Properties

Label 3366.2.a.ba
Level $3366$
Weight $2$
Character orbit 3366.a
Self dual yes
Analytic conductor $26.878$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3366,2,Mod(1,3366)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3366, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3366.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3366 = 2 \cdot 3^{2} \cdot 11 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3366.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-3,0,3,1,0,7,-3,0,-1,3,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(26.8776453204\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.257.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 374)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + (\beta_{2} + \beta_1) q^{5} + (\beta_1 + 2) q^{7} - q^{8} + ( - \beta_{2} - \beta_1) q^{10} + q^{11} + ( - \beta_{2} - 1) q^{13} + ( - \beta_1 - 2) q^{14} + q^{16} + q^{17} + ( - 2 \beta_{2} - \beta_1 + 2) q^{19}+ \cdots + ( - \beta_{2} - 4 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + 3 q^{4} + q^{5} + 7 q^{7} - 3 q^{8} - q^{10} + 3 q^{11} - 3 q^{13} - 7 q^{14} + 3 q^{16} + 3 q^{17} + 5 q^{19} + q^{20} - 3 q^{22} - 4 q^{23} + 6 q^{25} + 3 q^{26} + 7 q^{28} + 4 q^{29}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.713538
−1.91223
2.19869
−1.00000 0 1.00000 −1.77733 0 2.71354 −1.00000 0 1.77733
1.2 −1.00000 0 1.00000 −1.25561 0 0.0877708 −1.00000 0 1.25561
1.3 −1.00000 0 1.00000 4.03293 0 4.19869 −1.00000 0 −4.03293
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(11\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3366.2.a.ba 3
3.b odd 2 1 374.2.a.c 3
12.b even 2 1 2992.2.a.o 3
15.d odd 2 1 9350.2.a.bw 3
33.d even 2 1 4114.2.a.p 3
51.c odd 2 1 6358.2.a.r 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
374.2.a.c 3 3.b odd 2 1
2992.2.a.o 3 12.b even 2 1
3366.2.a.ba 3 1.a even 1 1 trivial
4114.2.a.p 3 33.d even 2 1
6358.2.a.r 3 51.c odd 2 1
9350.2.a.bw 3 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3366))\):

\( T_{5}^{3} - T_{5}^{2} - 10T_{5} - 9 \) Copy content Toggle raw display
\( T_{7}^{3} - 7T_{7}^{2} + 12T_{7} - 1 \) Copy content Toggle raw display
\( T_{13}^{3} + 3T_{13}^{2} - 2T_{13} - 7 \) Copy content Toggle raw display
\( T_{19}^{3} - 5T_{19}^{2} - 18T_{19} + 63 \) Copy content Toggle raw display
\( T_{23}^{3} + 4T_{23}^{2} - 76T_{23} - 360 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - T^{2} - 10T - 9 \) Copy content Toggle raw display
$7$ \( T^{3} - 7 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$11$ \( (T - 1)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 3 T^{2} + \cdots - 7 \) Copy content Toggle raw display
$17$ \( (T - 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} - 5 T^{2} + \cdots + 63 \) Copy content Toggle raw display
$23$ \( T^{3} + 4 T^{2} + \cdots - 360 \) Copy content Toggle raw display
$29$ \( T^{3} - 4 T^{2} + \cdots + 360 \) Copy content Toggle raw display
$31$ \( T^{3} - 2 T^{2} + \cdots + 360 \) Copy content Toggle raw display
$37$ \( T^{3} + 9 T^{2} + \cdots - 47 \) Copy content Toggle raw display
$41$ \( T^{3} - T^{2} + \cdots - 105 \) Copy content Toggle raw display
$43$ \( T^{3} - 5 T^{2} + \cdots + 193 \) Copy content Toggle raw display
$47$ \( T^{3} - 21 T^{2} + \cdots + 45 \) Copy content Toggle raw display
$53$ \( T^{3} - 80T + 192 \) Copy content Toggle raw display
$59$ \( T^{3} - 20 T^{2} + \cdots - 72 \) Copy content Toggle raw display
$61$ \( T^{3} - 6 T^{2} + \cdots + 56 \) Copy content Toggle raw display
$67$ \( T^{3} - 2 T^{2} + \cdots + 904 \) Copy content Toggle raw display
$71$ \( T^{3} + 2 T^{2} + \cdots + 216 \) Copy content Toggle raw display
$73$ \( T^{3} + T^{2} + \cdots - 45 \) Copy content Toggle raw display
$79$ \( T^{3} - 19 T^{2} + \cdots + 587 \) Copy content Toggle raw display
$83$ \( T^{3} - 17 T^{2} + \cdots - 9 \) Copy content Toggle raw display
$89$ \( T^{3} - 3 T^{2} + \cdots + 147 \) Copy content Toggle raw display
$97$ \( T^{3} - 24 T^{2} + \cdots + 320 \) Copy content Toggle raw display
show more
show less