Newspace parameters
Level: | \( N \) | \(=\) | \( 375 = 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 375.i (of order \(10\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.99439007580\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{10})\) |
Coefficient field: | \(\Q(\zeta_{20})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} - x^{6} + x^{4} - x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 75) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{20}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/375\mathbb{Z}\right)^\times\).
\(n\) | \(127\) | \(251\) |
\(\chi(n)\) | \(\zeta_{20}^{2}\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
−0.587785 | + | 0.809017i | −0.951057 | + | 0.309017i | 0.309017 | + | 0.951057i | 0 | 0.309017 | − | 0.951057i | − | 4.47214i | −2.85317 | − | 0.927051i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||
49.2 | 0.587785 | − | 0.809017i | 0.951057 | − | 0.309017i | 0.309017 | + | 0.951057i | 0 | 0.309017 | − | 0.951057i | 4.47214i | 2.85317 | + | 0.927051i | 0.809017 | − | 0.587785i | 0 | |||||||||||||||||||||||||||||||
199.1 | −0.587785 | − | 0.809017i | −0.951057 | − | 0.309017i | 0.309017 | − | 0.951057i | 0 | 0.309017 | + | 0.951057i | 4.47214i | −2.85317 | + | 0.927051i | 0.809017 | + | 0.587785i | 0 | |||||||||||||||||||||||||||||||
199.2 | 0.587785 | + | 0.809017i | 0.951057 | + | 0.309017i | 0.309017 | − | 0.951057i | 0 | 0.309017 | + | 0.951057i | − | 4.47214i | 2.85317 | − | 0.927051i | 0.809017 | + | 0.587785i | 0 | ||||||||||||||||||||||||||||||
274.1 | −0.951057 | − | 0.309017i | 0.587785 | − | 0.809017i | −0.809017 | − | 0.587785i | 0 | −0.809017 | + | 0.587785i | 4.47214i | 1.76336 | + | 2.42705i | −0.309017 | − | 0.951057i | 0 | |||||||||||||||||||||||||||||||
274.2 | 0.951057 | + | 0.309017i | −0.587785 | + | 0.809017i | −0.809017 | − | 0.587785i | 0 | −0.809017 | + | 0.587785i | − | 4.47214i | −1.76336 | − | 2.42705i | −0.309017 | − | 0.951057i | 0 | ||||||||||||||||||||||||||||||
349.1 | −0.951057 | + | 0.309017i | 0.587785 | + | 0.809017i | −0.809017 | + | 0.587785i | 0 | −0.809017 | − | 0.587785i | − | 4.47214i | 1.76336 | − | 2.42705i | −0.309017 | + | 0.951057i | 0 | ||||||||||||||||||||||||||||||
349.2 | 0.951057 | − | 0.309017i | −0.587785 | − | 0.809017i | −0.809017 | + | 0.587785i | 0 | −0.809017 | − | 0.587785i | 4.47214i | −1.76336 | + | 2.42705i | −0.309017 | + | 0.951057i | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
25.d | even | 5 | 1 | inner |
25.e | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 375.2.i.a | 8 | |
5.b | even | 2 | 1 | inner | 375.2.i.a | 8 | |
5.c | odd | 4 | 1 | 75.2.g.a | ✓ | 4 | |
5.c | odd | 4 | 1 | 375.2.g.a | 4 | ||
15.e | even | 4 | 1 | 225.2.h.a | 4 | ||
25.d | even | 5 | 1 | inner | 375.2.i.a | 8 | |
25.d | even | 5 | 1 | 1875.2.b.b | 4 | ||
25.e | even | 10 | 1 | inner | 375.2.i.a | 8 | |
25.e | even | 10 | 1 | 1875.2.b.b | 4 | ||
25.f | odd | 20 | 1 | 75.2.g.a | ✓ | 4 | |
25.f | odd | 20 | 1 | 375.2.g.a | 4 | ||
25.f | odd | 20 | 1 | 1875.2.a.a | 2 | ||
25.f | odd | 20 | 1 | 1875.2.a.d | 2 | ||
75.l | even | 20 | 1 | 225.2.h.a | 4 | ||
75.l | even | 20 | 1 | 5625.2.a.a | 2 | ||
75.l | even | 20 | 1 | 5625.2.a.h | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
75.2.g.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
75.2.g.a | ✓ | 4 | 25.f | odd | 20 | 1 | |
225.2.h.a | 4 | 15.e | even | 4 | 1 | ||
225.2.h.a | 4 | 75.l | even | 20 | 1 | ||
375.2.g.a | 4 | 5.c | odd | 4 | 1 | ||
375.2.g.a | 4 | 25.f | odd | 20 | 1 | ||
375.2.i.a | 8 | 1.a | even | 1 | 1 | trivial | |
375.2.i.a | 8 | 5.b | even | 2 | 1 | inner | |
375.2.i.a | 8 | 25.d | even | 5 | 1 | inner | |
375.2.i.a | 8 | 25.e | even | 10 | 1 | inner | |
1875.2.a.a | 2 | 25.f | odd | 20 | 1 | ||
1875.2.a.d | 2 | 25.f | odd | 20 | 1 | ||
1875.2.b.b | 4 | 25.d | even | 5 | 1 | ||
1875.2.b.b | 4 | 25.e | even | 10 | 1 | ||
5625.2.a.a | 2 | 75.l | even | 20 | 1 | ||
5625.2.a.h | 2 | 75.l | even | 20 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} - T_{2}^{6} + T_{2}^{4} - T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(375, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} - T^{6} + T^{4} - T^{2} + 1 \)
$3$
\( T^{8} - T^{6} + T^{4} - T^{2} + 1 \)
$5$
\( T^{8} \)
$7$
\( (T^{2} + 20)^{4} \)
$11$
\( (T^{4} + 6 T^{3} + 16 T^{2} + 16 T + 16)^{2} \)
$13$
\( T^{8} - 44 T^{6} + 766 T^{4} + \cdots + 130321 \)
$17$
\( T^{8} - 4 T^{6} + 166 T^{4} + \cdots + 14641 \)
$19$
\( (T^{4} - 4 T^{3} + 16 T^{2} - 24 T + 16)^{2} \)
$23$
\( T^{8} - 20 T^{6} + 400 T^{4} + \cdots + 160000 \)
$29$
\( (T^{4} - 8 T^{3} + 34 T^{2} - 87 T + 841)^{2} \)
$31$
\( (T^{4} + 40 T^{2} + 200 T + 400)^{2} \)
$37$
\( T^{8} + 25 T^{6} + 3750 T^{4} + \cdots + 390625 \)
$41$
\( (T^{4} + 10 T^{2} - 25 T + 25)^{2} \)
$43$
\( (T^{4} + 92 T^{2} + 1936)^{2} \)
$47$
\( T^{8} - 44 T^{6} + 736 T^{4} + \cdots + 256 \)
$53$
\( T^{8} + 5 T^{6} + 150 T^{4} + \cdots + 625 \)
$59$
\( (T^{4} + 4 T^{3} + 16 T^{2} + 64 T + 256)^{2} \)
$61$
\( (T^{4} - 2 T^{3} + 4 T^{2} - 3 T + 1)^{2} \)
$67$
\( T^{8} - 44 T^{6} + 736 T^{4} + \cdots + 256 \)
$71$
\( (T^{4} - 8 T^{3} + 24 T^{2} + 8 T + 16)^{2} \)
$73$
\( T^{8} - 100 T^{6} + 3750 T^{4} + \cdots + 390625 \)
$79$
\( T^{8} \)
$83$
\( T^{8} + 76 T^{6} + 22416 T^{4} + \cdots + 3748096 \)
$89$
\( (T^{4} - 9 T^{3} + 46 T^{2} - 164 T + 1681)^{2} \)
$97$
\( T^{8} - 124 T^{6} + 5806 T^{4} + \cdots + 130321 \)
show more
show less