Properties

Label 374.2.a.d.1.4
Level 374374
Weight 22
Character 374.1
Self dual yes
Analytic conductor 2.9862.986
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [374,2,Mod(1,374)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(374, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("374.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 374=21117 374 = 2 \cdot 11 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 374.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.986405035602.98640503560
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.55585.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x4x310x2+9x+16 x^{4} - x^{3} - 10x^{2} + 9x + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.4
Root 2.610782.61078 of defining polynomial
Character χ\chi == 374.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q2+2.61078q3+1.00000q4+2.81619q52.61078q63.15249q71.00000q8+3.81619q92.81619q10+1.00000q11+2.61078q12+5.28338q13+3.15249q14+7.35246q15+1.00000q161.00000q173.81619q186.37406q19+2.81619q208.23046q211.00000q223.22157q232.61078q24+2.93092q255.28338q26+2.13089q273.15249q28+4.67260q297.35246q302.67260q311.00000q32+2.61078q33+1.00000q348.87800q35+3.81619q36+2.84751q37+6.37406q38+13.7938q392.81619q401.36516q41+8.23046q42+12.7104q43+1.00000q44+10.7471q45+3.22157q4611.0780q47+2.61078q48+2.93818q492.93092q502.61078q51+5.28338q527.89417q532.13089q54+2.81619q55+3.15249q5616.6413q574.67260q581.08341q59+7.35246q601.22157q61+2.67260q6212.0305q63+1.00000q64+14.8790q652.61078q661.22157q671.00000q688.41081q69+8.87800q70+6.93439q713.81619q727.65100q732.84751q74+7.65200q756.37406q763.15249q7713.7938q78+16.5481q79+2.81619q805.88527q81+1.36516q8213.4143q838.23046q842.81619q8512.7104q86+12.1991q871.00000q88+7.41428q8910.7471q9016.6558q913.22157q926.97758q93+11.0780q9417.9505q952.61078q962.54897q972.93818q98+3.81619q99+O(q100)q-1.00000 q^{2} +2.61078 q^{3} +1.00000 q^{4} +2.81619 q^{5} -2.61078 q^{6} -3.15249 q^{7} -1.00000 q^{8} +3.81619 q^{9} -2.81619 q^{10} +1.00000 q^{11} +2.61078 q^{12} +5.28338 q^{13} +3.15249 q^{14} +7.35246 q^{15} +1.00000 q^{16} -1.00000 q^{17} -3.81619 q^{18} -6.37406 q^{19} +2.81619 q^{20} -8.23046 q^{21} -1.00000 q^{22} -3.22157 q^{23} -2.61078 q^{24} +2.93092 q^{25} -5.28338 q^{26} +2.13089 q^{27} -3.15249 q^{28} +4.67260 q^{29} -7.35246 q^{30} -2.67260 q^{31} -1.00000 q^{32} +2.61078 q^{33} +1.00000 q^{34} -8.87800 q^{35} +3.81619 q^{36} +2.84751 q^{37} +6.37406 q^{38} +13.7938 q^{39} -2.81619 q^{40} -1.36516 q^{41} +8.23046 q^{42} +12.7104 q^{43} +1.00000 q^{44} +10.7471 q^{45} +3.22157 q^{46} -11.0780 q^{47} +2.61078 q^{48} +2.93818 q^{49} -2.93092 q^{50} -2.61078 q^{51} +5.28338 q^{52} -7.89417 q^{53} -2.13089 q^{54} +2.81619 q^{55} +3.15249 q^{56} -16.6413 q^{57} -4.67260 q^{58} -1.08341 q^{59} +7.35246 q^{60} -1.22157 q^{61} +2.67260 q^{62} -12.0305 q^{63} +1.00000 q^{64} +14.8790 q^{65} -2.61078 q^{66} -1.22157 q^{67} -1.00000 q^{68} -8.41081 q^{69} +8.87800 q^{70} +6.93439 q^{71} -3.81619 q^{72} -7.65100 q^{73} -2.84751 q^{74} +7.65200 q^{75} -6.37406 q^{76} -3.15249 q^{77} -13.7938 q^{78} +16.5481 q^{79} +2.81619 q^{80} -5.88527 q^{81} +1.36516 q^{82} -13.4143 q^{83} -8.23046 q^{84} -2.81619 q^{85} -12.7104 q^{86} +12.1991 q^{87} -1.00000 q^{88} +7.41428 q^{89} -10.7471 q^{90} -16.6558 q^{91} -3.22157 q^{92} -6.97758 q^{93} +11.0780 q^{94} -17.9505 q^{95} -2.61078 q^{96} -2.54897 q^{97} -2.93818 q^{98} +3.81619 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+q3+4q4+5q5q6+q74q8+9q95q10+4q11+q123q13q14+4q164q179q18+7q19+5q20+8q214q22++9q99+O(q100) 4 q - 4 q^{2} + q^{3} + 4 q^{4} + 5 q^{5} - q^{6} + q^{7} - 4 q^{8} + 9 q^{9} - 5 q^{10} + 4 q^{11} + q^{12} - 3 q^{13} - q^{14} + 4 q^{16} - 4 q^{17} - 9 q^{18} + 7 q^{19} + 5 q^{20} + 8 q^{21} - 4 q^{22}+ \cdots + 9 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 2.61078 1.50734 0.753668 0.657255i 0.228283π-0.228283\pi
0.753668 + 0.657255i 0.228283π0.228283\pi
44 1.00000 0.500000
55 2.81619 1.25944 0.629719 0.776823i 0.283170π-0.283170\pi
0.629719 + 0.776823i 0.283170π0.283170\pi
66 −2.61078 −1.06585
77 −3.15249 −1.19153 −0.595764 0.803159i 0.703151π-0.703151\pi
−0.595764 + 0.803159i 0.703151π0.703151\pi
88 −1.00000 −0.353553
99 3.81619 1.27206
1010 −2.81619 −0.890557
1111 1.00000 0.301511
1212 2.61078 0.753668
1313 5.28338 1.46535 0.732673 0.680581i 0.238272π-0.238272\pi
0.732673 + 0.680581i 0.238272π0.238272\pi
1414 3.15249 0.842538
1515 7.35246 1.89840
1616 1.00000 0.250000
1717 −1.00000 −0.242536
1818 −3.81619 −0.899484
1919 −6.37406 −1.46231 −0.731154 0.682212i 0.761018π-0.761018\pi
−0.731154 + 0.682212i 0.761018π0.761018\pi
2020 2.81619 0.629719
2121 −8.23046 −1.79603
2222 −1.00000 −0.213201
2323 −3.22157 −0.671743 −0.335872 0.941908i 0.609031π-0.609031\pi
−0.335872 + 0.941908i 0.609031π0.609031\pi
2424 −2.61078 −0.532924
2525 2.93092 0.586184
2626 −5.28338 −1.03616
2727 2.13089 0.410091
2828 −3.15249 −0.595764
2929 4.67260 0.867680 0.433840 0.900990i 0.357158π-0.357158\pi
0.433840 + 0.900990i 0.357158π0.357158\pi
3030 −7.35246 −1.34237
3131 −2.67260 −0.480013 −0.240006 0.970771i 0.577150π-0.577150\pi
−0.240006 + 0.970771i 0.577150π0.577150\pi
3232 −1.00000 −0.176777
3333 2.61078 0.454479
3434 1.00000 0.171499
3535 −8.87800 −1.50066
3636 3.81619 0.636032
3737 2.84751 0.468128 0.234064 0.972221i 0.424797π-0.424797\pi
0.234064 + 0.972221i 0.424797π0.424797\pi
3838 6.37406 1.03401
3939 13.7938 2.20877
4040 −2.81619 −0.445279
4141 −1.36516 −0.213202 −0.106601 0.994302i 0.533997π-0.533997\pi
−0.106601 + 0.994302i 0.533997π0.533997\pi
4242 8.23046 1.26999
4343 12.7104 1.93831 0.969155 0.246450i 0.0792642π-0.0792642\pi
0.969155 + 0.246450i 0.0792642π0.0792642\pi
4444 1.00000 0.150756
4545 10.7471 1.60208
4646 3.22157 0.474994
4747 −11.0780 −1.61589 −0.807944 0.589259i 0.799420π-0.799420\pi
−0.807944 + 0.589259i 0.799420π0.799420\pi
4848 2.61078 0.376834
4949 2.93818 0.419741
5050 −2.93092 −0.414495
5151 −2.61078 −0.365583
5252 5.28338 0.732673
5353 −7.89417 −1.08435 −0.542173 0.840267i 0.682398π-0.682398\pi
−0.542173 + 0.840267i 0.682398π0.682398\pi
5454 −2.13089 −0.289978
5555 2.81619 0.379735
5656 3.15249 0.421269
5757 −16.6413 −2.20419
5858 −4.67260 −0.613542
5959 −1.08341 −0.141048 −0.0705240 0.997510i 0.522467π-0.522467\pi
−0.0705240 + 0.997510i 0.522467π0.522467\pi
6060 7.35246 0.949198
6161 −1.22157 −0.156406 −0.0782028 0.996937i 0.524918π-0.524918\pi
−0.0782028 + 0.996937i 0.524918π0.524918\pi
6262 2.67260 0.339420
6363 −12.0305 −1.51570
6464 1.00000 0.125000
6565 14.8790 1.84551
6666 −2.61078 −0.321365
6767 −1.22157 −0.149238 −0.0746191 0.997212i 0.523774π-0.523774\pi
−0.0746191 + 0.997212i 0.523774π0.523774\pi
6868 −1.00000 −0.121268
6969 −8.41081 −1.01254
7070 8.87800 1.06112
7171 6.93439 0.822960 0.411480 0.911419i 0.365012π-0.365012\pi
0.411480 + 0.911419i 0.365012π0.365012\pi
7272 −3.81619 −0.449742
7373 −7.65100 −0.895482 −0.447741 0.894163i 0.647771π-0.647771\pi
−0.447741 + 0.894163i 0.647771π0.647771\pi
7474 −2.84751 −0.331016
7575 7.65200 0.883577
7676 −6.37406 −0.731154
7777 −3.15249 −0.359259
7878 −13.7938 −1.56184
7979 16.5481 1.86181 0.930906 0.365260i 0.119020π-0.119020\pi
0.930906 + 0.365260i 0.119020π0.119020\pi
8080 2.81619 0.314860
8181 −5.88527 −0.653919
8282 1.36516 0.150756
8383 −13.4143 −1.47241 −0.736204 0.676760i 0.763384π-0.763384\pi
−0.736204 + 0.676760i 0.763384π0.763384\pi
8484 −8.23046 −0.898017
8585 −2.81619 −0.305459
8686 −12.7104 −1.37059
8787 12.1991 1.30789
8888 −1.00000 −0.106600
8989 7.41428 0.785912 0.392956 0.919557i 0.371453π-0.371453\pi
0.392956 + 0.919557i 0.371453π0.371453\pi
9090 −10.7471 −1.13285
9191 −16.6558 −1.74600
9292 −3.22157 −0.335872
9393 −6.97758 −0.723541
9494 11.0780 1.14261
9595 −17.9505 −1.84169
9696 −2.61078 −0.266462
9797 −2.54897 −0.258808 −0.129404 0.991592i 0.541306π-0.541306\pi
−0.129404 + 0.991592i 0.541306π0.541306\pi
9898 −2.93818 −0.296801
9999 3.81619 0.383541
100100 2.93092 0.293092
101101 −8.81619 −0.877244 −0.438622 0.898672i 0.644533π-0.644533\pi
−0.438622 + 0.898672i 0.644533π0.644533\pi
102102 2.61078 0.258506
103103 16.0315 1.57963 0.789815 0.613345i 0.210177π-0.210177\pi
0.789815 + 0.613345i 0.210177π0.210177\pi
104104 −5.28338 −0.518078
105105 −23.1785 −2.26199
106106 7.89417 0.766749
107107 −13.8942 −1.34320 −0.671600 0.740914i 0.734393π-0.734393\pi
−0.671600 + 0.740914i 0.734393π0.734393\pi
108108 2.13089 0.205045
109109 0.548968 0.0525816 0.0262908 0.999654i 0.491630π-0.491630\pi
0.0262908 + 0.999654i 0.491630π0.491630\pi
110110 −2.81619 −0.268513
111111 7.43424 0.705626
112112 −3.15249 −0.297882
113113 −13.5265 −1.27247 −0.636235 0.771495i 0.719509π-0.719509\pi
−0.636235 + 0.771495i 0.719509π0.719509\pi
114114 16.6413 1.55860
115115 −9.07254 −0.846019
116116 4.67260 0.433840
117117 20.1624 1.86401
118118 1.08341 0.0997360
119119 3.15249 0.288988
120120 −7.35246 −0.671185
121121 1.00000 0.0909091
122122 1.22157 0.110595
123123 −3.56413 −0.321367
124124 −2.67260 −0.240006
125125 −5.82692 −0.521175
126126 12.0305 1.07176
127127 17.2216 1.52817 0.764083 0.645117i 0.223192π-0.223192\pi
0.764083 + 0.645117i 0.223192π0.223192\pi
128128 −1.00000 −0.0883883
129129 33.1840 2.92169
130130 −14.8790 −1.30497
131131 −15.7883 −1.37943 −0.689716 0.724080i 0.742265π-0.742265\pi
−0.689716 + 0.724080i 0.742265π0.742265\pi
132132 2.61078 0.227240
133133 20.0941 1.74238
134134 1.22157 0.105527
135135 6.00100 0.516484
136136 1.00000 0.0857493
137137 6.50495 0.555755 0.277878 0.960616i 0.410369π-0.410369\pi
0.277878 + 0.960616i 0.410369π0.410369\pi
138138 8.41081 0.715976
139139 −12.4863 −1.05908 −0.529538 0.848286i 0.677635π-0.677635\pi
−0.529538 + 0.848286i 0.677635π0.677635\pi
140140 −8.87800 −0.750328
141141 −28.9222 −2.43569
142142 −6.93439 −0.581921
143143 5.28338 0.441819
144144 3.81619 0.318016
145145 13.1589 1.09279
146146 7.65100 0.633202
147147 7.67096 0.632690
148148 2.84751 0.234064
149149 16.4618 1.34860 0.674300 0.738458i 0.264446π-0.264446\pi
0.674300 + 0.738458i 0.264446π0.264446\pi
150150 −7.65200 −0.624783
151151 −5.89417 −0.479660 −0.239830 0.970815i 0.577092π-0.577092\pi
−0.239830 + 0.970815i 0.577092π0.577092\pi
152152 6.37406 0.517004
153153 −3.81619 −0.308521
154154 3.15249 0.254035
155155 −7.52654 −0.604547
156156 13.7938 1.10439
157157 −20.3805 −1.62654 −0.813270 0.581886i 0.802315π-0.802315\pi
−0.813270 + 0.581886i 0.802315π0.802315\pi
158158 −16.5481 −1.31650
159159 −20.6100 −1.63448
160160 −2.81619 −0.222639
161161 10.1560 0.800401
162162 5.88527 0.462390
163163 8.16139 0.639249 0.319625 0.947544i 0.396443π-0.396443\pi
0.319625 + 0.947544i 0.396443π0.396443\pi
164164 −1.36516 −0.106601
165165 7.35246 0.572388
166166 13.4143 1.04115
167167 −16.3427 −1.26464 −0.632319 0.774708i 0.717897π-0.717897\pi
−0.632319 + 0.774708i 0.717897π0.717897\pi
168168 8.23046 0.634994
169169 14.9141 1.14724
170170 2.81619 0.215992
171171 −24.3246 −1.86015
172172 12.7104 0.969155
173173 18.4431 1.40221 0.701103 0.713060i 0.252691π-0.252691\pi
0.701103 + 0.713060i 0.252691π0.252691\pi
174174 −12.1991 −0.924815
175175 −9.23970 −0.698456
176176 1.00000 0.0753778
177177 −2.82855 −0.212607
178178 −7.41428 −0.555723
179179 −16.7481 −1.25181 −0.625906 0.779898i 0.715271π-0.715271\pi
−0.625906 + 0.779898i 0.715271π0.715271\pi
180180 10.7471 0.801042
181181 12.9784 0.964677 0.482339 0.875985i 0.339787π-0.339787\pi
0.482339 + 0.875985i 0.339787π0.339787\pi
182182 16.6558 1.23461
183183 −3.18925 −0.235756
184184 3.22157 0.237497
185185 8.01913 0.589578
186186 6.97758 0.511621
187187 −1.00000 −0.0731272
188188 −11.0780 −0.807944
189189 −6.71762 −0.488635
190190 17.9505 1.30227
191191 22.8099 1.65047 0.825234 0.564791i 0.191043π-0.191043\pi
0.825234 + 0.564791i 0.191043π0.191043\pi
192192 2.61078 0.188417
193193 −3.12743 −0.225117 −0.112559 0.993645i 0.535905π-0.535905\pi
−0.112559 + 0.993645i 0.535905π0.535905\pi
194194 2.54897 0.183005
195195 38.8459 2.78181
196196 2.93818 0.209870
197197 22.3050 1.58916 0.794582 0.607157i 0.207690π-0.207690\pi
0.794582 + 0.607157i 0.207690π0.207690\pi
198198 −3.81619 −0.271205
199199 5.58919 0.396207 0.198104 0.980181i 0.436522π-0.436522\pi
0.198104 + 0.980181i 0.436522π0.436522\pi
200200 −2.93092 −0.207247
201201 −3.18925 −0.224952
202202 8.81619 0.620305
203203 −14.7303 −1.03387
204204 −2.61078 −0.182791
205205 −3.84454 −0.268514
206206 −16.0315 −1.11697
207207 −12.2941 −0.854500
208208 5.28338 0.366337
209209 −6.37406 −0.440903
210210 23.1785 1.59947
211211 7.26476 0.500127 0.250063 0.968230i 0.419549π-0.419549\pi
0.250063 + 0.968230i 0.419549π0.419549\pi
212212 −7.89417 −0.542173
213213 18.1042 1.24048
214214 13.8942 0.949786
215215 35.7948 2.44118
216216 −2.13089 −0.144989
217217 8.42534 0.571949
218218 −0.548968 −0.0371808
219219 −19.9751 −1.34979
220220 2.81619 0.189867
221221 −5.28338 −0.355399
222222 −7.43424 −0.498953
223223 −1.62594 −0.108881 −0.0544407 0.998517i 0.517338π-0.517338\pi
−0.0544407 + 0.998517i 0.517338π0.517338\pi
224224 3.15249 0.210635
225225 11.1850 0.745664
226226 13.5265 0.899772
227227 5.02077 0.333240 0.166620 0.986021i 0.446715π-0.446715\pi
0.166620 + 0.986021i 0.446715π0.446715\pi
228228 −16.6413 −1.10210
229229 9.40291 0.621362 0.310681 0.950514i 0.399443π-0.399443\pi
0.310681 + 0.950514i 0.399443π0.399443\pi
230230 9.07254 0.598226
231231 −8.23046 −0.541525
232232 −4.67260 −0.306771
233233 −8.47263 −0.555060 −0.277530 0.960717i 0.589516π-0.589516\pi
−0.277530 + 0.960717i 0.589516π0.589516\pi
234234 −20.1624 −1.31806
235235 −31.1977 −2.03511
236236 −1.08341 −0.0705240
237237 43.2036 2.80638
238238 −3.15249 −0.204345
239239 24.8863 1.60976 0.804879 0.593438i 0.202230π-0.202230\pi
0.804879 + 0.593438i 0.202230π0.202230\pi
240240 7.35246 0.474599
241241 8.44313 0.543870 0.271935 0.962316i 0.412336π-0.412336\pi
0.271935 + 0.962316i 0.412336π0.412336\pi
242242 −1.00000 −0.0642824
243243 −21.7578 −1.39577
244244 −1.22157 −0.0782028
245245 8.27448 0.528637
246246 3.56413 0.227241
247247 −33.6766 −2.14279
248248 2.67260 0.169710
249249 −35.0218 −2.21941
250250 5.82692 0.368526
251251 22.3805 1.41264 0.706322 0.707891i 0.250353π-0.250353\pi
0.706322 + 0.707891i 0.250353π0.250353\pi
252252 −12.0305 −0.757850
253253 −3.22157 −0.202538
254254 −17.2216 −1.08058
255255 −7.35246 −0.460429
256256 1.00000 0.0625000
257257 14.8172 0.924271 0.462135 0.886809i 0.347083π-0.347083\pi
0.462135 + 0.886809i 0.347083π0.347083\pi
258258 −33.1840 −2.06594
259259 −8.97675 −0.557788
260260 14.8790 0.922757
261261 17.8315 1.10374
262262 15.7883 0.975406
263263 −26.0933 −1.60898 −0.804491 0.593965i 0.797562π-0.797562\pi
−0.804491 + 0.593965i 0.797562π0.797562\pi
264264 −2.61078 −0.160683
265265 −22.2315 −1.36567
266266 −20.0941 −1.23205
267267 19.3571 1.18463
268268 −1.22157 −0.0746191
269269 17.1525 1.04581 0.522903 0.852392i 0.324849π-0.324849\pi
0.522903 + 0.852392i 0.324849π0.324849\pi
270270 −6.00100 −0.365209
271271 −17.1589 −1.04233 −0.521165 0.853456i 0.674502π-0.674502\pi
−0.521165 + 0.853456i 0.674502π0.674502\pi
272272 −1.00000 −0.0606339
273273 −43.4847 −2.63181
274274 −6.50495 −0.392978
275275 2.93092 0.176741
276276 −8.41081 −0.506271
277277 −8.62448 −0.518195 −0.259097 0.965851i 0.583425π-0.583425\pi
−0.259097 + 0.965851i 0.583425π0.583425\pi
278278 12.4863 0.748880
279279 −10.1991 −0.610607
280280 8.87800 0.530562
281281 −4.99210 −0.297804 −0.148902 0.988852i 0.547574π-0.547574\pi
−0.148902 + 0.988852i 0.547574π0.547574\pi
282282 28.9222 1.72229
283283 12.5236 0.744449 0.372225 0.928143i 0.378595π-0.378595\pi
0.372225 + 0.928143i 0.378595π0.378595\pi
284284 6.93439 0.411480
285285 −46.8650 −2.77604
286286 −5.28338 −0.312413
287287 4.30364 0.254036
288288 −3.81619 −0.224871
289289 1.00000 0.0588235
290290 −13.1589 −0.772719
291291 −6.65480 −0.390111
292292 −7.65100 −0.447741
293293 −0.453496 −0.0264935 −0.0132468 0.999912i 0.504217π-0.504217\pi
−0.0132468 + 0.999912i 0.504217π0.504217\pi
294294 −7.67096 −0.447380
295295 −3.05109 −0.177641
296296 −2.84751 −0.165508
297297 2.13089 0.123647
298298 −16.4618 −0.953604
299299 −17.0208 −0.984336
300300 7.65200 0.441789
301301 −40.0692 −2.30955
302302 5.89417 0.339171
303303 −23.0172 −1.32230
304304 −6.37406 −0.365577
305305 −3.44016 −0.196983
306306 3.81619 0.218157
307307 −18.3236 −1.04578 −0.522892 0.852399i 0.675147π-0.675147\pi
−0.522892 + 0.852399i 0.675147π0.675147\pi
308308 −3.15249 −0.179630
309309 41.8548 2.38103
310310 7.52654 0.427479
311311 23.7079 1.34435 0.672176 0.740392i 0.265360π-0.265360\pi
0.672176 + 0.740392i 0.265360π0.265360\pi
312312 −13.7938 −0.780918
313313 29.4013 1.66186 0.830929 0.556379i 0.187810π-0.187810\pi
0.830929 + 0.556379i 0.187810π0.187810\pi
314314 20.3805 1.15014
315315 −33.8801 −1.90893
316316 16.5481 0.930906
317317 7.45103 0.418492 0.209246 0.977863i 0.432899π-0.432899\pi
0.209246 + 0.977863i 0.432899π0.432899\pi
318318 20.6100 1.15575
319319 4.67260 0.261615
320320 2.81619 0.157430
321321 −36.2747 −2.02465
322322 −10.1560 −0.565969
323323 6.37406 0.354662
324324 −5.88527 −0.326959
325325 15.4852 0.858963
326326 −8.16139 −0.452017
327327 1.43324 0.0792581
328328 1.36516 0.0753782
329329 34.9232 1.92538
330330 −7.35246 −0.404740
331331 35.0531 1.92669 0.963346 0.268262i 0.0864493π-0.0864493\pi
0.963346 + 0.268262i 0.0864493π0.0864493\pi
332332 −13.4143 −0.736204
333333 10.8666 0.595488
334334 16.3427 0.894235
335335 −3.44016 −0.187956
336336 −8.23046 −0.449009
337337 18.7104 1.01922 0.509609 0.860406i 0.329790π-0.329790\pi
0.509609 + 0.860406i 0.329790π0.329790\pi
338338 −14.9141 −0.811221
339339 −35.3149 −1.91804
340340 −2.81619 −0.152729
341341 −2.67260 −0.144729
342342 24.3246 1.31532
343343 12.8048 0.691396
344344 −12.7104 −0.685296
345345 −23.6864 −1.27523
346346 −18.4431 −0.991509
347347 1.89417 0.101684 0.0508421 0.998707i 0.483809π-0.483809\pi
0.0508421 + 0.998707i 0.483809π0.483809\pi
348348 12.1991 0.653943
349349 −21.2648 −1.13828 −0.569138 0.822242i 0.692723π-0.692723\pi
−0.569138 + 0.822242i 0.692723π0.692723\pi
350350 9.23970 0.493883
351351 11.2583 0.600925
352352 −1.00000 −0.0533002
353353 −12.5290 −0.666852 −0.333426 0.942776i 0.608205π-0.608205\pi
−0.333426 + 0.942776i 0.608205π0.608205\pi
354354 2.82855 0.150336
355355 19.5285 1.03647
356356 7.41428 0.392956
357357 8.23046 0.435602
358358 16.7481 0.885165
359359 2.77843 0.146640 0.0733201 0.997308i 0.476641π-0.476641\pi
0.0733201 + 0.997308i 0.476641π0.476641\pi
360360 −10.7471 −0.566423
361361 21.6286 1.13835
362362 −12.9784 −0.682130
363363 2.61078 0.137031
364364 −16.6558 −0.873001
365365 −21.5467 −1.12780
366366 3.18925 0.166705
367367 11.9568 0.624140 0.312070 0.950059i 0.398978π-0.398978\pi
0.312070 + 0.950059i 0.398978π0.398978\pi
368368 −3.22157 −0.167936
369369 −5.20970 −0.271206
370370 −8.01913 −0.416895
371371 24.8863 1.29203
372372 −6.97758 −0.361770
373373 −19.5524 −1.01239 −0.506193 0.862420i 0.668948π-0.668948\pi
−0.506193 + 0.862420i 0.668948π0.668948\pi
374374 1.00000 0.0517088
375375 −15.2128 −0.785586
376376 11.0780 0.571303
377377 24.6871 1.27145
378378 6.71762 0.345517
379379 6.36813 0.327109 0.163554 0.986534i 0.447704π-0.447704\pi
0.163554 + 0.986534i 0.447704π0.447704\pi
380380 −17.9505 −0.920844
381381 44.9618 2.30346
382382 −22.8099 −1.16706
383383 −5.55687 −0.283943 −0.141971 0.989871i 0.545344π-0.545344\pi
−0.141971 + 0.989871i 0.545344π0.545344\pi
384384 −2.61078 −0.133231
385385 −8.87800 −0.452465
386386 3.12743 0.159182
387387 48.5051 2.46565
388388 −2.54897 −0.129404
389389 6.07551 0.308041 0.154020 0.988068i 0.450778π-0.450778\pi
0.154020 + 0.988068i 0.450778π0.450778\pi
390390 −38.8459 −1.96704
391391 3.22157 0.162922
392392 −2.93818 −0.148401
393393 −41.2199 −2.07927
394394 −22.3050 −1.12371
395395 46.6027 2.34484
396396 3.81619 0.191771
397397 −16.8027 −0.843301 −0.421651 0.906758i 0.638549π-0.638549\pi
−0.421651 + 0.906758i 0.638549π0.638549\pi
398398 −5.58919 −0.280161
399399 52.4614 2.62636
400400 2.93092 0.146546
401401 −17.4639 −0.872106 −0.436053 0.899921i 0.643624π-0.643624\pi
−0.436053 + 0.899921i 0.643624π0.643624\pi
402402 3.18925 0.159065
403403 −14.1204 −0.703385
404404 −8.81619 −0.438622
405405 −16.5740 −0.823570
406406 14.7303 0.731053
407407 2.84751 0.141146
408408 2.61078 0.129253
409409 8.71579 0.430968 0.215484 0.976507i 0.430867π-0.430867\pi
0.215484 + 0.976507i 0.430867π0.430867\pi
410410 3.84454 0.189868
411411 16.9830 0.837710
412412 16.0315 0.789815
413413 3.41544 0.168063
414414 12.2941 0.604222
415415 −37.7771 −1.85441
416416 −5.28338 −0.259039
417417 −32.5991 −1.59638
418418 6.37406 0.311765
419419 38.6741 1.88935 0.944677 0.328003i 0.106375π-0.106375\pi
0.944677 + 0.328003i 0.106375π0.106375\pi
420420 −23.1785 −1.13100
421421 33.8493 1.64971 0.824857 0.565341i 0.191255π-0.191255\pi
0.824857 + 0.565341i 0.191255π0.191255\pi
422422 −7.26476 −0.353643
423423 −42.2757 −2.05551
424424 7.89417 0.383375
425425 −2.93092 −0.142171
426426 −18.1042 −0.877150
427427 3.85097 0.186362
428428 −13.8942 −0.671600
429429 13.7938 0.665969
430430 −35.7948 −1.72618
431431 23.0790 1.11168 0.555838 0.831291i 0.312398π-0.312398\pi
0.555838 + 0.831291i 0.312398π0.312398\pi
432432 2.13089 0.102523
433433 29.2145 1.40396 0.701979 0.712198i 0.252300π-0.252300\pi
0.701979 + 0.712198i 0.252300π0.252300\pi
434434 −8.42534 −0.404429
435435 34.3551 1.64720
436436 0.548968 0.0262908
437437 20.5344 0.982296
438438 19.9751 0.954448
439439 20.8772 0.996413 0.498207 0.867058i 0.333992π-0.333992\pi
0.498207 + 0.867058i 0.333992π0.333992\pi
440440 −2.81619 −0.134257
441441 11.2127 0.533937
442442 5.28338 0.251305
443443 −10.2569 −0.487318 −0.243659 0.969861i 0.578348π-0.578348\pi
−0.243659 + 0.969861i 0.578348π0.578348\pi
444444 7.43424 0.352813
445445 20.8800 0.989807
446446 1.62594 0.0769907
447447 42.9781 2.03279
448448 −3.15249 −0.148941
449449 −23.0963 −1.08998 −0.544990 0.838442i 0.683467π-0.683467\pi
−0.544990 + 0.838442i 0.683467π0.683467\pi
450450 −11.1850 −0.527264
451451 −1.36516 −0.0642827
452452 −13.5265 −0.636235
453453 −15.3884 −0.723010
454454 −5.02077 −0.235636
455455 −46.9059 −2.19898
456456 16.6413 0.779299
457457 7.75601 0.362811 0.181405 0.983408i 0.441935π-0.441935\pi
0.181405 + 0.983408i 0.441935π0.441935\pi
458458 −9.40291 −0.439369
459459 −2.13089 −0.0994616
460460 −9.07254 −0.423009
461461 3.90093 0.181685 0.0908423 0.995865i 0.471044π-0.471044\pi
0.0908423 + 0.995865i 0.471044π0.471044\pi
462462 8.23046 0.382916
463463 −28.1179 −1.30675 −0.653374 0.757035i 0.726647π-0.726647\pi
−0.653374 + 0.757035i 0.726647π0.726647\pi
464464 4.67260 0.216920
465465 −19.6502 −0.911255
466466 8.47263 0.392487
467467 −24.5473 −1.13591 −0.567957 0.823058i 0.692266π-0.692266\pi
−0.567957 + 0.823058i 0.692266π0.692266\pi
468468 20.1624 0.932007
469469 3.85097 0.177821
470470 31.1977 1.43904
471471 −53.2090 −2.45174
472472 1.08341 0.0498680
473473 12.7104 0.584423
474474 −43.2036 −1.98441
475475 −18.6819 −0.857182
476476 3.15249 0.144494
477477 −30.1256 −1.37936
478478 −24.8863 −1.13827
479479 −14.1050 −0.644474 −0.322237 0.946659i 0.604435π-0.604435\pi
−0.322237 + 0.946659i 0.604435π0.604435\pi
480480 −7.35246 −0.335592
481481 15.0445 0.685970
482482 −8.44313 −0.384574
483483 26.5150 1.20647
484484 1.00000 0.0454545
485485 −7.17838 −0.325953
486486 21.7578 0.986956
487487 −27.3343 −1.23864 −0.619318 0.785140i 0.712591π-0.712591\pi
−0.619318 + 0.785140i 0.712591π0.712591\pi
488488 1.22157 0.0552977
489489 21.3076 0.963564
490490 −8.27448 −0.373803
491491 2.54353 0.114788 0.0573940 0.998352i 0.481721π-0.481721\pi
0.0573940 + 0.998352i 0.481721π0.481721\pi
492492 −3.56413 −0.160683
493493 −4.67260 −0.210443
494494 33.6766 1.51518
495495 10.7471 0.483047
496496 −2.67260 −0.120003
497497 −21.8606 −0.980581
498498 35.0218 1.56936
499499 −29.6639 −1.32794 −0.663969 0.747760i 0.731129π-0.731129\pi
−0.663969 + 0.747760i 0.731129π0.731129\pi
500500 −5.82692 −0.260588
501501 −42.6673 −1.90624
502502 −22.3805 −0.998890
503503 −2.27909 −0.101620 −0.0508098 0.998708i 0.516180π-0.516180\pi
−0.0508098 + 0.998708i 0.516180π0.516180\pi
504504 12.0305 0.535881
505505 −24.8281 −1.10483
506506 3.22157 0.143216
507507 38.9375 1.72928
508508 17.2216 0.764083
509509 −7.84605 −0.347770 −0.173885 0.984766i 0.555632π-0.555632\pi
−0.173885 + 0.984766i 0.555632π0.555632\pi
510510 7.35246 0.325572
511511 24.1197 1.06699
512512 −1.00000 −0.0441942
513513 −13.5824 −0.599679
514514 −14.8172 −0.653558
515515 45.1477 1.98945
516516 33.1840 1.46084
517517 −11.0780 −0.487209
518518 8.97675 0.394416
519519 48.1510 2.11360
520520 −14.8790 −0.652487
521521 15.3953 0.674481 0.337240 0.941419i 0.390506π-0.390506\pi
0.337240 + 0.941419i 0.390506π0.390506\pi
522522 −17.8315 −0.780464
523523 7.15349 0.312800 0.156400 0.987694i 0.450011π-0.450011\pi
0.156400 + 0.987694i 0.450011π0.450011\pi
524524 −15.7883 −0.689716
525525 −24.1229 −1.05281
526526 26.0933 1.13772
527527 2.67260 0.116420
528528 2.61078 0.113620
529529 −12.6215 −0.548761
530530 22.2315 0.965673
531531 −4.13450 −0.179422
532532 20.0941 0.871191
533533 −7.21265 −0.312414
534534 −19.3571 −0.837662
535535 −39.1286 −1.69168
536536 1.22157 0.0527636
537537 −43.7257 −1.88690
538538 −17.1525 −0.739496
539539 2.93818 0.126557
540540 6.00100 0.258242
541541 11.6146 0.499350 0.249675 0.968330i 0.419676π-0.419676\pi
0.249675 + 0.968330i 0.419676π0.419676\pi
542542 17.1589 0.737039
543543 33.8838 1.45409
544544 1.00000 0.0428746
545545 1.54600 0.0662233
546546 43.4847 1.86097
547547 12.5490 0.536555 0.268278 0.963342i 0.413546π-0.413546\pi
0.268278 + 0.963342i 0.413546π0.413546\pi
548548 6.50495 0.277878
549549 −4.66173 −0.198958
550550 −2.93092 −0.124975
551551 −29.7834 −1.26882
552552 8.41081 0.357988
553553 −52.1678 −2.21840
554554 8.62448 0.366419
555555 20.9362 0.888693
556556 −12.4863 −0.529538
557557 −36.7555 −1.55738 −0.778691 0.627407i 0.784116π-0.784116\pi
−0.778691 + 0.627407i 0.784116π0.784116\pi
558558 10.1991 0.431764
559559 67.1537 2.84030
560560 −8.87800 −0.375164
561561 −2.61078 −0.110227
562562 4.99210 0.210579
563563 23.1535 0.975803 0.487902 0.872899i 0.337762π-0.337762\pi
0.487902 + 0.872899i 0.337762π0.337762\pi
564564 −28.9222 −1.21784
565565 −38.0933 −1.60260
566566 −12.5236 −0.526405
567567 18.5532 0.779163
568568 −6.93439 −0.290960
569569 −38.4609 −1.61237 −0.806183 0.591666i 0.798470π-0.798470\pi
−0.806183 + 0.591666i 0.798470π0.798470\pi
570570 46.8650 1.96296
571571 21.8460 0.914229 0.457114 0.889408i 0.348883π-0.348883\pi
0.457114 + 0.889408i 0.348883π0.348883\pi
572572 5.28338 0.220909
573573 59.5518 2.48781
574574 −4.30364 −0.179631
575575 −9.44216 −0.393765
576576 3.81619 0.159008
577577 −25.5811 −1.06495 −0.532477 0.846444i 0.678739π-0.678739\pi
−0.532477 + 0.846444i 0.678739π0.678739\pi
578578 −1.00000 −0.0415945
579579 −8.16504 −0.339328
580580 13.1589 0.546395
581581 42.2884 1.75442
582582 6.65480 0.275850
583583 −7.89417 −0.326943
584584 7.65100 0.316601
585585 56.7811 2.34761
586586 0.453496 0.0187338
587587 −23.8510 −0.984435 −0.492218 0.870472i 0.663814π-0.663814\pi
−0.492218 + 0.870472i 0.663814π0.663814\pi
588588 7.67096 0.316345
589589 17.0353 0.701927
590590 3.05109 0.125611
591591 58.2335 2.39540
592592 2.84751 0.117032
593593 −1.32740 −0.0545098 −0.0272549 0.999629i 0.508677π-0.508677\pi
−0.0272549 + 0.999629i 0.508677π0.508677\pi
594594 −2.13089 −0.0874316
595595 8.87800 0.363963
596596 16.4618 0.674300
597597 14.5922 0.597217
598598 17.0208 0.696031
599599 24.8863 1.01683 0.508413 0.861114i 0.330232π-0.330232\pi
0.508413 + 0.861114i 0.330232π0.330232\pi
600600 −7.65200 −0.312392
601601 −7.47692 −0.304990 −0.152495 0.988304i 0.548731π-0.548731\pi
−0.152495 + 0.988304i 0.548731π0.548731\pi
602602 40.0692 1.63310
603603 −4.66173 −0.189840
604604 −5.89417 −0.239830
605605 2.81619 0.114494
606606 23.0172 0.935008
607607 16.0556 0.651675 0.325837 0.945426i 0.394354π-0.394354\pi
0.325837 + 0.945426i 0.394354π0.394354\pi
608608 6.37406 0.258502
609609 −38.4577 −1.55838
610610 3.44016 0.139288
611611 −58.5292 −2.36784
612612 −3.81619 −0.154260
613613 −19.0644 −0.770006 −0.385003 0.922915i 0.625800π-0.625800\pi
−0.385003 + 0.922915i 0.625800π0.625800\pi
614614 18.3236 0.739480
615615 −10.0373 −0.404742
616616 3.15249 0.127017
617617 −12.3950 −0.499004 −0.249502 0.968374i 0.580267π-0.580267\pi
−0.249502 + 0.968374i 0.580267π0.580267\pi
618618 −41.8548 −1.68365
619619 −20.4423 −0.821646 −0.410823 0.911715i 0.634759π-0.634759\pi
−0.410823 + 0.911715i 0.634759π0.634759\pi
620620 −7.52654 −0.302273
621621 −6.86481 −0.275476
622622 −23.7079 −0.950600
623623 −23.3734 −0.936436
624624 13.7938 0.552193
625625 −31.0643 −1.24257
626626 −29.4013 −1.17511
627627 −16.6413 −0.664589
628628 −20.3805 −0.813270
629629 −2.84751 −0.113538
630630 33.8801 1.34982
631631 41.3394 1.64570 0.822849 0.568261i 0.192383π-0.192383\pi
0.822849 + 0.568261i 0.192383π0.192383\pi
632632 −16.5481 −0.658250
633633 18.9667 0.753859
634634 −7.45103 −0.295918
635635 48.4992 1.92463
636636 −20.6100 −0.817238
637637 15.5236 0.615066
638638 −4.67260 −0.184990
639639 26.4629 1.04686
640640 −2.81619 −0.111320
641641 6.85887 0.270909 0.135455 0.990784i 0.456751π-0.456751\pi
0.135455 + 0.990784i 0.456751π0.456751\pi
642642 36.2747 1.43165
643643 −23.1784 −0.914066 −0.457033 0.889450i 0.651088π-0.651088\pi
−0.457033 + 0.889450i 0.651088π0.651088\pi
644644 10.1560 0.400201
645645 93.4524 3.67968
646646 −6.37406 −0.250784
647647 −30.6846 −1.20634 −0.603169 0.797614i 0.706095π-0.706095\pi
−0.603169 + 0.797614i 0.706095π0.706095\pi
648648 5.88527 0.231195
649649 −1.08341 −0.0425276
650650 −15.4852 −0.607379
651651 21.9967 0.862120
652652 8.16139 0.319625
653653 0.578126 0.0226238 0.0113119 0.999936i 0.496399π-0.496399\pi
0.0113119 + 0.999936i 0.496399π0.496399\pi
654654 −1.43324 −0.0560440
655655 −44.4629 −1.73731
656656 −1.36516 −0.0533004
657657 −29.1977 −1.13911
658658 −34.9232 −1.36145
659659 −17.5007 −0.681729 −0.340864 0.940112i 0.610720π-0.610720\pi
−0.340864 + 0.940112i 0.610720π0.610720\pi
660660 7.35246 0.286194
661661 −23.0099 −0.894981 −0.447491 0.894289i 0.647682π-0.647682\pi
−0.447491 + 0.894289i 0.647682π0.647682\pi
662662 −35.0531 −1.36238
663663 −13.7938 −0.535705
664664 13.4143 0.520575
665665 56.5889 2.19442
666666 −10.8666 −0.421074
667667 −15.0531 −0.582858
668668 −16.3427 −0.632319
669669 −4.24499 −0.164121
670670 3.44016 0.132905
671671 −1.22157 −0.0471581
672672 8.23046 0.317497
673673 10.1004 0.389342 0.194671 0.980869i 0.437636π-0.437636\pi
0.194671 + 0.980869i 0.437636π0.437636\pi
674674 −18.7104 −0.720696
675675 6.24548 0.240389
676676 14.9141 0.573620
677677 0.911661 0.0350380 0.0175190 0.999847i 0.494423π-0.494423\pi
0.0175190 + 0.999847i 0.494423π0.494423\pi
678678 35.3149 1.35626
679679 8.03559 0.308378
680680 2.81619 0.107996
681681 13.1081 0.502305
682682 2.67260 0.102339
683683 −39.1390 −1.49761 −0.748805 0.662790i 0.769372π-0.769372\pi
−0.748805 + 0.662790i 0.769372π0.769372\pi
684684 −24.3246 −0.930074
685685 18.3192 0.699939
686686 −12.8048 −0.488891
687687 24.5490 0.936602
688688 12.7104 0.484578
689689 −41.7079 −1.58894
690690 23.6864 0.901727
691691 30.5877 1.16361 0.581806 0.813328i 0.302346π-0.302346\pi
0.581806 + 0.813328i 0.302346π0.302346\pi
692692 18.4431 0.701103
693693 −12.0305 −0.457001
694694 −1.89417 −0.0719015
695695 −35.1639 −1.33384
696696 −12.1991 −0.462407
697697 1.36516 0.0517090
698698 21.2648 0.804883
699699 −22.1202 −0.836663
700700 −9.23970 −0.349228
701701 −21.7321 −0.820811 −0.410405 0.911903i 0.634613π-0.634613\pi
−0.410405 + 0.911903i 0.634613π0.634613\pi
702702 −11.2583 −0.424918
703703 −18.1502 −0.684548
704704 1.00000 0.0376889
705705 −81.4504 −3.06760
706706 12.5290 0.471535
707707 27.7929 1.04526
708708 −2.82855 −0.106303
709709 32.4819 1.21988 0.609941 0.792446i 0.291193π-0.291193\pi
0.609941 + 0.792446i 0.291193π0.291193\pi
710710 −19.5285 −0.732893
711711 63.1508 2.36834
712712 −7.41428 −0.277862
713713 8.60995 0.322445
714714 −8.23046 −0.308017
715715 14.8790 0.556443
716716 −16.7481 −0.625906
717717 64.9726 2.42645
718718 −2.77843 −0.103690
719719 −7.94228 −0.296197 −0.148099 0.988973i 0.547315π-0.547315\pi
−0.148099 + 0.988973i 0.547315π0.547315\pi
720720 10.7471 0.400521
721721 −50.5391 −1.88217
722722 −21.6286 −0.804932
723723 22.0432 0.819795
724724 12.9784 0.482339
725725 13.6950 0.508620
726726 −2.61078 −0.0968953
727727 11.5079 0.426805 0.213403 0.976964i 0.431545π-0.431545\pi
0.213403 + 0.976964i 0.431545π0.431545\pi
728728 16.6558 0.617305
729729 −39.1492 −1.44997
730730 21.5467 0.797478
731731 −12.7104 −0.470109
732732 −3.18925 −0.117878
733733 −7.91905 −0.292497 −0.146248 0.989248i 0.546720π-0.546720\pi
−0.146248 + 0.989248i 0.546720π0.546720\pi
734734 −11.9568 −0.441334
735735 21.6029 0.796834
736736 3.22157 0.118749
737737 −1.22157 −0.0449970
738738 5.20970 0.191772
739739 36.2432 1.33323 0.666613 0.745404i 0.267743π-0.267743\pi
0.666613 + 0.745404i 0.267743π0.267743\pi
740740 8.01913 0.294789
741741 −87.9222 −3.22990
742742 −24.8863 −0.913604
743743 −4.67969 −0.171681 −0.0858406 0.996309i 0.527358π-0.527358\pi
−0.0858406 + 0.996309i 0.527358π0.527358\pi
744744 6.97758 0.255810
745745 46.3594 1.69848
746746 19.5524 0.715865
747747 −51.1914 −1.87300
748748 −1.00000 −0.0365636
749749 43.8012 1.60046
750750 15.2128 0.555493
751751 −22.0020 −0.802864 −0.401432 0.915889i 0.631487π-0.631487\pi
−0.401432 + 0.915889i 0.631487π0.631487\pi
752752 −11.0780 −0.403972
753753 58.4306 2.12933
754754 −24.6871 −0.899052
755755 −16.5991 −0.604103
756756 −6.71762 −0.244317
757757 12.7013 0.461635 0.230818 0.972997i 0.425860π-0.425860\pi
0.230818 + 0.972997i 0.425860π0.425860\pi
758758 −6.36813 −0.231301
759759 −8.41081 −0.305293
760760 17.9505 0.651135
761761 −19.7451 −0.715761 −0.357880 0.933767i 0.616500π-0.616500\pi
−0.357880 + 0.933767i 0.616500π0.616500\pi
762762 −44.9618 −1.62879
763763 −1.73061 −0.0626525
764764 22.8099 0.825234
765765 −10.7471 −0.388563
766766 5.55687 0.200778
767767 −5.72407 −0.206684
768768 2.61078 0.0942085
769769 −11.9423 −0.430650 −0.215325 0.976542i 0.569081π-0.569081\pi
−0.215325 + 0.976542i 0.569081π0.569081\pi
770770 8.87800 0.319941
771771 38.6845 1.39319
772772 −3.12743 −0.112559
773773 31.5961 1.13643 0.568217 0.822879i 0.307634π-0.307634\pi
0.568217 + 0.822879i 0.307634π0.307634\pi
774774 −48.5051 −1.74348
775775 −7.83318 −0.281376
776776 2.54897 0.0915026
777777 −23.4363 −0.840774
778778 −6.07551 −0.217818
779779 8.70159 0.311767
780780 38.8459 1.39090
781781 6.93439 0.248132
782782 −3.22157 −0.115203
783783 9.95681 0.355827
784784 2.93818 0.104935
785785 −57.3953 −2.04853
786786 41.2199 1.47027
787787 20.3983 0.727120 0.363560 0.931571i 0.381561π-0.381561\pi
0.363560 + 0.931571i 0.381561π0.381561\pi
788788 22.3050 0.794582
789789 −68.1240 −2.42528
790790 −46.6027 −1.65805
791791 42.6423 1.51618
792792 −3.81619 −0.135602
793793 −6.45400 −0.229188
794794 16.8027 0.596304
795795 −58.0415 −2.05852
796796 5.58919 0.198104
797797 −7.91956 −0.280525 −0.140263 0.990114i 0.544795π-0.544795\pi
−0.140263 + 0.990114i 0.544795π0.544795\pi
798798 −52.4614 −1.85711
799799 11.0780 0.391911
800800 −2.93092 −0.103624
801801 28.2943 0.999729
802802 17.4639 0.616672
803803 −7.65100 −0.269998
804804 −3.18925 −0.112476
805805 28.6011 1.00806
806806 14.1204 0.497368
807807 44.7814 1.57638
808808 8.81619 0.310152
809809 34.4847 1.21242 0.606208 0.795306i 0.292690π-0.292690\pi
0.606208 + 0.795306i 0.292690π0.292690\pi
810810 16.5740 0.582352
811811 −36.5846 −1.28466 −0.642329 0.766429i 0.722032π-0.722032\pi
−0.642329 + 0.766429i 0.722032π0.722032\pi
812812 −14.7303 −0.516933
813813 −44.7982 −1.57114
814814 −2.84751 −0.0998052
815815 22.9840 0.805095
816816 −2.61078 −0.0913957
817817 −81.0165 −2.83441
818818 −8.71579 −0.304740
819819 −63.5617 −2.22103
820820 −3.84454 −0.134257
821821 49.3099 1.72093 0.860464 0.509510i 0.170173π-0.170173\pi
0.860464 + 0.509510i 0.170173π0.170173\pi
822822 −16.9830 −0.592351
823823 −50.7728 −1.76983 −0.884915 0.465753i 0.845784π-0.845784\pi
−0.884915 + 0.465753i 0.845784π0.845784\pi
824824 −16.0315 −0.558483
825825 7.65200 0.266409
826826 −3.41544 −0.118838
827827 −22.0323 −0.766139 −0.383069 0.923720i 0.625133π-0.625133\pi
−0.383069 + 0.923720i 0.625133π0.625133\pi
828828 −12.2941 −0.427250
829829 −39.8088 −1.38262 −0.691308 0.722560i 0.742965π-0.742965\pi
−0.691308 + 0.722560i 0.742965π0.742965\pi
830830 37.7771 1.31126
831831 −22.5166 −0.781094
832832 5.28338 0.183168
833833 −2.93818 −0.101802
834834 32.5991 1.12881
835835 −46.0242 −1.59273
836836 −6.37406 −0.220451
837837 −5.69502 −0.196849
838838 −38.6741 −1.33597
839839 2.23639 0.0772088 0.0386044 0.999255i 0.487709π-0.487709\pi
0.0386044 + 0.999255i 0.487709π0.487709\pi
840840 23.1785 0.799736
841841 −7.16682 −0.247132
842842 −33.8493 −1.16652
843843 −13.0333 −0.448890
844844 7.26476 0.250063
845845 42.0010 1.44488
846846 42.2757 1.45347
847847 −3.15249 −0.108321
848848 −7.89417 −0.271087
849849 32.6963 1.12214
850850 2.93092 0.100530
851851 −9.17345 −0.314462
852852 18.1042 0.620239
853853 30.2061 1.03424 0.517118 0.855914i 0.327005π-0.327005\pi
0.517118 + 0.855914i 0.327005π0.327005\pi
854854 −3.85097 −0.131778
855855 −68.5027 −2.34274
856856 13.8942 0.474893
857857 8.71301 0.297631 0.148815 0.988865i 0.452454π-0.452454\pi
0.148815 + 0.988865i 0.452454π0.452454\pi
858858 −13.7938 −0.470911
859859 16.6855 0.569301 0.284650 0.958631i 0.408122π-0.408122\pi
0.284650 + 0.958631i 0.408122π0.408122\pi
860860 35.7948 1.22059
861861 11.2359 0.382918
862862 −23.0790 −0.786073
863863 −12.2072 −0.415539 −0.207770 0.978178i 0.566620π-0.566620\pi
−0.207770 + 0.978178i 0.566620π0.566620\pi
864864 −2.13089 −0.0724945
865865 51.9394 1.76599
866866 −29.2145 −0.992748
867867 2.61078 0.0886668
868868 8.42534 0.285975
869869 16.5481 0.561357
870870 −34.3551 −1.16475
871871 −6.45400 −0.218686
872872 −0.548968 −0.0185904
873873 −9.72734 −0.329221
874874 −20.5344 −0.694588
875875 18.3693 0.620995
876876 −19.9751 −0.674896
877877 −7.93736 −0.268025 −0.134013 0.990980i 0.542786π-0.542786\pi
−0.134013 + 0.990980i 0.542786π0.542786\pi
878878 −20.8772 −0.704571
879879 −1.18398 −0.0399347
880880 2.81619 0.0949337
881881 37.0294 1.24755 0.623775 0.781604i 0.285598π-0.285598\pi
0.623775 + 0.781604i 0.285598π0.285598\pi
882882 −11.2127 −0.377550
883883 6.89119 0.231907 0.115954 0.993255i 0.463008π-0.463008\pi
0.115954 + 0.993255i 0.463008π0.463008\pi
884884 −5.28338 −0.177699
885885 −7.96573 −0.267765
886886 10.2569 0.344586
887887 −1.80729 −0.0606829 −0.0303415 0.999540i 0.509659π-0.509659\pi
−0.0303415 + 0.999540i 0.509659π0.509659\pi
888888 −7.43424 −0.249477
889889 −54.2908 −1.82085
890890 −20.8800 −0.699899
891891 −5.88527 −0.197164
892892 −1.62594 −0.0544407
893893 70.6116 2.36293
894894 −42.9781 −1.43740
895895 −47.1658 −1.57658
896896 3.15249 0.105317
897897 −44.4375 −1.48373
898898 23.0963 0.770733
899899 −12.4880 −0.416497
900900 11.1850 0.372832
901901 7.89417 0.262993
902902 1.36516 0.0454548
903903 −104.612 −3.48127
904904 13.5265 0.449886
905905 36.5496 1.21495
906906 15.3884 0.511245
907907 38.1874 1.26799 0.633997 0.773336i 0.281413π-0.281413\pi
0.633997 + 0.773336i 0.281413π0.281413\pi
908908 5.02077 0.166620
909909 −33.6442 −1.11591
910910 46.9059 1.55492
911911 −23.5569 −0.780474 −0.390237 0.920714i 0.627607π-0.627607\pi
−0.390237 + 0.920714i 0.627607π0.627607\pi
912912 −16.6413 −0.551048
913913 −13.4143 −0.443948
914914 −7.75601 −0.256546
915915 −8.98152 −0.296920
916916 9.40291 0.310681
917917 49.7725 1.64363
918918 2.13089 0.0703300
919919 30.9667 1.02150 0.510749 0.859730i 0.329368π-0.329368\pi
0.510749 + 0.859730i 0.329368π0.329368\pi
920920 9.07254 0.299113
921921 −47.8390 −1.57635
922922 −3.90093 −0.128470
923923 36.6370 1.20592
924924 −8.23046 −0.270762
925925 8.34583 0.274409
926926 28.1179 0.924011
927927 61.1792 2.00939
928928 −4.67260 −0.153386
929929 −15.8170 −0.518939 −0.259469 0.965751i 0.583548π-0.583548\pi
−0.259469 + 0.965751i 0.583548π0.583548\pi
930930 19.6502 0.644355
931931 −18.7282 −0.613790
932932 −8.47263 −0.277530
933933 61.8962 2.02639
934934 24.5473 0.803213
935935 −2.81619 −0.0920992
936936 −20.1624 −0.659028
937937 −51.0983 −1.66931 −0.834654 0.550775i 0.814332π-0.814332\pi
−0.834654 + 0.550775i 0.814332π0.814332\pi
938938 −3.85097 −0.125739
939939 76.7603 2.50498
940940 −31.1977 −1.01756
941941 −39.8384 −1.29870 −0.649348 0.760491i 0.724958π-0.724958\pi
−0.649348 + 0.760491i 0.724958π0.724958\pi
942942 53.2090 1.73364
943943 4.39794 0.143217
944944 −1.08341 −0.0352620
945945 −18.9181 −0.615405
946946 −12.7104 −0.413249
947947 15.4552 0.502226 0.251113 0.967958i 0.419203π-0.419203\pi
0.251113 + 0.967958i 0.419203π0.419203\pi
948948 43.2036 1.40319
949949 −40.4232 −1.31219
950950 18.6819 0.606120
951951 19.4530 0.630808
952952 −3.15249 −0.102173
953953 −34.2601 −1.10979 −0.554897 0.831919i 0.687242π-0.687242\pi
−0.554897 + 0.831919i 0.687242π0.687242\pi
954954 30.1256 0.975353
955955 64.2371 2.07866
956956 24.8863 0.804879
957957 12.1991 0.394342
958958 14.1050 0.455712
959959 −20.5068 −0.662198
960960 7.35246 0.237300
961961 −23.8572 −0.769588
962962 −15.0445 −0.485054
963963 −53.0228 −1.70863
964964 8.44313 0.271935
965965 −8.80744 −0.283521
966966 −26.5150 −0.853106
967967 −25.5717 −0.822331 −0.411166 0.911561i 0.634878π-0.634878\pi
−0.411166 + 0.911561i 0.634878π0.634878\pi
968968 −1.00000 −0.0321412
969969 16.6413 0.534595
970970 7.17838 0.230484
971971 −34.9278 −1.12089 −0.560443 0.828193i 0.689369π-0.689369\pi
−0.560443 + 0.828193i 0.689369π0.689369\pi
972972 −21.7578 −0.697883
973973 39.3630 1.26192
974974 27.3343 0.875848
975975 40.4285 1.29475
976976 −1.22157 −0.0391014
977977 −5.46505 −0.174842 −0.0874212 0.996171i 0.527863π-0.527863\pi
−0.0874212 + 0.996171i 0.527863π0.527863\pi
978978 −21.3076 −0.681342
979979 7.41428 0.236961
980980 8.27448 0.264319
981981 2.09497 0.0668871
982982 −2.54353 −0.0811674
983983 −23.0871 −0.736363 −0.368182 0.929754i 0.620020π-0.620020\pi
−0.368182 + 0.929754i 0.620020π0.620020\pi
984984 3.56413 0.113620
985985 62.8150 2.00145
986986 4.67260 0.148806
987987 91.1769 2.90219
988988 −33.6766 −1.07139
989989 −40.9473 −1.30205
990990 −10.7471 −0.341566
991991 −34.6871 −1.10187 −0.550936 0.834547i 0.685729π-0.685729\pi
−0.550936 + 0.834547i 0.685729π0.685729\pi
992992 2.67260 0.0848551
993993 91.5160 2.90417
994994 21.8606 0.693375
995995 15.7402 0.498998
996996 −35.0218 −1.10971
997997 −16.0274 −0.507593 −0.253796 0.967258i 0.581679π-0.581679\pi
−0.253796 + 0.967258i 0.581679π0.581679\pi
998998 29.6639 0.938993
999999 6.06774 0.191975
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 374.2.a.d.1.4 4
3.2 odd 2 3366.2.a.bg.1.2 4
4.3 odd 2 2992.2.a.w.1.1 4
5.4 even 2 9350.2.a.cl.1.1 4
11.10 odd 2 4114.2.a.bc.1.4 4
17.16 even 2 6358.2.a.t.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
374.2.a.d.1.4 4 1.1 even 1 trivial
2992.2.a.w.1.1 4 4.3 odd 2
3366.2.a.bg.1.2 4 3.2 odd 2
4114.2.a.bc.1.4 4 11.10 odd 2
6358.2.a.t.1.1 4 17.16 even 2
9350.2.a.cl.1.1 4 5.4 even 2