Properties

Label 2-3744-24.11-c1-0-37
Degree $2$
Conductor $3744$
Sign $-0.492 + 0.870i$
Analytic cond. $29.8959$
Root an. cond. $5.46772$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.802·5-s + 1.93i·7-s − 1.56i·11-s i·13-s + 3.54i·17-s − 4.68·19-s − 8.86·23-s − 4.35·25-s + 8.14·29-s − 10.3i·31-s + 1.55i·35-s − 7.05i·37-s − 4.31i·41-s + 1.21·43-s − 10.6·47-s + ⋯
L(s)  = 1  + 0.359·5-s + 0.732i·7-s − 0.471i·11-s − 0.277i·13-s + 0.860i·17-s − 1.07·19-s − 1.84·23-s − 0.871·25-s + 1.51·29-s − 1.86i·31-s + 0.263i·35-s − 1.15i·37-s − 0.673i·41-s + 0.184·43-s − 1.55·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.492 + 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3744 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.492 + 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3744\)    =    \(2^{5} \cdot 3^{2} \cdot 13\)
Sign: $-0.492 + 0.870i$
Analytic conductor: \(29.8959\)
Root analytic conductor: \(5.46772\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{3744} (2159, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 3744,\ (\ :1/2),\ -0.492 + 0.870i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7847773025\)
\(L(\frac12)\) \(\approx\) \(0.7847773025\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + iT \)
good5 \( 1 - 0.802T + 5T^{2} \)
7 \( 1 - 1.93iT - 7T^{2} \)
11 \( 1 + 1.56iT - 11T^{2} \)
17 \( 1 - 3.54iT - 17T^{2} \)
19 \( 1 + 4.68T + 19T^{2} \)
23 \( 1 + 8.86T + 23T^{2} \)
29 \( 1 - 8.14T + 29T^{2} \)
31 \( 1 + 10.3iT - 31T^{2} \)
37 \( 1 + 7.05iT - 37T^{2} \)
41 \( 1 + 4.31iT - 41T^{2} \)
43 \( 1 - 1.21T + 43T^{2} \)
47 \( 1 + 10.6T + 47T^{2} \)
53 \( 1 + 1.19T + 53T^{2} \)
59 \( 1 + 8.98iT - 59T^{2} \)
61 \( 1 + 2.66iT - 61T^{2} \)
67 \( 1 - 9.46T + 67T^{2} \)
71 \( 1 + 2.27T + 71T^{2} \)
73 \( 1 + 12.1T + 73T^{2} \)
79 \( 1 + 0.0205iT - 79T^{2} \)
83 \( 1 + 0.956iT - 83T^{2} \)
89 \( 1 - 4.61iT - 89T^{2} \)
97 \( 1 - 15.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.205074352861282018880252841645, −7.82623641969222759473921847876, −6.49067222670855456185708277110, −6.04862283881234491914275755755, −5.49889442280316678657945493894, −4.33429898379642005329520539989, −3.69134627726917196705340475423, −2.43878401873434982472963261315, −1.88926224611256883474056907311, −0.21856881085861493884704230368, 1.30650824646390552801595214707, 2.26853043541014820297731894314, 3.29238598921055512341283072861, 4.34571607059599157238266942647, 4.76927256193180284478710177255, 5.90947085780694760103827137430, 6.59230477287161948898446996356, 7.18216322058521672030035303536, 8.105249106149322945455036165573, 8.620536325875537506264892339423

Graph of the $Z$-function along the critical line