gp: [N,k,chi] = [375,3,Mod(7,375)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("375.7");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(375, base_ring=CyclotomicField(20))
chi = DirichletCharacter(H, H._module([0, 17]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [80,-4,0,0,0,0,4,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(8)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{80} + 4 T_{2}^{79} + 8 T_{2}^{78} - 4 T_{2}^{77} - 348 T_{2}^{76} - 580 T_{2}^{75} + \cdots + 87\!\cdots\!41 \)
T2^80 + 4*T2^79 + 8*T2^78 - 4*T2^77 - 348*T2^76 - 580*T2^75 + 1122*T2^74 + 13404*T2^73 + 98023*T2^72 + 86076*T2^71 - 324840*T2^70 - 2770704*T2^69 - 16123753*T2^68 - 5496856*T2^67 + 67128818*T2^66 + 333256000*T2^65 + 2187907683*T2^64 + 1144444096*T2^63 - 7874574578*T2^62 - 42619991516*T2^61 - 256336865339*T2^60 - 34261326532*T2^59 + 1269732568666*T2^58 + 5784492105472*T2^57 + 30987799282864*T2^56 + 26324481776680*T2^55 - 25730984219276*T2^54 - 152007008796092*T2^53 - 1835319546473739*T2^52 - 1652382795023768*T2^51 + 661413144676940*T2^50 - 6899608012219368*T2^49 + 71775920762313844*T2^48 + 94153534129205708*T2^47 - 5730160360285074*T2^46 + 310286391582507960*T2^45 - 2582574206651902464*T2^44 - 1578384260946508008*T2^43 + 1940718489534395504*T2^42 - 6295712519642750912*T2^41 + 83099131102797446491*T2^40 + 69335079940098793452*T2^39 + 218528263213724980944*T2^38 + 475004558784295899768*T2^37 - 1379475208826205555434*T2^36 - 627403172231651827920*T2^35 - 2994363138031212586864*T2^34 - 4392381624570664719628*T2^33 + 10049456727430677167134*T2^32 + 3945422608193690226308*T2^31 + 34691539894477363548240*T2^30 + 19962342190575015606948*T2^29 - 27977194775649293470729*T2^28 - 132433918853167051220548*T2^27 - 116395288148591416124056*T2^26 - 458130705077206860920120*T2^25 + 875825276601054647987054*T2^24 - 29916433458062126782672*T2^23 + 3394206869582567188024626*T2^22 + 316755020271542665817872*T2^21 + 2361518598836916360682681*T2^20 - 3670793634081808678740424*T2^19 - 4165667340620827280721368*T2^18 - 6941145490727365254176736*T2^17 - 3673856116565872190997207*T2^16 + 961353714805490465728320*T2^15 + 5937454868931616490733268*T2^14 + 7984263801842848347630816*T2^13 + 6419239514674837653713457*T2^12 + 3160887874255936553337884*T2^11 + 682192724919212130627910*T2^10 - 242941891011912427188376*T2^9 - 177676711557642962564487*T2^8 - 16146620264257506661804*T2^7 + 9419428484882071658562*T2^6 + 2006126583227240634660*T2^5 + 10557426697907687602*T2^4 - 60264756053897626916*T2^3 - 18622136050327367302*T2^2 + 147322416795953056*T2 + 873410470086191041
acting on \(S_{3}^{\mathrm{new}}(375, [\chi])\).