gp: [N,k,chi] = [3703,2,Mod(1,3703)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3703.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3703, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0]))
N = Newforms(chi, 2, names="a")
Newform invariants
sage: traces = [35,9,9,35,-2,23,35]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion .
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
\( p \)
Sign
\(7\)
\( -1 \)
\(23\)
\( +1 \)
This newform does not admit any (nontrivial ) inner twists .
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3703))\):
\( T_{2}^{35} - 9 T_{2}^{34} - 12 T_{2}^{33} + 326 T_{2}^{32} - 381 T_{2}^{31} - 5149 T_{2}^{30} + \cdots + 1607 \)
T2^35 - 9*T2^34 - 12*T2^33 + 326*T2^32 - 381*T2^31 - 5149*T2^30 + 11710*T2^29 + 46116*T2^28 - 148555*T2^27 - 252023*T2^26 + 1136396*T2^25 + 807470*T2^24 - 5844260*T2^23 - 980698*T2^22 + 21196796*T2^21 - 3485423*T2^20 - 55478906*T2^19 + 20880199*T2^18 + 105778480*T2^17 - 53758194*T2^16 - 147006997*T2^15 + 84950866*T2^14 + 148034481*T2^13 - 87489399*T2^12 - 106756086*T2^11 + 58330587*T2^10 + 54085323*T2^9 - 23919278*T2^8 - 18568166*T2^7 + 5329107*T2^6 + 3984702*T2^5 - 433643*T2^4 - 440395*T2^3 - 20795*T2^2 + 14159*T2 + 1607
\( T_{5}^{35} + 2 T_{5}^{34} - 109 T_{5}^{33} - 217 T_{5}^{32} + 5328 T_{5}^{31} + 10622 T_{5}^{30} + \cdots - 22076416 \)
T5^35 + 2*T5^34 - 109*T5^33 - 217*T5^32 + 5328*T5^31 + 10622*T5^30 - 154289*T5^29 - 309965*T5^28 + 2945232*T5^27 + 6002428*T5^26 - 39009099*T5^25 - 81245024*T5^24 + 367310956*T5^23 + 788599396*T5^22 - 2476267490*T5^21 - 5542334113*T5^20 + 11863784396*T5^19 + 28135765536*T5^18 - 39440171789*T5^17 - 101785843400*T5^16 + 86607963164*T5^15 + 255759480327*T5^14 - 113054650970*T5^13 - 428581082145*T5^12 + 62662641106*T5^11 + 451133389819*T5^10 + 24469186336*T5^9 - 274892569184*T5^8 - 46853468040*T5^7 + 87931926912*T5^6 + 18863036096*T5^5 - 12998151168*T5^4 - 2376331264*T5^3 + 892971008*T5^2 + 88151040*T5 - 22076416