Properties

Label 3703.2.a
Level $3703$
Weight $2$
Character orbit 3703.a
Rep. character $\chi_{3703}(1,\cdot)$
Character field $\Q$
Dimension $253$
Newform subspaces $20$
Sturm bound $736$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3703 = 7 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3703.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 20 \)
Sturm bound: \(736\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(2\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3703))\).

Total New Old
Modular forms 392 253 139
Cusp forms 345 253 92
Eisenstein series 47 0 47

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(7\)\(23\)FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
\(+\)\(+\)\(+\)\(92\)\(61\)\(31\)\(81\)\(61\)\(20\)\(11\)\(0\)\(11\)
\(+\)\(-\)\(-\)\(103\)\(66\)\(37\)\(91\)\(66\)\(25\)\(12\)\(0\)\(12\)
\(-\)\(+\)\(-\)\(104\)\(71\)\(33\)\(92\)\(71\)\(21\)\(12\)\(0\)\(12\)
\(-\)\(-\)\(+\)\(93\)\(55\)\(38\)\(81\)\(55\)\(26\)\(12\)\(0\)\(12\)
Plus space\(+\)\(185\)\(116\)\(69\)\(162\)\(116\)\(46\)\(23\)\(0\)\(23\)
Minus space\(-\)\(207\)\(137\)\(70\)\(183\)\(137\)\(46\)\(24\)\(0\)\(24\)

Trace form

\( 253 q + q^{2} + 249 q^{4} + 2 q^{5} - 8 q^{6} - q^{7} - 3 q^{8} + 261 q^{9} + 10 q^{10} - 4 q^{11} + 2 q^{13} - 3 q^{14} - 20 q^{15} + 245 q^{16} + 10 q^{17} + 9 q^{18} - 8 q^{19} + 6 q^{20} - 8 q^{22}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3703))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 7 23
3703.2.a.a 3703.a 1.a $1$ $29.569$ \(\Q\) None 161.2.a.a \(-1\) \(0\) \(-2\) \(-1\) $+$ $-$ $\mathrm{SU}(2)$ \(q-q^{2}-q^{4}-2q^{5}-q^{7}+3q^{8}-3q^{9}+\cdots\)
3703.2.a.b 3703.a 1.a $2$ $29.569$ \(\Q(\sqrt{5}) \) None 161.2.a.b \(-1\) \(-2\) \(2\) \(2\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta q^{2}-q^{3}+(-1+\beta )q^{4}+(2-2\beta )q^{5}+\cdots\)
3703.2.a.c 3703.a 1.a $3$ $29.569$ 3.3.148.1 None 161.2.a.c \(-1\) \(2\) \(-2\) \(3\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-\beta _{1}-\beta _{2})q^{2}+(1-\beta _{1})q^{3}+(1+2\beta _{1}+\cdots)q^{4}+\cdots\)
3703.2.a.d 3703.a 1.a $5$ $29.569$ 5.5.70601.1 None 3703.2.a.d \(-2\) \(0\) \(-6\) \(5\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{2}+(\beta _{2}-\beta _{3})q^{3}+(1-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
3703.2.a.e 3703.a 1.a $5$ $29.569$ 5.5.70601.1 None 3703.2.a.d \(-2\) \(0\) \(6\) \(-5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{4}q^{2}+(\beta _{2}-\beta _{3})q^{3}+(1-\beta _{1}+\beta _{3}+\cdots)q^{4}+\cdots\)
3703.2.a.f 3703.a 1.a $5$ $29.569$ 5.5.1090433.1 None 3703.2.a.f \(-2\) \(2\) \(-2\) \(5\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(\beta _{1}+\beta _{2})q^{4}-\beta _{2}q^{5}+\cdots\)
3703.2.a.g 3703.a 1.a $5$ $29.569$ 5.5.1090433.1 None 3703.2.a.f \(-2\) \(2\) \(2\) \(-5\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{4}q^{3}+(\beta _{1}+\beta _{2})q^{4}+\beta _{2}q^{5}+\cdots\)
3703.2.a.h 3703.a 1.a $5$ $29.569$ 5.5.220036.1 None 3703.2.a.h \(0\) \(2\) \(-4\) \(5\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}-\beta _{3}q^{3}+(\beta _{1}-\beta _{3})q^{4}+(-1+\cdots)q^{5}+\cdots\)
3703.2.a.i 3703.a 1.a $5$ $29.569$ 5.5.220036.1 None 3703.2.a.h \(0\) \(2\) \(4\) \(-5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{2}q^{2}-\beta _{3}q^{3}+(\beta _{1}-\beta _{3})q^{4}+(1+\cdots)q^{5}+\cdots\)
3703.2.a.j 3703.a 1.a $5$ $29.569$ 5.5.2147108.1 None 161.2.a.d \(2\) \(0\) \(4\) \(-5\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+\beta _{3}q^{3}+(2+\beta _{2})q^{4}+(1+\beta _{4})q^{5}+\cdots\)
3703.2.a.k 3703.a 1.a $10$ $29.569$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 3703.2.a.k \(0\) \(-2\) \(-8\) \(10\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{6}q^{3}+(1+\beta _{1}+\beta _{7}+\beta _{8}+\cdots)q^{4}+\cdots\)
3703.2.a.l 3703.a 1.a $10$ $29.569$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 3703.2.a.k \(0\) \(-2\) \(8\) \(-10\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}-\beta _{6}q^{3}+(1+\beta _{1}+\beta _{7}+\beta _{8}+\cdots)q^{4}+\cdots\)
3703.2.a.m 3703.a 1.a $12$ $29.569$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 3703.2.a.m \(2\) \(0\) \(-8\) \(-12\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(2+\beta _{2}+\beta _{5}+\beta _{10}+\cdots)q^{4}+\cdots\)
3703.2.a.n 3703.a 1.a $12$ $29.569$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 3703.2.a.m \(2\) \(0\) \(8\) \(12\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(2+\beta _{2}+\beta _{5}+\beta _{10}+\cdots)q^{4}+\cdots\)
3703.2.a.o 3703.a 1.a $24$ $29.569$ None 3703.2.a.o \(4\) \(0\) \(-16\) \(-24\) $+$ $+$ $\mathrm{SU}(2)$
3703.2.a.p 3703.a 1.a $24$ $29.569$ None 3703.2.a.o \(4\) \(0\) \(16\) \(24\) $-$ $+$ $\mathrm{SU}(2)$
3703.2.a.q 3703.a 1.a $25$ $29.569$ None 161.2.i.a \(-10\) \(-11\) \(0\) \(-25\) $+$ $+$ $\mathrm{SU}(2)$
3703.2.a.r 3703.a 1.a $25$ $29.569$ None 161.2.i.a \(-10\) \(-11\) \(0\) \(25\) $-$ $-$ $\mathrm{SU}(2)$
3703.2.a.s 3703.a 1.a $35$ $29.569$ None 161.2.i.b \(9\) \(9\) \(-2\) \(35\) $-$ $+$ $\mathrm{SU}(2)$
3703.2.a.t 3703.a 1.a $35$ $29.569$ None 161.2.i.b \(9\) \(9\) \(2\) \(-35\) $+$ $-$ $\mathrm{SU}(2)$

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3703))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(3703)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 2}\)