Properties

Label 3744.2.j.a.2159.33
Level $3744$
Weight $2$
Character 3744.2159
Analytic conductor $29.896$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3744,2,Mod(2159,3744)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3744, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3744.2159"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3744 = 2^{5} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3744.j (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.8959905168\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 936)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2159.33
Character \(\chi\) \(=\) 3744.2159
Dual form 3744.2.j.a.2159.34

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.802827 q^{5} +1.93839i q^{7} -1.56258i q^{11} -1.00000i q^{13} +3.54880i q^{17} -4.68717 q^{19} -8.86375 q^{23} -4.35547 q^{25} +8.14367 q^{29} -10.3913i q^{31} +1.55619i q^{35} -7.05279i q^{37} -4.31330i q^{41} +1.21213 q^{43} -10.6556 q^{47} +3.24266 q^{49} -1.19815 q^{53} -1.25448i q^{55} -8.98709i q^{59} -2.66095i q^{61} -0.802827i q^{65} +9.46686 q^{67} -2.27916 q^{71} -12.1500 q^{73} +3.02888 q^{77} -0.0205095i q^{79} -0.956451i q^{83} +2.84908i q^{85} +4.61332i q^{89} +1.93839 q^{91} -3.76299 q^{95} +15.1020 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 32 q^{19} + 48 q^{25} + 32 q^{43} - 48 q^{49} - 32 q^{67} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3744\mathbb{Z}\right)^\times\).

\(n\) \(703\) \(2017\) \(2081\) \(2341\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.802827 0.359035 0.179518 0.983755i \(-0.442546\pi\)
0.179518 + 0.983755i \(0.442546\pi\)
\(6\) 0 0
\(7\) 1.93839i 0.732641i 0.930489 + 0.366321i \(0.119383\pi\)
−0.930489 + 0.366321i \(0.880617\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 1.56258i − 0.471135i −0.971858 0.235567i \(-0.924305\pi\)
0.971858 0.235567i \(-0.0756948\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.54880i 0.860711i 0.902659 + 0.430355i \(0.141612\pi\)
−0.902659 + 0.430355i \(0.858388\pi\)
\(18\) 0 0
\(19\) −4.68717 −1.07531 −0.537655 0.843165i \(-0.680690\pi\)
−0.537655 + 0.843165i \(0.680690\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −8.86375 −1.84822 −0.924110 0.382126i \(-0.875192\pi\)
−0.924110 + 0.382126i \(0.875192\pi\)
\(24\) 0 0
\(25\) −4.35547 −0.871094
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8.14367 1.51224 0.756121 0.654432i \(-0.227092\pi\)
0.756121 + 0.654432i \(0.227092\pi\)
\(30\) 0 0
\(31\) − 10.3913i − 1.86634i −0.359437 0.933169i \(-0.617031\pi\)
0.359437 0.933169i \(-0.382969\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.55619i 0.263044i
\(36\) 0 0
\(37\) − 7.05279i − 1.15947i −0.814805 0.579736i \(-0.803156\pi\)
0.814805 0.579736i \(-0.196844\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 4.31330i − 0.673624i −0.941572 0.336812i \(-0.890651\pi\)
0.941572 0.336812i \(-0.109349\pi\)
\(42\) 0 0
\(43\) 1.21213 0.184849 0.0924244 0.995720i \(-0.470538\pi\)
0.0924244 + 0.995720i \(0.470538\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −10.6556 −1.55428 −0.777140 0.629328i \(-0.783330\pi\)
−0.777140 + 0.629328i \(0.783330\pi\)
\(48\) 0 0
\(49\) 3.24266 0.463237
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.19815 −0.164579 −0.0822894 0.996608i \(-0.526223\pi\)
−0.0822894 + 0.996608i \(0.526223\pi\)
\(54\) 0 0
\(55\) − 1.25448i − 0.169154i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 8.98709i − 1.17002i −0.811026 0.585010i \(-0.801091\pi\)
0.811026 0.585010i \(-0.198909\pi\)
\(60\) 0 0
\(61\) − 2.66095i − 0.340700i −0.985384 0.170350i \(-0.945510\pi\)
0.985384 0.170350i \(-0.0544898\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 0.802827i − 0.0995785i
\(66\) 0 0
\(67\) 9.46686 1.15656 0.578280 0.815838i \(-0.303724\pi\)
0.578280 + 0.815838i \(0.303724\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −2.27916 −0.270486 −0.135243 0.990812i \(-0.543182\pi\)
−0.135243 + 0.990812i \(0.543182\pi\)
\(72\) 0 0
\(73\) −12.1500 −1.42205 −0.711027 0.703164i \(-0.751770\pi\)
−0.711027 + 0.703164i \(0.751770\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.02888 0.345173
\(78\) 0 0
\(79\) − 0.0205095i − 0.00230750i −0.999999 0.00115375i \(-0.999633\pi\)
0.999999 0.00115375i \(-0.000367250\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 0.956451i − 0.104984i −0.998621 0.0524921i \(-0.983284\pi\)
0.998621 0.0524921i \(-0.0167164\pi\)
\(84\) 0 0
\(85\) 2.84908i 0.309026i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.61332i 0.489011i 0.969648 + 0.244505i \(0.0786256\pi\)
−0.969648 + 0.244505i \(0.921374\pi\)
\(90\) 0 0
\(91\) 1.93839 0.203198
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.76299 −0.386074
\(96\) 0 0
\(97\) 15.1020 1.53337 0.766687 0.642020i \(-0.221904\pi\)
0.766687 + 0.642020i \(0.221904\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −13.0727 −1.30079 −0.650393 0.759598i \(-0.725396\pi\)
−0.650393 + 0.759598i \(0.725396\pi\)
\(102\) 0 0
\(103\) 1.32300i 0.130359i 0.997874 + 0.0651793i \(0.0207619\pi\)
−0.997874 + 0.0651793i \(0.979238\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.8445i 1.62842i 0.580572 + 0.814209i \(0.302829\pi\)
−0.580572 + 0.814209i \(0.697171\pi\)
\(108\) 0 0
\(109\) − 13.9930i − 1.34029i −0.742232 0.670143i \(-0.766233\pi\)
0.742232 0.670143i \(-0.233767\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.37554i 0.599760i 0.953977 + 0.299880i \(0.0969467\pi\)
−0.953977 + 0.299880i \(0.903053\pi\)
\(114\) 0 0
\(115\) −7.11606 −0.663576
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −6.87895 −0.630592
\(120\) 0 0
\(121\) 8.55835 0.778032
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.51083 −0.671789
\(126\) 0 0
\(127\) − 6.01020i − 0.533319i −0.963791 0.266660i \(-0.914080\pi\)
0.963791 0.266660i \(-0.0859200\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 10.0777i − 0.880496i −0.897876 0.440248i \(-0.854891\pi\)
0.897876 0.440248i \(-0.145109\pi\)
\(132\) 0 0
\(133\) − 9.08554i − 0.787816i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 4.71748i − 0.403042i −0.979484 0.201521i \(-0.935412\pi\)
0.979484 0.201521i \(-0.0645884\pi\)
\(138\) 0 0
\(139\) −3.38023 −0.286707 −0.143354 0.989672i \(-0.545789\pi\)
−0.143354 + 0.989672i \(0.545789\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.56258 −0.130669
\(144\) 0 0
\(145\) 6.53796 0.542948
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 6.39241 0.523687 0.261843 0.965110i \(-0.415670\pi\)
0.261843 + 0.965110i \(0.415670\pi\)
\(150\) 0 0
\(151\) 2.93379i 0.238748i 0.992849 + 0.119374i \(0.0380888\pi\)
−0.992849 + 0.119374i \(0.961911\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 8.34245i − 0.670081i
\(156\) 0 0
\(157\) − 15.3371i − 1.22403i −0.790846 0.612016i \(-0.790359\pi\)
0.790846 0.612016i \(-0.209641\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 17.1814i − 1.35408i
\(162\) 0 0
\(163\) 12.2306 0.957974 0.478987 0.877822i \(-0.341004\pi\)
0.478987 + 0.877822i \(0.341004\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.9067 −0.843987 −0.421993 0.906599i \(-0.638669\pi\)
−0.421993 + 0.906599i \(0.638669\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −8.77362 −0.667046 −0.333523 0.942742i \(-0.608237\pi\)
−0.333523 + 0.942742i \(0.608237\pi\)
\(174\) 0 0
\(175\) − 8.44258i − 0.638199i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 13.0905i − 0.978430i −0.872163 0.489215i \(-0.837283\pi\)
0.872163 0.489215i \(-0.162717\pi\)
\(180\) 0 0
\(181\) − 21.1127i − 1.56929i −0.619945 0.784646i \(-0.712845\pi\)
0.619945 0.784646i \(-0.287155\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 5.66217i − 0.416291i
\(186\) 0 0
\(187\) 5.54528 0.405511
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.5536 0.908349 0.454174 0.890913i \(-0.349934\pi\)
0.454174 + 0.890913i \(0.349934\pi\)
\(192\) 0 0
\(193\) −10.9885 −0.790968 −0.395484 0.918473i \(-0.629423\pi\)
−0.395484 + 0.918473i \(0.629423\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.4678 −0.745799 −0.372900 0.927872i \(-0.621636\pi\)
−0.372900 + 0.927872i \(0.621636\pi\)
\(198\) 0 0
\(199\) − 13.1408i − 0.931525i −0.884910 0.465762i \(-0.845780\pi\)
0.884910 0.465762i \(-0.154220\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.7856i 1.10793i
\(204\) 0 0
\(205\) − 3.46284i − 0.241855i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 7.32406i 0.506616i
\(210\) 0 0
\(211\) −13.4229 −0.924071 −0.462036 0.886861i \(-0.652881\pi\)
−0.462036 + 0.886861i \(0.652881\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0.973135 0.0663672
\(216\) 0 0
\(217\) 20.1424 1.36736
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.54880 0.238718
\(222\) 0 0
\(223\) − 2.19718i − 0.147134i −0.997290 0.0735671i \(-0.976562\pi\)
0.997290 0.0735671i \(-0.0234383\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.70258i 0.643983i 0.946743 + 0.321991i \(0.104352\pi\)
−0.946743 + 0.321991i \(0.895648\pi\)
\(228\) 0 0
\(229\) − 4.04664i − 0.267410i −0.991021 0.133705i \(-0.957313\pi\)
0.991021 0.133705i \(-0.0426874\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20.5827i 1.34842i 0.738540 + 0.674210i \(0.235516\pi\)
−0.738540 + 0.674210i \(0.764484\pi\)
\(234\) 0 0
\(235\) −8.55461 −0.558041
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.87118 −0.185721 −0.0928605 0.995679i \(-0.529601\pi\)
−0.0928605 + 0.995679i \(0.529601\pi\)
\(240\) 0 0
\(241\) −16.0104 −1.03132 −0.515661 0.856793i \(-0.672454\pi\)
−0.515661 + 0.856793i \(0.672454\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.60329 0.166318
\(246\) 0 0
\(247\) 4.68717i 0.298237i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 14.0749i 0.888399i 0.895928 + 0.444199i \(0.146512\pi\)
−0.895928 + 0.444199i \(0.853488\pi\)
\(252\) 0 0
\(253\) 13.8503i 0.870761i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.8601i 1.48835i 0.667984 + 0.744176i \(0.267157\pi\)
−0.667984 + 0.744176i \(0.732843\pi\)
\(258\) 0 0
\(259\) 13.6710 0.849476
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −22.8432 −1.40857 −0.704286 0.709916i \(-0.748733\pi\)
−0.704286 + 0.709916i \(0.748733\pi\)
\(264\) 0 0
\(265\) −0.961909 −0.0590896
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.90531 −0.421024 −0.210512 0.977591i \(-0.567513\pi\)
−0.210512 + 0.977591i \(0.567513\pi\)
\(270\) 0 0
\(271\) 11.6435i 0.707293i 0.935379 + 0.353646i \(0.115058\pi\)
−0.935379 + 0.353646i \(0.884942\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 6.80575i 0.410402i
\(276\) 0 0
\(277\) − 27.1432i − 1.63088i −0.578844 0.815438i \(-0.696496\pi\)
0.578844 0.815438i \(-0.303504\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 20.3941i − 1.21661i −0.793704 0.608304i \(-0.791850\pi\)
0.793704 0.608304i \(-0.208150\pi\)
\(282\) 0 0
\(283\) −25.1415 −1.49451 −0.747254 0.664539i \(-0.768628\pi\)
−0.747254 + 0.664539i \(0.768628\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 8.36084 0.493525
\(288\) 0 0
\(289\) 4.40600 0.259177
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.76876 0.337015 0.168507 0.985700i \(-0.446105\pi\)
0.168507 + 0.985700i \(0.446105\pi\)
\(294\) 0 0
\(295\) − 7.21508i − 0.420078i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.86375i 0.512604i
\(300\) 0 0
\(301\) 2.34959i 0.135428i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 2.13628i − 0.122323i
\(306\) 0 0
\(307\) 16.5948 0.947115 0.473557 0.880763i \(-0.342970\pi\)
0.473557 + 0.880763i \(0.342970\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 7.27642 0.412608 0.206304 0.978488i \(-0.433856\pi\)
0.206304 + 0.978488i \(0.433856\pi\)
\(312\) 0 0
\(313\) 4.18644 0.236631 0.118316 0.992976i \(-0.462251\pi\)
0.118316 + 0.992976i \(0.462251\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −32.8584 −1.84551 −0.922756 0.385386i \(-0.874068\pi\)
−0.922756 + 0.385386i \(0.874068\pi\)
\(318\) 0 0
\(319\) − 12.7251i − 0.712470i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 16.6338i − 0.925531i
\(324\) 0 0
\(325\) 4.35547i 0.241598i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 20.6547i − 1.13873i
\(330\) 0 0
\(331\) −11.1690 −0.613903 −0.306951 0.951725i \(-0.599309\pi\)
−0.306951 + 0.951725i \(0.599309\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 7.60025 0.415246
\(336\) 0 0
\(337\) −33.0082 −1.79807 −0.899035 0.437876i \(-0.855731\pi\)
−0.899035 + 0.437876i \(0.855731\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −16.2373 −0.879297
\(342\) 0 0
\(343\) 19.8542i 1.07203i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 32.6685i − 1.75374i −0.480731 0.876868i \(-0.659629\pi\)
0.480731 0.876868i \(-0.340371\pi\)
\(348\) 0 0
\(349\) 26.9704i 1.44369i 0.692055 + 0.721845i \(0.256706\pi\)
−0.692055 + 0.721845i \(0.743294\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 13.1552i − 0.700180i −0.936716 0.350090i \(-0.886151\pi\)
0.936716 0.350090i \(-0.113849\pi\)
\(354\) 0 0
\(355\) −1.82977 −0.0971141
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 18.4676 0.974682 0.487341 0.873212i \(-0.337967\pi\)
0.487341 + 0.873212i \(0.337967\pi\)
\(360\) 0 0
\(361\) 2.96953 0.156291
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −9.75439 −0.510568
\(366\) 0 0
\(367\) − 21.3061i − 1.11217i −0.831126 0.556084i \(-0.812303\pi\)
0.831126 0.556084i \(-0.187697\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 2.32248i − 0.120577i
\(372\) 0 0
\(373\) 33.9820i 1.75952i 0.475419 + 0.879760i \(0.342297\pi\)
−0.475419 + 0.879760i \(0.657703\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 8.14367i − 0.419420i
\(378\) 0 0
\(379\) 19.1623 0.984303 0.492151 0.870510i \(-0.336211\pi\)
0.492151 + 0.870510i \(0.336211\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 10.5985 0.541560 0.270780 0.962641i \(-0.412718\pi\)
0.270780 + 0.962641i \(0.412718\pi\)
\(384\) 0 0
\(385\) 2.43167 0.123929
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −33.4488 −1.69592 −0.847960 0.530060i \(-0.822169\pi\)
−0.847960 + 0.530060i \(0.822169\pi\)
\(390\) 0 0
\(391\) − 31.4557i − 1.59078i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 0.0164656i 0 0.000828474i
\(396\) 0 0
\(397\) − 27.8937i − 1.39995i −0.714170 0.699973i \(-0.753195\pi\)
0.714170 0.699973i \(-0.246805\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.6472i 1.23082i 0.788205 + 0.615412i \(0.211011\pi\)
−0.788205 + 0.615412i \(0.788989\pi\)
\(402\) 0 0
\(403\) −10.3913 −0.517629
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −11.0205 −0.546267
\(408\) 0 0
\(409\) −10.2882 −0.508721 −0.254360 0.967109i \(-0.581865\pi\)
−0.254360 + 0.967109i \(0.581865\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 17.4205 0.857204
\(414\) 0 0
\(415\) − 0.767865i − 0.0376930i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 15.4860i 0.756541i 0.925695 + 0.378270i \(0.123481\pi\)
−0.925695 + 0.378270i \(0.876519\pi\)
\(420\) 0 0
\(421\) 21.3013i 1.03816i 0.854725 + 0.519080i \(0.173725\pi\)
−0.854725 + 0.519080i \(0.826275\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 15.4567i − 0.749760i
\(426\) 0 0
\(427\) 5.15795 0.249611
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.2911 0.495704 0.247852 0.968798i \(-0.420275\pi\)
0.247852 + 0.968798i \(0.420275\pi\)
\(432\) 0 0
\(433\) 15.9131 0.764734 0.382367 0.924011i \(-0.375109\pi\)
0.382367 + 0.924011i \(0.375109\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 41.5459 1.98741
\(438\) 0 0
\(439\) − 22.1289i − 1.05615i −0.849197 0.528076i \(-0.822914\pi\)
0.849197 0.528076i \(-0.177086\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 15.9949i − 0.759941i −0.924999 0.379970i \(-0.875934\pi\)
0.924999 0.379970i \(-0.124066\pi\)
\(444\) 0 0
\(445\) 3.70370i 0.175572i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 7.99142i 0.377138i 0.982060 + 0.188569i \(0.0603850\pi\)
−0.982060 + 0.188569i \(0.939615\pi\)
\(450\) 0 0
\(451\) −6.73986 −0.317368
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.55619 0.0729553
\(456\) 0 0
\(457\) −5.45320 −0.255090 −0.127545 0.991833i \(-0.540710\pi\)
−0.127545 + 0.991833i \(0.540710\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −20.1627 −0.939073 −0.469536 0.882913i \(-0.655579\pi\)
−0.469536 + 0.882913i \(0.655579\pi\)
\(462\) 0 0
\(463\) − 22.6223i − 1.05135i −0.850687 0.525673i \(-0.823814\pi\)
0.850687 0.525673i \(-0.176186\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 22.1778i 1.02626i 0.858310 + 0.513132i \(0.171515\pi\)
−0.858310 + 0.513132i \(0.828485\pi\)
\(468\) 0 0
\(469\) 18.3504i 0.847344i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 1.89405i − 0.0870887i
\(474\) 0 0
\(475\) 20.4148 0.936695
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.7032 1.40286 0.701432 0.712736i \(-0.252544\pi\)
0.701432 + 0.712736i \(0.252544\pi\)
\(480\) 0 0
\(481\) −7.05279 −0.321579
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 12.1243 0.550536
\(486\) 0 0
\(487\) 30.0364i 1.36108i 0.732711 + 0.680540i \(0.238255\pi\)
−0.732711 + 0.680540i \(0.761745\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.60047i 0.207616i 0.994597 + 0.103808i \(0.0331028\pi\)
−0.994597 + 0.103808i \(0.966897\pi\)
\(492\) 0 0
\(493\) 28.9003i 1.30160i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 4.41789i − 0.198169i
\(498\) 0 0
\(499\) 41.5377 1.85948 0.929742 0.368212i \(-0.120030\pi\)
0.929742 + 0.368212i \(0.120030\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −8.33119 −0.371469 −0.185735 0.982600i \(-0.559467\pi\)
−0.185735 + 0.982600i \(0.559467\pi\)
\(504\) 0 0
\(505\) −10.4952 −0.467028
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.1613 1.46985 0.734924 0.678149i \(-0.237218\pi\)
0.734924 + 0.678149i \(0.237218\pi\)
\(510\) 0 0
\(511\) − 23.5515i − 1.04186i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.06214i 0.0468033i
\(516\) 0 0
\(517\) 16.6502i 0.732275i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 32.5036i 1.42401i 0.702176 + 0.712004i \(0.252212\pi\)
−0.702176 + 0.712004i \(0.747788\pi\)
\(522\) 0 0
\(523\) −11.2030 −0.489872 −0.244936 0.969539i \(-0.578767\pi\)
−0.244936 + 0.969539i \(0.578767\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 36.8768 1.60638
\(528\) 0 0
\(529\) 55.5662 2.41592
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.31330 −0.186830
\(534\) 0 0
\(535\) 13.5232i 0.584659i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 5.06690i − 0.218247i
\(540\) 0 0
\(541\) − 5.13802i − 0.220901i −0.993882 0.110450i \(-0.964771\pi\)
0.993882 0.110450i \(-0.0352293\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 11.2340i − 0.481210i
\(546\) 0 0
\(547\) −22.5750 −0.965239 −0.482620 0.875830i \(-0.660315\pi\)
−0.482620 + 0.875830i \(0.660315\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −38.1707 −1.62613
\(552\) 0 0
\(553\) 0.0397553 0.00169057
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −31.3702 −1.32920 −0.664599 0.747200i \(-0.731398\pi\)
−0.664599 + 0.747200i \(0.731398\pi\)
\(558\) 0 0
\(559\) − 1.21213i − 0.0512678i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.80199i 0.0759450i 0.999279 + 0.0379725i \(0.0120899\pi\)
−0.999279 + 0.0379725i \(0.987910\pi\)
\(564\) 0 0
\(565\) 5.11846i 0.215335i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 5.95840i 0.249789i 0.992170 + 0.124894i \(0.0398592\pi\)
−0.992170 + 0.124894i \(0.960141\pi\)
\(570\) 0 0
\(571\) 21.0692 0.881718 0.440859 0.897576i \(-0.354674\pi\)
0.440859 + 0.897576i \(0.354674\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 38.6058 1.60997
\(576\) 0 0
\(577\) −11.1836 −0.465580 −0.232790 0.972527i \(-0.574785\pi\)
−0.232790 + 0.972527i \(0.574785\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.85397 0.0769157
\(582\) 0 0
\(583\) 1.87220i 0.0775388i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.31524i 0.0542859i 0.999632 + 0.0271429i \(0.00864092\pi\)
−0.999632 + 0.0271429i \(0.991359\pi\)
\(588\) 0 0
\(589\) 48.7059i 2.00689i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 34.1415i − 1.40202i −0.713150 0.701011i \(-0.752732\pi\)
0.713150 0.701011i \(-0.247268\pi\)
\(594\) 0 0
\(595\) −5.52261 −0.226405
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −13.6319 −0.556984 −0.278492 0.960439i \(-0.589835\pi\)
−0.278492 + 0.960439i \(0.589835\pi\)
\(600\) 0 0
\(601\) −43.0603 −1.75647 −0.878234 0.478232i \(-0.841278\pi\)
−0.878234 + 0.478232i \(0.841278\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6.87088 0.279341
\(606\) 0 0
\(607\) 27.2168i 1.10470i 0.833613 + 0.552349i \(0.186268\pi\)
−0.833613 + 0.552349i \(0.813732\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.6556i 0.431080i
\(612\) 0 0
\(613\) − 3.98645i − 0.161011i −0.996754 0.0805055i \(-0.974347\pi\)
0.996754 0.0805055i \(-0.0256535\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 32.9892i − 1.32809i −0.747691 0.664047i \(-0.768837\pi\)
0.747691 0.664047i \(-0.231163\pi\)
\(618\) 0 0
\(619\) 25.2629 1.01540 0.507701 0.861534i \(-0.330496\pi\)
0.507701 + 0.861534i \(0.330496\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −8.94239 −0.358269
\(624\) 0 0
\(625\) 15.7474 0.629898
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 25.0289 0.997970
\(630\) 0 0
\(631\) 18.6763i 0.743490i 0.928335 + 0.371745i \(0.121240\pi\)
−0.928335 + 0.371745i \(0.878760\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 4.82516i − 0.191480i
\(636\) 0 0
\(637\) − 3.24266i − 0.128479i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 6.11079i 0.241362i 0.992691 + 0.120681i \(0.0385078\pi\)
−0.992691 + 0.120681i \(0.961492\pi\)
\(642\) 0 0
\(643\) −11.4130 −0.450085 −0.225043 0.974349i \(-0.572252\pi\)
−0.225043 + 0.974349i \(0.572252\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −1.21134 −0.0476225 −0.0238113 0.999716i \(-0.507580\pi\)
−0.0238113 + 0.999716i \(0.507580\pi\)
\(648\) 0 0
\(649\) −14.0430 −0.551237
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 35.5708 1.39199 0.695996 0.718046i \(-0.254963\pi\)
0.695996 + 0.718046i \(0.254963\pi\)
\(654\) 0 0
\(655\) − 8.09068i − 0.316129i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 15.1253i − 0.589198i −0.955621 0.294599i \(-0.904814\pi\)
0.955621 0.294599i \(-0.0951860\pi\)
\(660\) 0 0
\(661\) − 15.7791i − 0.613736i −0.951752 0.306868i \(-0.900719\pi\)
0.951752 0.306868i \(-0.0992810\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 7.29412i − 0.282854i
\(666\) 0 0
\(667\) −72.1835 −2.79496
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.15794 −0.160515
\(672\) 0 0
\(673\) −5.40534 −0.208361 −0.104180 0.994558i \(-0.533222\pi\)
−0.104180 + 0.994558i \(0.533222\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 13.8031 0.530495 0.265247 0.964180i \(-0.414546\pi\)
0.265247 + 0.964180i \(0.414546\pi\)
\(678\) 0 0
\(679\) 29.2735i 1.12341i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 3.83627i 0.146791i 0.997303 + 0.0733955i \(0.0233835\pi\)
−0.997303 + 0.0733955i \(0.976616\pi\)
\(684\) 0 0
\(685\) − 3.78732i − 0.144706i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.19815i 0.0456459i
\(690\) 0 0
\(691\) 9.16893 0.348802 0.174401 0.984675i \(-0.444201\pi\)
0.174401 + 0.984675i \(0.444201\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.71374 −0.102938
\(696\) 0 0
\(697\) 15.3070 0.579796
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36.0528 1.36170 0.680849 0.732424i \(-0.261611\pi\)
0.680849 + 0.732424i \(0.261611\pi\)
\(702\) 0 0
\(703\) 33.0576i 1.24679i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 25.3400i − 0.953010i
\(708\) 0 0
\(709\) 36.9645i 1.38823i 0.719864 + 0.694115i \(0.244204\pi\)
−0.719864 + 0.694115i \(0.755796\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 92.1062i 3.44941i
\(714\) 0 0
\(715\) −1.25448 −0.0469149
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.5007 0.391609 0.195805 0.980643i \(-0.437268\pi\)
0.195805 + 0.980643i \(0.437268\pi\)
\(720\) 0 0
\(721\) −2.56448 −0.0955061
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −35.4695 −1.31730
\(726\) 0 0
\(727\) 48.8568i 1.81200i 0.423279 + 0.905999i \(0.360879\pi\)
−0.423279 + 0.905999i \(0.639121\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.30163i 0.159101i
\(732\) 0 0
\(733\) − 41.0047i − 1.51454i −0.653099 0.757272i \(-0.726532\pi\)
0.653099 0.757272i \(-0.273468\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 14.7927i − 0.544896i
\(738\) 0 0
\(739\) −45.7034 −1.68123 −0.840614 0.541635i \(-0.817805\pi\)
−0.840614 + 0.541635i \(0.817805\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −5.54515 −0.203432 −0.101716 0.994813i \(-0.532433\pi\)
−0.101716 + 0.994813i \(0.532433\pi\)
\(744\) 0 0
\(745\) 5.13200 0.188022
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −32.6511 −1.19305
\(750\) 0 0
\(751\) 14.7605i 0.538619i 0.963054 + 0.269310i \(0.0867955\pi\)
−0.963054 + 0.269310i \(0.913204\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.35532i 0.0857190i
\(756\) 0 0
\(757\) 1.55725i 0.0565992i 0.999599 + 0.0282996i \(0.00900925\pi\)
−0.999599 + 0.0282996i \(0.990991\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 42.7799i 1.55077i 0.631488 + 0.775386i \(0.282445\pi\)
−0.631488 + 0.775386i \(0.717555\pi\)
\(762\) 0 0
\(763\) 27.1238 0.981949
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.98709 −0.324505
\(768\) 0 0
\(769\) 9.58861 0.345774 0.172887 0.984942i \(-0.444690\pi\)
0.172887 + 0.984942i \(0.444690\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 43.9844 1.58201 0.791005 0.611809i \(-0.209558\pi\)
0.791005 + 0.611809i \(0.209558\pi\)
\(774\) 0 0
\(775\) 45.2591i 1.62576i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 20.2172i 0.724355i
\(780\) 0 0
\(781\) 3.56136i 0.127435i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 12.3130i − 0.439470i
\(786\) 0 0
\(787\) 22.7288 0.810194 0.405097 0.914274i \(-0.367238\pi\)
0.405097 + 0.914274i \(0.367238\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.3583 −0.439409
\(792\) 0 0
\(793\) −2.66095 −0.0944931
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 16.8732 0.597678 0.298839 0.954304i \(-0.403401\pi\)
0.298839 + 0.954304i \(0.403401\pi\)
\(798\) 0 0
\(799\) − 37.8146i − 1.33779i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 18.9854i 0.669979i
\(804\) 0 0
\(805\) − 13.7937i − 0.486163i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 10.7940i 0.379496i 0.981833 + 0.189748i \(0.0607670\pi\)
−0.981833 + 0.189748i \(0.939233\pi\)
\(810\) 0 0
\(811\) 40.2601 1.41372 0.706861 0.707352i \(-0.250111\pi\)
0.706861 + 0.707352i \(0.250111\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.81905 0.343946
\(816\) 0 0
\(817\) −5.68148 −0.198770
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −21.9301 −0.765365 −0.382683 0.923880i \(-0.625000\pi\)
−0.382683 + 0.923880i \(0.625000\pi\)
\(822\) 0 0
\(823\) 41.8759i 1.45970i 0.683605 + 0.729852i \(0.260411\pi\)
−0.683605 + 0.729852i \(0.739589\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 36.4860i 1.26874i 0.773028 + 0.634372i \(0.218741\pi\)
−0.773028 + 0.634372i \(0.781259\pi\)
\(828\) 0 0
\(829\) − 26.5146i − 0.920890i −0.887688 0.460445i \(-0.847690\pi\)
0.887688 0.460445i \(-0.152310\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 11.5076i 0.398713i
\(834\) 0 0
\(835\) −8.75620 −0.303021
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −9.41523 −0.325050 −0.162525 0.986704i \(-0.551964\pi\)
−0.162525 + 0.986704i \(0.551964\pi\)
\(840\) 0 0
\(841\) 37.3194 1.28688
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.802827 −0.0276181
\(846\) 0 0
\(847\) 16.5894i 0.570018i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 62.5142i 2.14296i
\(852\) 0 0
\(853\) 17.6829i 0.605449i 0.953078 + 0.302725i \(0.0978963\pi\)
−0.953078 + 0.302725i \(0.902104\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 0.161548i − 0.00551836i −0.999996 0.00275918i \(-0.999122\pi\)
0.999996 0.00275918i \(-0.000878275\pi\)
\(858\) 0 0
\(859\) −30.8841 −1.05375 −0.526876 0.849942i \(-0.676637\pi\)
−0.526876 + 0.849942i \(0.676637\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 33.8502 1.15227 0.576137 0.817353i \(-0.304560\pi\)
0.576137 + 0.817353i \(0.304560\pi\)
\(864\) 0 0
\(865\) −7.04370 −0.239493
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −0.0320477 −0.00108714
\(870\) 0 0
\(871\) − 9.46686i − 0.320772i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) − 14.5589i − 0.492180i
\(876\) 0 0
\(877\) − 0.270189i − 0.00912362i −0.999990 0.00456181i \(-0.998548\pi\)
0.999990 0.00456181i \(-0.00145207\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 13.3907i − 0.451144i −0.974226 0.225572i \(-0.927575\pi\)
0.974226 0.225572i \(-0.0724251\pi\)
\(882\) 0 0
\(883\) 4.00234 0.134689 0.0673447 0.997730i \(-0.478547\pi\)
0.0673447 + 0.997730i \(0.478547\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 22.3603 0.750786 0.375393 0.926866i \(-0.377508\pi\)
0.375393 + 0.926866i \(0.377508\pi\)
\(888\) 0 0
\(889\) 11.6501 0.390732
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 49.9446 1.67133
\(894\) 0 0
\(895\) − 10.5094i − 0.351291i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 84.6236i − 2.82236i
\(900\) 0 0
\(901\) − 4.25200i − 0.141655i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 16.9498i − 0.563431i
\(906\) 0 0
\(907\) −39.1830 −1.30105 −0.650525 0.759484i \(-0.725451\pi\)
−0.650525 + 0.759484i \(0.725451\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 35.9229 1.19018 0.595089 0.803660i \(-0.297117\pi\)
0.595089 + 0.803660i \(0.297117\pi\)
\(912\) 0 0
\(913\) −1.49453 −0.0494617
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 19.5345 0.645087
\(918\) 0 0
\(919\) 7.29406i 0.240609i 0.992737 + 0.120304i \(0.0383871\pi\)
−0.992737 + 0.120304i \(0.961613\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.27916i 0.0750194i
\(924\) 0 0
\(925\) 30.7182i 1.01001i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 7.63172i − 0.250389i −0.992132 0.125194i \(-0.960045\pi\)
0.992132 0.125194i \(-0.0399554\pi\)
\(930\) 0 0
\(931\) −15.1989 −0.498123
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.45190 0.145593
\(936\) 0 0
\(937\) 32.9234 1.07556 0.537780 0.843085i \(-0.319263\pi\)
0.537780 + 0.843085i \(0.319263\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 32.2462 1.05119 0.525597 0.850733i \(-0.323842\pi\)
0.525597 + 0.850733i \(0.323842\pi\)
\(942\) 0 0
\(943\) 38.2320i 1.24501i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 34.5486i − 1.12268i −0.827585 0.561340i \(-0.810286\pi\)
0.827585 0.561340i \(-0.189714\pi\)
\(948\) 0 0
\(949\) 12.1500i 0.394407i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 12.5966i − 0.408045i −0.978966 0.204022i \(-0.934598\pi\)
0.978966 0.204022i \(-0.0654015\pi\)
\(954\) 0 0
\(955\) 10.0784 0.326129
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.14430 0.295285
\(960\) 0 0
\(961\) −76.9798 −2.48322
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.82185 −0.283985
\(966\) 0 0
\(967\) 30.2118i 0.971547i 0.874085 + 0.485774i \(0.161462\pi\)
−0.874085 + 0.485774i \(0.838538\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 38.8754i − 1.24757i −0.781596 0.623785i \(-0.785594\pi\)
0.781596 0.623785i \(-0.214406\pi\)
\(972\) 0 0
\(973\) − 6.55218i − 0.210053i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 14.2864i − 0.457064i −0.973536 0.228532i \(-0.926607\pi\)
0.973536 0.228532i \(-0.0733925\pi\)
\(978\) 0 0
\(979\) 7.20867 0.230390
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −54.9024 −1.75112 −0.875558 0.483113i \(-0.839506\pi\)
−0.875558 + 0.483113i \(0.839506\pi\)
\(984\) 0 0
\(985\) −8.40383 −0.267768
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −10.7441 −0.341641
\(990\) 0 0
\(991\) 2.25689i 0.0716924i 0.999357 + 0.0358462i \(0.0114126\pi\)
−0.999357 + 0.0358462i \(0.988587\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 10.5498i − 0.334450i
\(996\) 0 0
\(997\) − 20.1398i − 0.637833i −0.947783 0.318916i \(-0.896681\pi\)
0.947783 0.318916i \(-0.103319\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3744.2.j.a.2159.33 48
3.2 odd 2 inner 3744.2.j.a.2159.15 48
4.3 odd 2 936.2.j.a.755.26 yes 48
8.3 odd 2 inner 3744.2.j.a.2159.16 48
8.5 even 2 936.2.j.a.755.24 yes 48
12.11 even 2 936.2.j.a.755.23 48
24.5 odd 2 936.2.j.a.755.25 yes 48
24.11 even 2 inner 3744.2.j.a.2159.34 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
936.2.j.a.755.23 48 12.11 even 2
936.2.j.a.755.24 yes 48 8.5 even 2
936.2.j.a.755.25 yes 48 24.5 odd 2
936.2.j.a.755.26 yes 48 4.3 odd 2
3744.2.j.a.2159.15 48 3.2 odd 2 inner
3744.2.j.a.2159.16 48 8.3 odd 2 inner
3744.2.j.a.2159.33 48 1.1 even 1 trivial
3744.2.j.a.2159.34 48 24.11 even 2 inner