 + 0.00859559i
\(694\) 701.558 + 965.611i 1.01089 + 1.39137i
\(695\) 0 0
\(696\) 294.253 + 213.787i 0.422777 + 0.307165i
\(697\) 179.115 + 1130.89i 0.256980 + 1.62251i
\(698\) 224.561 + 440.725i 0.321720 + 0.631412i
\(699\) 128.479i 0.183804i
\(700\) 0 0
\(701\) −406.455 −0.579822 −0.289911 0.957054i \(-0.593626\pi\)
−0.289911 + 0.957054i \(0.593626\pi\)
\(702\) 168.940 86.0790i 0.240655 0.122620i
\(703\) −214.835 + 34.0265i −0.305597 + 0.0484018i
\(704\) −461.595 + 635.331i −0.655675 + 0.902459i
\(705\) 0 0
\(706\) −177.631 + 129.056i −0.251602 + 0.182799i
\(707\) −26.7863 26.7863i −0.0378872 0.0378872i
\(708\) −110.803 + 699.581i −0.156501 + 0.988109i
\(709\) 767.230 249.288i 1.08213 0.351605i 0.286929 0.957952i \(-0.407365\pi\)
0.795201 + 0.606346i \(0.207365\pi\)
\(710\) 0 0
\(711\) −98.3631 + 302.730i −0.138345 + 0.425781i
\(712\) 346.905 680.840i 0.487227 0.956236i
\(713\) 394.496 + 201.006i 0.553290 + 0.281915i
\(714\) −43.6774 14.1916i −0.0611728 0.0198762i
\(715\) 0 0
\(716\) −450.624 1386.88i −0.629363 1.93698i
\(717\) −388.632 61.5533i −0.542025 0.0858484i
\(718\) −221.246 + 221.246i −0.308143 + 0.308143i
\(719\) 189.988 + 261.496i 0.264239 + 0.363694i 0.920434 0.390897i \(-0.127835\pi\)
−0.656195 + 0.754591i \(0.727835\pi\)
\(720\) 0 0
\(721\) −27.3041 19.8376i −0.0378698 0.0275140i
\(722\) −159.086 1004.43i −0.220341 1.39118i
\(723\) 270.832 + 531.537i 0.374594 + 0.735182i
\(724\) 216.582i 0.299146i
\(725\) 0 0
\(726\) 308.574 0.425033
\(727\) −596.408 + 303.885i −0.820369 + 0.417999i −0.813206 0.581975i \(-0.802280\pi\)
−0.00716266 + 0.999974i \(0.502280\pi\)
\(728\) −18.4533 + 2.92271i −0.0253479 + 0.00401471i
\(729\) 15.8702 21.8435i 0.0217698 0.0299636i
\(730\) 0 0
\(731\) 30.1620 21.9140i 0.0412613 0.0299781i
\(732\) 561.442 + 561.442i 0.766997 + 0.766997i
\(733\) 126.562 799.081i 0.172663 1.09015i −0.737332 0.675531i \(-0.763914\pi\)
0.909995 0.414620i \(-0.136086\pi\)
\(734\) 1226.43 398.492i 1.67089 0.542905i
\(735\) 0 0
\(736\) 169.736 522.394i 0.230620 0.709775i
\(737\) −153.206 + 300.683i −0.207878 + 0.407983i
\(738\) 385.689 + 196.518i 0.522614 + 0.266285i
\(739\) 225.122 + 73.1467i 0.304631 + 0.0989806i 0.457344 0.889290i \(-0.348801\pi\)
−0.152713 + 0.988271i \(0.548801\pi\)
\(740\) 0 0
\(741\) 167.130 + 514.374i 0.225547 + 0.694162i
\(742\) −31.2614 4.95131i −0.0421312 0.00667293i
\(743\) −820.748 + 820.748i −1.10464 + 1.10464i −0.110797 + 0.993843i \(0.535340\pi\)
−0.993843 + 0.110797i \(0.964660\pi\)
\(744\) −156.065 214.805i −0.209765 0.288717i
\(745\) 0 0
\(746\) 984.475 + 715.263i 1.31967 + 0.958798i
\(747\) −45.2634 285.782i −0.0605935 0.382573i
\(748\) −478.957 940.005i −0.640316 1.25669i
\(749\) 64.2925i 0.0858378i
\(750\) 0 0
\(751\) 622.914 0.829446 0.414723 0.909948i \(-0.363878\pi\)
0.414723 + 0.909948i \(0.363878\pi\)
\(752\) 311.282 158.606i 0.413938 0.210912i
\(753\) 359.457 56.9324i 0.477367 0.0756075i
\(754\) 1012.13 1393.08i 1.34235 1.84759i
\(755\) 0 0
\(756\) −8.09939 + 5.88455i −0.0107135 + 0.00778380i
\(757\) 588.326 + 588.326i 0.777180 + 0.777180i 0.979350 0.202170i \(-0.0647994\pi\)
−0.202170 + 0.979350i \(0.564799\pi\)
\(758\) 297.914 1880.96i 0.393027 2.48147i
\(759\) 168.096 54.6178i 0.221471 0.0719602i
\(760\) 0 0
\(761\) −383.044 + 1178.89i −0.503343 + 1.54913i 0.300194 + 0.953878i \(0.402948\pi\)
−0.803538 + 0.595254i \(0.797052\pi\)
\(762\) −98.2065 + 192.741i −0.128880 + 0.252941i
\(763\) −29.5886 15.0761i −0.0387793 0.0197590i
\(764\) −686.215 222.965i −0.898187 0.291839i
\(765\) 0 0
\(766\) −232.789 716.452i −0.303903 0.935316i
\(767\) 880.170 + 139.405i 1.14755 + 0.181754i
\(768\) −16.3914 + 16.3914i −0.0213430 + 0.0213430i
\(769\) 48.2171 + 66.3651i 0.0627010 + 0.0863006i 0.839216 0.543798i \(-0.183014\pi\)
−0.776515 + 0.630099i \(0.783014\pi\)
\(770\) 0 0
\(771\) −360.301 261.774i −0.467317 0.339525i
\(772\) −38.2291 241.369i −0.0495196 0.312654i
\(773\) −340.665 668.593i −0.440705 0.864933i −0.999368 0.0355381i \(-0.988686\pi\)
0.558663 0.829395i \(-0.311314\pi\)
\(774\) 14.0948i 0.0182104i
\(775\) 0 0
\(776\) 478.066 0.616064
\(777\) −4.51353 + 2.29976i −0.00580892 + 0.00295979i
\(778\) −67.4993 + 10.6908i −0.0867601 + 0.0137414i
\(779\) −725.768 + 998.934i −0.931666 + 1.28233i
\(780\) 0 0
\(781\) −389.839 + 283.234i −0.499153 + 0.362656i
\(782\) 681.339 + 681.339i 0.871278 + 0.871278i
\(783\) 38.3588 242.188i 0.0489895 0.309308i
\(784\) 377.122 122.534i 0.481023 0.156294i
\(785\) 0 0
\(786\) 247.182 760.748i 0.314481 0.967873i
\(787\) 229.977 451.355i 0.292219 0.573513i −0.697492 0.716593i \(-0.745701\pi\)
0.989711 + 0.143080i \(0.0457006\pi\)
\(788\) 835.363 + 425.638i 1.06010 + 0.540150i
\(789\) 127.558 + 41.4460i 0.161670 + 0.0525298i
\(790\) 0 0
\(791\) 1.61249 + 4.96273i 0.00203854 + 0.00627399i
\(792\) −104.688 16.5810i −0.132182 0.0209356i
\(793\) 706.372 706.372i 0.890759 0.890759i
\(794\) −315.705 434.531i −0.397613 0.547268i
\(795\) 0 0
\(796\) −117.698 85.5126i −0.147862 0.107428i
\(797\) 171.689 + 1084.00i 0.215419 + 1.36010i 0.823990 + 0.566605i \(0.191743\pi\)
−0.608570 + 0.793500i \(0.708257\pi\)
\(798\) −22.4841 44.1276i −0.0281756 0.0552977i
\(799\) 1050.29i 1.31451i
\(800\) 0 0
\(801\) −515.150 −0.643134
\(802\) 964.461 491.417i 1.20257 0.612740i
\(803\) 744.656 117.942i 0.927342 0.146877i
\(804\) −235.732 + 324.457i −0.293199 + 0.403553i
\(805\) 0 0
\(806\) −1016.95 + 738.860i −1.26173 + 0.916700i
\(807\) 390.913 + 390.913i 0.484403 + 0.484403i
\(808\) 74.5613 470.761i 0.0922788 0.582626i
\(809\) −67.5579 + 21.9509i −0.0835079 + 0.0271334i −0.350473 0.936573i \(-0.613979\pi\)
0.266965 + 0.963706i \(0.413979\pi\)
\(810\) 0 0
\(811\) −19.2331 + 59.1935i −0.0237153 + 0.0729882i −0.962214 0.272295i \(-0.912217\pi\)
0.938498 + 0.345284i \(0.112217\pi\)
\(812\) −41.2772 + 81.0111i −0.0508340 + 0.0997674i
\(813\) −547.181 278.803i −0.673039 0.342931i
\(814\) −191.934 62.3633i −0.235792 0.0766133i
\(815\) 0 0
\(816\) 105.916 + 325.976i 0.129799 + 0.399480i
\(817\) 39.7102 + 6.28947i 0.0486049 + 0.00769825i
\(818\) 1038.17 1038.17i 1.26916 1.26916i
\(819\) 7.40359 + 10.1902i 0.00903979 + 0.0124422i
\(820\) 0 0
\(821\) −292.676 212.641i −0.356487 0.259003i 0.395099 0.918639i \(-0.370710\pi\)
−0.751585 + 0.659636i \(0.770710\pi\)
\(822\) −13.4610 84.9892i −0.0163759 0.103393i
\(823\) 5.03504 + 9.88181i 0.00611791 + 0.0120071i 0.894045 0.447977i \(-0.147855\pi\)
−0.887927 + 0.459984i \(0.847855\pi\)
\(824\) 424.643i 0.515344i
\(825\) 0 0
\(826\) −81.6024 −0.0987923
\(827\) 1390.02 708.250i 1.68080 0.856408i 0.689571 0.724218i \(-0.257799\pi\)
0.991224 0.132191i \(-0.0422011\pi\)
\(828\) 207.464 32.8591i 0.250560 0.0396849i
\(829\) −5.75207 + 7.91705i −0.00693857 + 0.00955012i −0.812472 0.583000i \(-0.801879\pi\)
0.805534 + 0.592550i \(0.201879\pi\)
\(830\) 0 0
\(831\) 464.428 337.427i 0.558878 0.406049i
\(832\) 830.285 + 830.285i 0.997939 + 0.997939i
\(833\) −186.486 + 1177.43i −0.223873 + 1.41348i
\(834\) 241.860 78.5850i 0.290000 0.0942266i
\(835\) 0 0
\(836\) 351.569 1082.02i 0.420537 1.29428i
\(837\) −81.2650 + 159.492i −0.0970908 + 0.190552i
\(838\) −1688.68 860.428i −2.01514 1.02676i
\(839\) 576.373 + 187.275i 0.686976 + 0.223212i 0.631647 0.775256i \(-0.282379\pi\)
0.0553292 + 0.998468i \(0.482379\pi\)
\(840\) 0 0
\(841\) −428.268 1318.07i −0.509237 1.56727i
\(842\) −1407.05 222.855i −1.67108 0.264673i
\(843\) 132.202 132.202i 0.156823 0.156823i
\(844\) −42.1951 58.0766i −0.0499942 0.0688111i
\(845\) 0 0
\(846\) 321.237 + 233.392i 0.379713 + 0.275877i
\(847\) 3.20674 + 20.2466i 0.00378600 + 0.0239039i
\(848\) 107.242 + 210.474i 0.126464 + 0.248200i
\(849\) 231.516i 0.272693i
\(850\) 0 0
\(851\) 106.283 0.124892
\(852\) −510.245 + 259.983i −0.598880 + 0.305144i
\(853\) −555.263 + 87.9451i −0.650953 + 0.103101i −0.473173 0.880969i \(-0.656892\pi\)
−0.177780 + 0.984070i \(0.556892\pi\)
\(854\) −53.7679 + 74.0052i −0.0629601 + 0.0866571i
\(855\) 0 0
\(856\) 654.443 475.481i 0.764537 0.555468i
\(857\) −1005.55 1005.55i −1.17333 1.17333i −0.981410 0.191924i \(-0.938527\pi\)
−0.191924 0.981410i \(-0.561473\pi\)
\(858\) −78.4995 + 495.626i −0.0914913 + 0.577653i
\(859\) 1176.31 382.208i 1.36940 0.444945i 0.470229 0.882544i \(-0.344171\pi\)
0.899170 + 0.437600i \(0.144171\pi\)
\(860\) 0 0
\(861\) −8.88612 + 27.3487i −0.0103207 + 0.0317638i
\(862\) 32.9018 64.5735i 0.0381692 0.0749112i
\(863\) −728.140 371.006i −0.843731 0.429902i −0.0219863 0.999758i \(-0.506999\pi\)
−0.821745 + 0.569856i \(0.806999\pi\)
\(864\) 211.200 + 68.6231i 0.244445 + 0.0794249i
\(865\) 0 0
\(866\) 106.690 + 328.359i 0.123199 + 0.379167i
\(867\) −523.342 82.8892i −0.603624 0.0956047i
\(868\) 46.9324 46.9324i 0.0540696 0.0540696i
\(869\) −495.168 681.540i −0.569813 0.784281i
\(870\) 0 0
\(871\) 408.212 + 296.583i 0.468670 + 0.340509i
\(872\) −65.3627 412.684i −0.0749572 0.473261i
\(873\) −146.320 287.170i −0.167606 0.328946i
\(874\) 1039.10i 1.18890i
\(875\) 0 0
\(876\) 895.997 1.02283
\(877\) 760.694 387.593i 0.867382 0.441953i 0.0371096 0.999311i \(-0.488185\pi\)
0.830272 + 0.557358i \(0.188185\pi\)
\(878\) −1658.87 + 262.739i −1.88937 + 0.299247i
\(879\) −367.442 + 505.740i −0.418022 + 0.575359i
\(880\) 0 0
\(881\) 425.461 309.115i 0.482929 0.350869i −0.319529 0.947576i \(-0.603525\pi\)
0.802459 + 0.596708i \(0.203525\pi\)
\(882\) 318.681 + 318.681i 0.361316 + 0.361316i
\(883\) −155.162 + 979.657i −0.175722 + 1.10946i 0.729330 + 0.684163i \(0.239832\pi\)
−0.905051 + 0.425302i \(0.860168\pi\)
\(884\) −1500.22 + 487.451i −1.69708 + 0.551416i
\(885\) 0 0
\(886\) −222.725 + 685.477i −0.251383 + 0.773676i
\(887\) −356.099 + 698.883i −0.401464 + 0.787918i −0.999912 0.0132438i \(-0.995784\pi\)
0.598448 + 0.801162i \(0.295784\pi\)
\(888\) −56.7898 28.9358i −0.0639525 0.0325854i
\(889\) −13.6670 4.44067i −0.0153734 0.00499513i
\(890\) 0 0
\(891\) 22.0816 + 67.9601i 0.0247829 + 0.0762740i
\(892\) 1178.28 + 186.621i 1.32094 + 0.209216i
\(893\) −800.894 + 800.894i −0.896858 + 0.896858i
\(894\) −339.149 466.798i −0.379361 0.522146i
\(895\) 0 0
\(896\) −38.0747 27.6629i −0.0424941 0.0308738i
\(897\) −41.3413 261.019i −0.0460884 0.290991i
\(898\) 280.769 + 551.041i 0.312661 + 0.613631i
\(899\) 1625.65i 1.80828i
\(900\) 0 0
\(901\) −710.158 −0.788189
\(902\) −1020.76 + 520.101i −1.13166 + 0.576608i
\(903\) 0.924810 0.146475i 0.00102415 0.000162210i
\(904\) −38.5911 + 53.1160i −0.0426892 + 0.0587567i
\(905\) 0 0
\(906\) −257.773 + 187.283i −0.284517 + 0.206714i
\(907\) −249.974 249.974i −0.275605 0.275605i 0.555747 0.831352i \(-0.312432\pi\)
−0.831352 + 0.555747i \(0.812432\pi\)
\(908\) −128.150 + 809.106i −0.141134 + 0.891086i
\(909\) −305.603 + 99.2963i −0.336197 + 0.109237i
\(910\) 0 0
\(911\) 232.883 716.740i 0.255634 0.786761i −0.738070 0.674724i \(-0.764262\pi\)
0.993704 0.112037i \(-0.0357375\pi\)
\(912\) −167.805 + 329.336i −0.183997 + 0.361114i
\(913\) 682.306 + 347.652i 0.747324 + 0.380780i
\(914\) 1858.67 + 603.919i 2.03356 + 0.660743i
\(915\) 0 0
\(916\) 624.701 + 1922.63i 0.681988 + 2.09894i
\(917\) 52.4841 + 8.31266i 0.0572345 + 0.00906506i
\(918\) −275.460 + 275.460i −0.300066 + 0.300066i
\(919\) −548.369 754.765i −0.596701 0.821289i 0.398700 0.917081i \(-0.369462\pi\)
−0.995401 + 0.0957924i \(0.969462\pi\)
\(920\) 0 0
\(921\) −593.638 431.303i −0.644558 0.468299i
\(922\) −203.447 1284.51i −0.220658 1.39318i
\(923\) 327.095 + 641.960i 0.354382 + 0.695514i
\(924\) 26.4959i 0.0286752i
\(925\) 0 0
\(926\) −2021.52 −2.18306
\(927\) −255.079 + 129.969i −0.275166 + 0.140204i
\(928\) 1991.94 315.493i 2.14649 0.339970i
\(929\) −702.940 + 967.513i −0.756663 + 1.04146i 0.240822 + 0.970569i \(0.422583\pi\)
−0.997484 + 0.0708875i \(0.977417\pi\)
\(930\) 0 0
\(931\) −1040.04 + 755.635i −1.11712 + 0.811638i
\(932\) 285.741 + 285.741i 0.306589 + 0.306589i
\(933\) 10.0412 63.3975i 0.0107623 0.0679502i
\(934\) −1922.82 + 624.762i −2.05869 + 0.668910i
\(935\) 0 0
\(936\) −48.9734 + 150.724i −0.0523220 + 0.161030i
\(937\) 478.587 939.280i 0.510766 1.00243i −0.481282 0.876566i \(-0.659829\pi\)
0.992047 0.125868i \(-0.0401715\pi\)
\(938\) −41.1685 20.9764i −0.0438897 0.0223629i
\(939\) 692.861 + 225.124i 0.737872 + 0.239749i
\(940\) 0 0
\(941\) 179.429 + 552.226i 0.190679 + 0.586850i 1.00000 0.000517053i \(-0.000164583\pi\)
−0.809321 + 0.587367i \(0.800165\pi\)
\(942\) 648.358 + 102.690i 0.688278 + 0.109012i
\(943\) 426.622 426.622i 0.452409 0.452409i
\(944\) 357.973 + 492.708i 0.379209 + 0.521936i
\(945\) 0 0
\(946\) 30.1787 + 21.9261i 0.0319014 + 0.0231777i
\(947\) 94.5461 + 596.940i 0.0998375 + 0.630349i 0.985971 + 0.166918i \(0.0533816\pi\)
−0.886133 + 0.463431i \(0.846618\pi\)
\(948\) −454.518 892.042i −0.479450 0.940973i
\(949\) 1127.29i 1.18787i
\(950\) 0 0
\(951\) 284.133 0.298773
\(952\) 34.2025 17.4271i 0.0359270 0.0183057i
\(953\) 48.1641 7.62845i 0.0505395 0.00800467i −0.131114 0.991367i \(-0.541855\pi\)
0.181653 + 0.983363i \(0.441855\pi\)
\(954\) −157.808 + 217.205i −0.165418 + 0.227678i
\(955\) 0 0
\(956\) 1001.22 727.432i 1.04731 0.760912i
\(957\) 458.883 + 458.883i 0.479501 + 0.479501i
\(958\) 322.890 2038.65i 0.337046 2.12802i
\(959\) 5.43655 1.76644i 0.00566897 0.00184196i
\(960\) 0 0
\(961\) 69.7529 214.677i 0.0725837 0.223390i
\(962\) −136.991 + 268.860i −0.142403 + 0.279481i
\(963\) −485.920 247.589i −0.504590 0.257102i
\(964\) −1784.49 579.816i −1.85113 0.601468i
\(965\) 0 0
\(966\) 7.47808 + 23.0152i 0.00774129 + 0.0238252i
\(967\) 1446.65 + 229.127i 1.49602 + 0.236946i 0.850166 0.526514i \(-0.176501\pi\)
0.645854 + 0.763461i \(0.276501\pi\)
\(968\) −182.377 + 182.377i −0.188406 + 0.188406i
\(969\) −653.153 898.989i −0.674049 0.927749i
\(970\) 0 0
\(971\) −676.512 491.514i −0.696716 0.506194i 0.182145 0.983272i \(-0.441696\pi\)
−0.878861 + 0.477078i \(0.841696\pi\)
\(972\) 13.2847 + 83.8762i 0.0136674 + 0.0862924i
\(973\) 7.66968 + 15.0526i 0.00788250 + 0.0154703i
\(974\) 324.003i 0.332652i
\(975\) 0 0
\(976\) 682.705 0.699493
\(977\) 468.100 238.509i 0.479120 0.244124i −0.197714 0.980260i \(-0.563352\pi\)
0.676834 + 0.736136i \(0.263352\pi\)
\(978\) −489.463 + 77.5234i −0.500474 + 0.0792673i
\(979\) 801.377 1103.00i 0.818567 1.12666i
\(980\) 0 0
\(981\) −227.890 + 165.572i −0.232304 + 0.168778i
\(982\) −369.546 369.546i −0.376320 0.376320i
\(983\) −222.203 + 1402.94i −0.226046 + 1.42720i 0.569842 + 0.821754i \(0.307004\pi\)
−0.795888 + 0.605443i \(0.792996\pi\)
\(984\) −344.104 + 111.806i −0.349699 + 0.113624i
\(985\) 0 0
\(986\) −1093.27 + 3364.72i −1.10879 + 3.41250i
\(987\) −11.9753 + 23.5029i −0.0121331 + 0.0238125i
\(988\) −1515.68 772.280i −1.53409 0.781660i
\(989\) −18.6839 6.07076i −0.0188917 0.00613828i
\(990\) 0 0
\(991\) 451.716 + 1390.24i 0.455819 + 1.40287i 0.870171 + 0.492750i \(0.164008\pi\)
−0.414352 + 0.910117i \(0.635992\pi\)
\(992\) −1454.12 230.310i −1.46585 0.232168i
\(993\) −401.637 + 401.637i −0.404468 + 0.404468i
\(994\) −38.7795 53.3753i −0.0390135 0.0536975i
\(995\) 0 0
\(996\) 736.253 + 534.919i 0.739210 + 0.537067i
\(997\) 290.899 + 1836.66i 0.291774 + 1.84219i 0.502414 + 0.864627i \(0.332445\pi\)
−0.210639 + 0.977564i \(0.567555\pi\)
\(998\) 404.952 + 794.763i 0.405763 + 0.796355i
\(999\) 42.9694i 0.0430124i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 375.3.k.a.7.2 80
5.2 odd 4 375.3.k.c.118.2 80
5.3 odd 4 375.3.k.b.118.9 80
5.4 even 2 75.3.k.a.22.9 80
15.14 odd 2 225.3.r.b.172.2 80
25.6 even 5 375.3.k.b.232.9 80
25.8 odd 20 inner 375.3.k.a.268.2 80
25.17 odd 20 75.3.k.a.58.9 yes 80
25.19 even 10 375.3.k.c.232.2 80
75.17 even 20 225.3.r.b.208.2 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
75.3.k.a.22.9 80 5.4 even 2
75.3.k.a.58.9 yes 80 25.17 odd 20
225.3.r.b.172.2 80 15.14 odd 2
225.3.r.b.208.2 80 75.17 even 20
375.3.k.a.7.2 80 1.1 even 1 trivial
375.3.k.a.268.2 80 25.8 odd 20 inner
375.3.k.b.118.9 80 5.3 odd 4
375.3.k.b.232.9 80 25.6 even 5
375.3.k.c.118.2 80 5.2 odd 4
375.3.k.c.232.2 80 25.19 even 10