Properties

Label 3703.2.a.c
Level $3703$
Weight $2$
Character orbit 3703.a
Self dual yes
Analytic conductor $29.569$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3703,2,Mod(1,3703)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3703.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3703, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3703 = 7 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3703.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,2,5,-2,4,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.5686038685\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 161)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{2} - \beta_1) q^{2} + ( - \beta_1 + 1) q^{3} + (2 \beta_1 + 1) q^{4} + (\beta_1 - 1) q^{5} + (\beta_1 + 1) q^{6} + q^{7} + ( - \beta_{2} - 3 \beta_1 - 2) q^{8} + (\beta_{2} - \beta_1) q^{9}+ \cdots + (\beta_{2} + 3 \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 2 q^{3} + 5 q^{4} - 2 q^{5} + 4 q^{6} + 3 q^{7} - 9 q^{8} - q^{9} - 4 q^{10} - 4 q^{11} - 10 q^{12} + 2 q^{13} - q^{14} - 8 q^{15} + 13 q^{16} - 4 q^{17} - q^{18} - 8 q^{19} + 10 q^{20}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
−1.48119
0.311108
−2.70928 −1.17009 5.34017 1.17009 3.17009 1.00000 −9.04945 −1.63090 −3.17009
1.2 −0.193937 2.48119 −1.96239 −2.48119 −0.481194 1.00000 0.768452 3.15633 0.481194
1.3 1.90321 0.688892 1.62222 −0.688892 1.31111 1.00000 −0.719004 −2.52543 −1.31111
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3703.2.a.c 3
23.b odd 2 1 161.2.a.c 3
69.c even 2 1 1449.2.a.m 3
92.b even 2 1 2576.2.a.v 3
115.c odd 2 1 4025.2.a.j 3
161.c even 2 1 1127.2.a.f 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
161.2.a.c 3 23.b odd 2 1
1127.2.a.f 3 161.c even 2 1
1449.2.a.m 3 69.c even 2 1
2576.2.a.v 3 92.b even 2 1
3703.2.a.c 3 1.a even 1 1 trivial
4025.2.a.j 3 115.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(3703))\):

\( T_{2}^{3} + T_{2}^{2} - 5T_{2} - 1 \) Copy content Toggle raw display
\( T_{5}^{3} + 2T_{5}^{2} - 2T_{5} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 5T - 1 \) Copy content Toggle raw display
$3$ \( T^{3} - 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$5$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 4T^{2} - 4 \) Copy content Toggle raw display
$13$ \( T^{3} - 2 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( T^{3} + 4 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$19$ \( T^{3} + 8 T^{2} + \cdots - 160 \) Copy content Toggle raw display
$23$ \( T^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$31$ \( T^{3} - 16 T^{2} + \cdots + 338 \) Copy content Toggle raw display
$37$ \( T^{3} - 6 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$41$ \( T^{3} + 14 T^{2} + \cdots - 152 \) Copy content Toggle raw display
$43$ \( T^{3} - 8 T^{2} + \cdots + 304 \) Copy content Toggle raw display
$47$ \( T^{3} - 16 T^{2} + \cdots - 10 \) Copy content Toggle raw display
$53$ \( T^{3} + 6 T^{2} + \cdots - 248 \) Copy content Toggle raw display
$59$ \( T^{3} + 10 T^{2} + \cdots - 970 \) Copy content Toggle raw display
$61$ \( T^{3} + 10 T^{2} + \cdots - 494 \) Copy content Toggle raw display
$67$ \( T^{3} + 16 T^{2} + \cdots - 676 \) Copy content Toggle raw display
$71$ \( T^{3} - 4 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$73$ \( T^{3} + 6 T^{2} + \cdots - 216 \) Copy content Toggle raw display
$79$ \( T^{3} + 16 T^{2} + \cdots - 428 \) Copy content Toggle raw display
$83$ \( T^{3} + 20 T^{2} + \cdots - 2672 \) Copy content Toggle raw display
$89$ \( T^{3} + 4 T^{2} + \cdots + 278 \) Copy content Toggle raw display
$97$ \( T^{3} + 6 T^{2} + \cdots + 2 \) Copy content Toggle raw display
show more
show less