Properties

Label 3703.2.a.e
Level $3703$
Weight $2$
Character orbit 3703.a
Self dual yes
Analytic conductor $29.569$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3703,2,Mod(1,3703)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3703.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3703, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3703 = 7 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3703.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,0,4,6,-7,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.5686038685\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.70601.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 5x^{3} + 2x^{2} + 3x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + ( - \beta_{3} + \beta_{2}) q^{3} + ( - \beta_{4} + \beta_{3} - \beta_1 + 1) q^{4} + ( - \beta_{3} - \beta_1 + 1) q^{5} + ( - \beta_{4} - 2 \beta_{2} + 2 \beta_1 - 3) q^{6} - q^{7}+ \cdots + ( - 3 \beta_{3} - 2 \beta_1 + 4) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} + 6 q^{5} - 7 q^{6} - 5 q^{7} - 9 q^{8} + 7 q^{9} - 9 q^{10} + q^{11} + 10 q^{13} + 2 q^{14} + 13 q^{15} - 2 q^{16} + q^{17} - 17 q^{18} + 7 q^{19} + 11 q^{20} - 14 q^{22} - 3 q^{24}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 5x^{3} + 2x^{2} + 3x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{4} - \nu^{3} - 4\nu^{2} + \nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - 6\nu^{2} - 2\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{4} - 2\beta_{3} + \beta_{2} + 5\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} - 6\beta_{3} + 6\beta_{2} + 8\beta _1 + 9 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.79324
0.810895
2.51004
−0.850014
0.322321
−2.36697 3.00897 3.60257 4.35089 −7.12215 −1.00000 −3.79324 6.05389 −10.2985
1.2 −2.13472 −2.15334 2.55703 −0.0441003 4.59679 −1.00000 −1.18911 1.63689 0.0941419
1.3 −0.128035 1.79027 −1.98361 −0.908442 −0.229217 −1.00000 0.510042 0.205061 0.116313
1.4 0.886926 −0.427462 −1.21336 4.02647 −0.379127 −1.00000 −2.85001 −2.81728 3.57118
1.5 1.74280 −2.21843 1.03737 −1.42482 −3.86629 −1.00000 −1.67768 1.92143 −2.48318
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3703.2.a.e yes 5
23.b odd 2 1 3703.2.a.d 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3703.2.a.d 5 23.b odd 2 1
3703.2.a.e yes 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3703))\):

\( T_{2}^{5} + 2T_{2}^{4} - 5T_{2}^{3} - 7T_{2}^{2} + 7T_{2} + 1 \) Copy content Toggle raw display
\( T_{5}^{5} - 6T_{5}^{4} - T_{5}^{3} + 30T_{5}^{2} + 24T_{5} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} + 2 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{5} - 11 T^{3} + \cdots + 11 \) Copy content Toggle raw display
$5$ \( T^{5} - 6 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$7$ \( (T + 1)^{5} \) Copy content Toggle raw display
$11$ \( T^{5} - T^{4} + \cdots - 53 \) Copy content Toggle raw display
$13$ \( T^{5} - 10 T^{4} + \cdots - 23 \) Copy content Toggle raw display
$17$ \( T^{5} - T^{4} - 31 T^{3} + \cdots - 9 \) Copy content Toggle raw display
$19$ \( T^{5} - 7 T^{4} + \cdots - 199 \) Copy content Toggle raw display
$23$ \( T^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + 2 T^{4} + \cdots + 199 \) Copy content Toggle raw display
$31$ \( T^{5} - T^{4} - 40 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$37$ \( T^{5} - 2 T^{4} + \cdots - 211 \) Copy content Toggle raw display
$41$ \( T^{5} + 14 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$43$ \( T^{5} - 15 T^{4} + \cdots + 4549 \) Copy content Toggle raw display
$47$ \( T^{5} + 3 T^{4} + \cdots + 26737 \) Copy content Toggle raw display
$53$ \( T^{5} - 21 T^{4} + \cdots - 7567 \) Copy content Toggle raw display
$59$ \( T^{5} - 11 T^{4} + \cdots - 583 \) Copy content Toggle raw display
$61$ \( T^{5} - 16 T^{4} + \cdots - 114273 \) Copy content Toggle raw display
$67$ \( T^{5} + T^{4} + \cdots - 62971 \) Copy content Toggle raw display
$71$ \( T^{5} + 3 T^{4} + \cdots + 77 \) Copy content Toggle raw display
$73$ \( T^{5} - 9 T^{4} + \cdots - 2673 \) Copy content Toggle raw display
$79$ \( T^{5} - 12 T^{4} + \cdots - 13853 \) Copy content Toggle raw display
$83$ \( T^{5} - 18 T^{4} + \cdots + 22957 \) Copy content Toggle raw display
$89$ \( T^{5} - 25 T^{4} + \cdots + 4489 \) Copy content Toggle raw display
$97$ \( T^{5} - 133 T^{3} + \cdots - 567 \) Copy content Toggle raw display
show more
show less