Defining parameters
| Level: | \( N \) | \(=\) | \( 3703 = 7 \cdot 23^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 3703.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 20 \) | ||
| Sturm bound: | \(736\) | ||
| Trace bound: | \(7\) | ||
| Distinguishing \(T_p\): | \(2\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(3703))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 392 | 253 | 139 |
| Cusp forms | 345 | 253 | 92 |
| Eisenstein series | 47 | 0 | 47 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | \(23\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(92\) | \(61\) | \(31\) | \(81\) | \(61\) | \(20\) | \(11\) | \(0\) | \(11\) | |||
| \(+\) | \(-\) | \(-\) | \(103\) | \(66\) | \(37\) | \(91\) | \(66\) | \(25\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(+\) | \(-\) | \(104\) | \(71\) | \(33\) | \(92\) | \(71\) | \(21\) | \(12\) | \(0\) | \(12\) | |||
| \(-\) | \(-\) | \(+\) | \(93\) | \(55\) | \(38\) | \(81\) | \(55\) | \(26\) | \(12\) | \(0\) | \(12\) | |||
| Plus space | \(+\) | \(185\) | \(116\) | \(69\) | \(162\) | \(116\) | \(46\) | \(23\) | \(0\) | \(23\) | ||||
| Minus space | \(-\) | \(207\) | \(137\) | \(70\) | \(183\) | \(137\) | \(46\) | \(24\) | \(0\) | \(24\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(3703))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(3703))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(3703)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(161))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 2}\)