Properties

Label 374.2.a.c
Level $374$
Weight $2$
Character orbit 374.a
Self dual yes
Analytic conductor $2.986$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [374,2,Mod(1,374)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(374, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("374.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 374 = 2 \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 374.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.98640503560\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} + (\beta_{2} + 1) q^{3} + q^{4} + ( - \beta_{2} - \beta_1) q^{5} + (\beta_{2} + 1) q^{6} + (\beta_1 + 2) q^{7} + q^{8} + (\beta_{2} + \beta_1 + 1) q^{9} + ( - \beta_{2} - \beta_1) q^{10} - q^{11}+ \cdots + ( - \beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} - q^{5} + 3 q^{6} + 7 q^{7} + 3 q^{8} + 4 q^{9} - q^{10} - 3 q^{11} + 3 q^{12} - 3 q^{13} + 7 q^{14} - 12 q^{15} + 3 q^{16} - 3 q^{17} + 4 q^{18} + 5 q^{19} - q^{20}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.713538
−1.91223
2.19869
1.00000 −1.49086 1.00000 1.77733 −1.49086 2.71354 1.00000 −0.777326 1.77733
1.2 1.00000 1.65662 1.00000 1.25561 1.65662 0.0877708 1.00000 −0.255609 1.25561
1.3 1.00000 2.83424 1.00000 −4.03293 2.83424 4.19869 1.00000 5.03293 −4.03293
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 374.2.a.c 3
3.b odd 2 1 3366.2.a.ba 3
4.b odd 2 1 2992.2.a.o 3
5.b even 2 1 9350.2.a.bw 3
11.b odd 2 1 4114.2.a.p 3
17.b even 2 1 6358.2.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
374.2.a.c 3 1.a even 1 1 trivial
2992.2.a.o 3 4.b odd 2 1
3366.2.a.ba 3 3.b odd 2 1
4114.2.a.p 3 11.b odd 2 1
6358.2.a.r 3 17.b even 2 1
9350.2.a.bw 3 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 3T_{3}^{2} - 2T_{3} + 7 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(374))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 3 T^{2} + \cdots + 7 \) Copy content Toggle raw display
$5$ \( T^{3} + T^{2} - 10T + 9 \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$11$ \( (T + 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 3 T^{2} + \cdots - 7 \) Copy content Toggle raw display
$17$ \( (T + 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 5 T^{2} + \cdots + 63 \) Copy content Toggle raw display
$23$ \( T^{3} - 4 T^{2} + \cdots + 360 \) Copy content Toggle raw display
$29$ \( T^{3} + 4 T^{2} + \cdots - 360 \) Copy content Toggle raw display
$31$ \( T^{3} - 2 T^{2} + \cdots + 360 \) Copy content Toggle raw display
$37$ \( T^{3} + 9 T^{2} + \cdots - 47 \) Copy content Toggle raw display
$41$ \( T^{3} + T^{2} + \cdots + 105 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots + 193 \) Copy content Toggle raw display
$47$ \( T^{3} + 21 T^{2} + \cdots - 45 \) Copy content Toggle raw display
$53$ \( T^{3} - 80T - 192 \) Copy content Toggle raw display
$59$ \( T^{3} + 20 T^{2} + \cdots + 72 \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$67$ \( T^{3} - 2 T^{2} + \cdots + 904 \) Copy content Toggle raw display
$71$ \( T^{3} - 2 T^{2} + \cdots - 216 \) Copy content Toggle raw display
$73$ \( T^{3} + T^{2} + \cdots - 45 \) Copy content Toggle raw display
$79$ \( T^{3} - 19 T^{2} + \cdots + 587 \) Copy content Toggle raw display
$83$ \( T^{3} + 17 T^{2} + \cdots + 9 \) Copy content Toggle raw display
$89$ \( T^{3} + 3 T^{2} + \cdots - 147 \) Copy content Toggle raw display
$97$ \( T^{3} - 24 T^{2} + \cdots + 320 \) Copy content Toggle raw display
show more
show less