Properties

Label 3675.1.cy.a.2882.2
Level $3675$
Weight $1$
Character 3675.2882
Analytic conductor $1.834$
Analytic rank $0$
Dimension $48$
Projective image $D_{42}$
CM discriminant -3
Inner twists $16$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3675,1,Mod(143,3675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3675.143"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3675, base_ring=CyclotomicField(84)) chi = DirichletCharacter(H, H._module([42, 63, 62])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 3675 = 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3675.cy (of order \(84\), degree \(24\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.83406392143\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(2\) over \(\Q(\zeta_{84})\)
Coefficient field: \(\Q(\zeta_{168})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{48} + x^{44} - x^{36} - x^{32} + x^{24} - x^{16} - x^{12} + x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{42}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{42} + \cdots)\)

Embedding invariants

Embedding label 2882.2
Root \(-0.999301 + 0.0373912i\) of defining polynomial
Character \(\chi\) \(=\) 3675.2882
Dual form 3675.1.cy.a.2243.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.593820 + 0.804598i) q^{3} +(-0.997204 + 0.0747301i) q^{4} +(-0.467269 + 0.884115i) q^{7} +(-0.294755 + 0.955573i) q^{9} +(-0.652287 - 0.757972i) q^{12} +(-0.618686 + 0.388746i) q^{13} +(0.988831 - 0.149042i) q^{16} +(-0.294755 + 0.510531i) q^{19} +(-0.988831 + 0.149042i) q^{21} +(-0.943883 + 0.330279i) q^{27} +(0.399892 - 0.916562i) q^{28} +(0.751509 - 0.433884i) q^{31} +(0.222521 - 0.974928i) q^{36} +(-0.853961 + 0.734893i) q^{37} +(-0.680173 - 0.266948i) q^{39} +(-1.93760 - 0.218315i) q^{43} +(0.707107 + 0.707107i) q^{48} +(-0.563320 - 0.826239i) q^{49} +(0.587905 - 0.433894i) q^{52} +(-0.585804 + 0.0660042i) q^{57} +(-1.98883 - 0.149042i) q^{61} +(-0.707107 - 0.707107i) q^{63} +(-0.974928 + 0.222521i) q^{64} +(0.0771500 - 0.287928i) q^{67} +(1.65132 + 0.0617881i) q^{73} +(0.255779 - 0.531130i) q^{76} +(0.129436 + 0.0747301i) q^{79} +(-0.826239 - 0.563320i) q^{81} +(0.974928 - 0.222521i) q^{84} +(-0.0546039 - 0.728639i) q^{91} +(0.795363 + 0.347013i) q^{93} +(-1.03669 + 1.03669i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 4 q^{16} + 4 q^{21} + 8 q^{36} - 44 q^{61} - 4 q^{81} + 4 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3675\mathbb{Z}\right)^\times\).

\(n\) \(1177\) \(1226\) \(2551\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(e\left(\frac{23}{42}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.0373912 0.999301i \(-0.511905\pi\)
0.0373912 + 0.999301i \(0.488095\pi\)
\(3\) 0.593820 + 0.804598i 0.593820 + 0.804598i
\(4\) −0.997204 + 0.0747301i −0.997204 + 0.0747301i
\(5\) 0 0
\(6\) 0 0
\(7\) −0.467269 + 0.884115i −0.467269 + 0.884115i
\(8\) 0 0
\(9\) −0.294755 + 0.955573i −0.294755 + 0.955573i
\(10\) 0 0
\(11\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(12\) −0.652287 0.757972i −0.652287 0.757972i
\(13\) −0.618686 + 0.388746i −0.618686 + 0.388746i −0.804598 0.593820i \(-0.797619\pi\)
0.185912 + 0.982566i \(0.440476\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.988831 0.149042i 0.988831 0.149042i
\(17\) 0 0 0.982566 0.185912i \(-0.0595238\pi\)
−0.982566 + 0.185912i \(0.940476\pi\)
\(18\) 0 0
\(19\) −0.294755 + 0.510531i −0.294755 + 0.510531i −0.974928 0.222521i \(-0.928571\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(20\) 0 0
\(21\) −0.988831 + 0.149042i −0.988831 + 0.149042i
\(22\) 0 0
\(23\) 0 0 0.185912 0.982566i \(-0.440476\pi\)
−0.185912 + 0.982566i \(0.559524\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −0.943883 + 0.330279i −0.943883 + 0.330279i
\(28\) 0.399892 0.916562i 0.399892 0.916562i
\(29\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(30\) 0 0
\(31\) 0.751509 0.433884i 0.751509 0.433884i −0.0747301 0.997204i \(-0.523810\pi\)
0.826239 + 0.563320i \(0.190476\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.222521 0.974928i 0.222521 0.974928i
\(37\) −0.853961 + 0.734893i −0.853961 + 0.734893i −0.965926 0.258819i \(-0.916667\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(38\) 0 0
\(39\) −0.680173 0.266948i −0.680173 0.266948i
\(40\) 0 0
\(41\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(42\) 0 0
\(43\) −1.93760 0.218315i −1.93760 0.218315i −0.943883 0.330279i \(-0.892857\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.999301 0.0373912i \(-0.0119048\pi\)
−0.999301 + 0.0373912i \(0.988095\pi\)
\(48\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(49\) −0.563320 0.826239i −0.563320 0.826239i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.587905 0.433894i 0.587905 0.433894i
\(53\) 0 0 −0.757972 0.652287i \(-0.773810\pi\)
0.757972 + 0.652287i \(0.226190\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.585804 + 0.0660042i −0.585804 + 0.0660042i
\(58\) 0 0
\(59\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(60\) 0 0
\(61\) −1.98883 0.149042i −1.98883 0.149042i −0.988831 0.149042i \(-0.952381\pi\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) −0.707107 0.707107i −0.707107 0.707107i
\(64\) −0.974928 + 0.222521i −0.974928 + 0.222521i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.0771500 0.287928i 0.0771500 0.287928i −0.916562 0.399892i \(-0.869048\pi\)
0.993712 + 0.111964i \(0.0357143\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(72\) 0 0
\(73\) 1.65132 + 0.0617881i 1.65132 + 0.0617881i 0.846724 0.532032i \(-0.178571\pi\)
0.804598 + 0.593820i \(0.202381\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0.255779 0.531130i 0.255779 0.531130i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.129436 + 0.0747301i 0.129436 + 0.0747301i 0.563320 0.826239i \(-0.309524\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(80\) 0 0
\(81\) −0.826239 0.563320i −0.826239 0.563320i
\(82\) 0 0
\(83\) 0 0 0.532032 0.846724i \(-0.321429\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(84\) 0.974928 0.222521i 0.974928 0.222521i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(90\) 0 0
\(91\) −0.0546039 0.728639i −0.0546039 0.728639i
\(92\) 0 0
\(93\) 0.795363 + 0.347013i 0.795363 + 0.347013i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −1.03669 + 1.03669i −1.03669 + 1.03669i −0.0373912 + 0.999301i \(0.511905\pi\)
−0.999301 + 0.0373912i \(0.988095\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(102\) 0 0
\(103\) −0.764252 + 1.75168i −0.764252 + 1.75168i −0.111964 + 0.993712i \(0.535714\pi\)
−0.652287 + 0.757972i \(0.726190\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.467269 0.884115i \(-0.654762\pi\)
0.467269 + 0.884115i \(0.345238\pi\)
\(108\) 0.916562 0.399892i 0.916562 0.399892i
\(109\) −0.582926 1.88980i −0.582926 1.88980i −0.433884 0.900969i \(-0.642857\pi\)
−0.149042 0.988831i \(-0.547619\pi\)
\(110\) 0 0
\(111\) −1.09839 0.250701i −1.09839 0.250701i
\(112\) −0.330279 + 0.943883i −0.330279 + 0.943883i
\(113\) 0 0 −0.846724 0.532032i \(-0.821429\pi\)
0.846724 + 0.532032i \(0.178571\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.189114 0.705785i −0.189114 0.705785i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.826239 0.563320i 0.826239 0.563320i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.716983 + 0.488831i −0.716983 + 0.488831i
\(125\) 0 0
\(126\) 0 0
\(127\) 1.28401 + 0.449294i 1.28401 + 0.449294i 0.884115 0.467269i \(-0.154762\pi\)
0.399892 + 0.916562i \(0.369048\pi\)
\(128\) 0 0
\(129\) −0.974928 1.68862i −0.974928 1.68862i
\(130\) 0 0
\(131\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(132\) 0 0
\(133\) −0.313638 0.499153i −0.313638 0.499153i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.916562 0.399892i \(-0.130952\pi\)
−0.916562 + 0.399892i \(0.869048\pi\)
\(138\) 0 0
\(139\) 1.16078 1.45557i 1.16078 1.45557i 0.294755 0.955573i \(-0.404762\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −0.149042 + 0.988831i −0.149042 + 0.988831i
\(145\) 0 0
\(146\) 0 0
\(147\) 0.330279 0.943883i 0.330279 0.943883i
\(148\) 0.796655 0.796655i 0.796655 0.796655i
\(149\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(150\) 0 0
\(151\) 0.142820 + 1.90580i 0.142820 + 1.90580i 0.365341 + 0.930874i \(0.380952\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.698220 + 0.215372i 0.698220 + 0.215372i
\(157\) 0.790851 + 1.81265i 0.790851 + 1.81265i 0.532032 + 0.846724i \(0.321429\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1.10554 + 1.49796i −1.10554 + 1.49796i −0.258819 + 0.965926i \(0.583333\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.330279 0.943883i \(-0.392857\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(168\) 0 0
\(169\) −0.202235 + 0.419945i −0.202235 + 0.419945i
\(170\) 0 0
\(171\) −0.400969 0.432142i −0.400969 0.432142i
\(172\) 1.94849 + 0.0729074i 1.94849 + 0.0729074i
\(173\) 0 0 −0.982566 0.185912i \(-0.940476\pi\)
0.982566 + 0.185912i \(0.0595238\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(180\) 0 0
\(181\) −1.52446 + 0.347948i −1.52446 + 0.347948i −0.900969 0.433884i \(-0.857143\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(182\) 0 0
\(183\) −1.06109 1.68871i −1.06109 1.68871i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0.149042 0.988831i 0.149042 0.988831i
\(190\) 0 0
\(191\) 0 0 −0.365341 0.930874i \(-0.619048\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(192\) −0.757972 0.652287i −0.757972 0.652287i
\(193\) 1.25812 0.928535i 1.25812 0.928535i 0.258819 0.965926i \(-0.416667\pi\)
0.999301 + 0.0373912i \(0.0119048\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(197\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(198\) 0 0
\(199\) 1.34515 + 0.202749i 1.34515 + 0.202749i 0.781831 0.623490i \(-0.214286\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(200\) 0 0
\(201\) 0.277479 0.108903i 0.277479 0.108903i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −0.553836 + 0.476615i −0.553836 + 0.476615i
\(209\) 0 0
\(210\) 0 0
\(211\) 0.367711 + 1.61105i 0.367711 + 1.61105i 0.733052 + 0.680173i \(0.238095\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0.0324469 + 0.867161i 0.0324469 + 0.867161i
\(218\) 0 0
\(219\) 0.930874 + 1.36534i 0.930874 + 1.36534i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.0493636 + 0.141073i 0.0493636 + 0.141073i 0.965926 0.258819i \(-0.0833333\pi\)
−0.916562 + 0.399892i \(0.869048\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(228\) 0.579233 0.109597i 0.579233 0.109597i
\(229\) −1.34515 + 0.202749i −1.34515 + 0.202749i −0.781831 0.623490i \(-0.785714\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.652287 0.757972i \(-0.726190\pi\)
0.652287 + 0.757972i \(0.273810\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0.0167342 + 0.148520i 0.0167342 + 0.148520i
\(238\) 0 0
\(239\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(240\) 0 0
\(241\) 0.297251 0.0222759i 0.297251 0.0222759i 0.0747301 0.997204i \(-0.476190\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(242\) 0 0
\(243\) −0.0373912 0.999301i −0.0373912 0.999301i
\(244\) 1.99441 1.99441
\(245\) 0 0
\(246\) 0 0
\(247\) −0.0161061 0.430443i −0.0161061 0.430443i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(252\) 0.757972 + 0.652287i 0.757972 + 0.652287i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.955573 0.294755i 0.955573 0.294755i
\(257\) 0 0 −0.652287 0.757972i \(-0.726190\pi\)
0.652287 + 0.757972i \(0.273810\pi\)
\(258\) 0 0
\(259\) −0.250701 1.09839i −0.250701 1.09839i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −0.0554174 + 0.292888i −0.0554174 + 0.292888i
\(269\) 0 0 0.733052 0.680173i \(-0.238095\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(270\) 0 0
\(271\) 0.880843 + 1.29196i 0.880843 + 1.29196i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(272\) 0 0
\(273\) 0.553836 0.476615i 0.553836 0.476615i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −0.346120 1.82929i −0.346120 1.82929i −0.532032 0.846724i \(-0.678571\pi\)
0.185912 0.982566i \(-0.440476\pi\)
\(278\) 0 0
\(279\) 0.193096 + 0.846011i 0.193096 + 0.846011i
\(280\) 0 0
\(281\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(282\) 0 0
\(283\) 0.132140 + 0.0698381i 0.132140 + 0.0698381i 0.532032 0.846724i \(-0.321429\pi\)
−0.399892 + 0.916562i \(0.630952\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.930874 0.365341i 0.930874 0.365341i
\(290\) 0 0
\(291\) −1.44973 0.218511i −1.44973 0.218511i
\(292\) −1.65132 + 0.0617881i −1.65132 + 0.0617881i
\(293\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 1.09839 1.61105i 1.09839 1.61105i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.215372 + 0.548760i −0.215372 + 0.548760i
\(305\) 0 0
\(306\) 0 0
\(307\) 0.236777 + 0.376828i 0.236777 + 0.376828i 0.943883 0.330279i \(-0.107143\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) −1.86323 + 0.425270i −1.86323 + 0.425270i
\(310\) 0 0
\(311\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(312\) 0 0
\(313\) −1.74054 + 0.466376i −1.74054 + 0.466376i −0.982566 0.185912i \(-0.940476\pi\)
−0.757972 + 0.652287i \(0.773810\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −0.134659 0.0648483i −0.134659 0.0648483i
\(317\) 0 0 −0.982566 0.185912i \(-0.940476\pi\)
0.982566 + 0.185912i \(0.0595238\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(325\) 0 0
\(326\) 0 0
\(327\) 1.17438 1.59122i 1.17438 1.59122i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0.109562 1.46200i 0.109562 1.46200i −0.623490 0.781831i \(-0.714286\pi\)
0.733052 0.680173i \(-0.238095\pi\)
\(332\) 0 0
\(333\) −0.450534 1.03264i −0.450534 1.03264i
\(334\) 0 0
\(335\) 0 0
\(336\) −0.955573 + 0.294755i −0.955573 + 0.294755i
\(337\) 0.175075 1.55383i 0.175075 1.55383i −0.532032 0.846724i \(-0.678571\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.993712 0.111964i 0.993712 0.111964i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.652287 0.757972i \(-0.273810\pi\)
−0.652287 + 0.757972i \(0.726190\pi\)
\(348\) 0 0
\(349\) 1.21572 + 1.52446i 1.21572 + 1.52446i 0.781831 + 0.623490i \(0.214286\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(350\) 0 0
\(351\) 0.455573 0.571270i 0.455573 0.571270i
\(352\) 0 0
\(353\) 0 0 0.916562 0.399892i \(-0.130952\pi\)
−0.916562 + 0.399892i \(0.869048\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(360\) 0 0
\(361\) 0.326239 + 0.565062i 0.326239 + 0.565062i
\(362\) 0 0
\(363\) 0.943883 + 0.330279i 0.943883 + 0.330279i
\(364\) 0.108903 + 0.722521i 0.108903 + 0.722521i
\(365\) 0 0
\(366\) 0 0
\(367\) −0.0466261 + 1.24611i −0.0466261 + 1.24611i 0.757972 + 0.652287i \(0.226190\pi\)
−0.804598 + 0.593820i \(0.797619\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.819071 0.286605i −0.819071 0.286605i
\(373\) 0.352083 + 1.31399i 0.352083 + 1.31399i 0.884115 + 0.467269i \(0.154762\pi\)
−0.532032 + 0.846724i \(0.678571\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.86323 + 0.425270i 1.86323 + 0.425270i 0.997204 0.0747301i \(-0.0238095\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(380\) 0 0
\(381\) 0.400969 + 1.29991i 0.400969 + 1.29991i
\(382\) 0 0
\(383\) 0 0 −0.467269 0.884115i \(-0.654762\pi\)
0.467269 + 0.884115i \(0.345238\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0.779732 1.78716i 0.779732 1.78716i
\(388\) 0.956321 1.11127i 0.956321 1.11127i
\(389\) 0 0 0.149042 0.988831i \(-0.452381\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 1.65159 + 0.720581i 1.65159 + 0.720581i 0.999301 0.0373912i \(-0.0119048\pi\)
0.652287 + 0.757972i \(0.273810\pi\)
\(398\) 0 0
\(399\) 0.215372 0.548760i 0.215372 0.548760i
\(400\) 0 0
\(401\) 0 0 −0.955573 0.294755i \(-0.904762\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(402\) 0 0
\(403\) −0.296277 + 0.560584i −0.296277 + 0.560584i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0.930874 + 0.634659i 0.930874 + 0.634659i 0.930874 0.365341i \(-0.119048\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.631211 1.80390i 0.631211 1.80390i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1.86045 + 0.0696130i 1.86045 + 0.0696130i
\(418\) 0 0
\(419\) 0 0 −0.900969 0.433884i \(-0.857143\pi\)
0.900969 + 0.433884i \(0.142857\pi\)
\(420\) 0 0
\(421\) −1.78181 + 0.858075i −1.78181 + 0.858075i −0.826239 + 0.563320i \(0.809524\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.06109 1.68871i 1.06109 1.68871i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(432\) −0.884115 + 0.467269i −0.884115 + 0.467269i
\(433\) 0.442244 0.0498289i 0.442244 0.0498289i 0.111964 0.993712i \(-0.464286\pi\)
0.330279 + 0.943883i \(0.392857\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.722521 + 1.84095i 0.722521 + 1.84095i
\(437\) 0 0
\(438\) 0 0
\(439\) 1.36476 + 1.26631i 1.36476 + 1.26631i 0.930874 + 0.365341i \(0.119048\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(440\) 0 0
\(441\) 0.955573 0.294755i 0.955573 0.294755i
\(442\) 0 0
\(443\) 0 0 0.999301 0.0373912i \(-0.0119048\pi\)
−0.999301 + 0.0373912i \(0.988095\pi\)
\(444\) 1.11406 + 0.167917i 1.11406 + 0.167917i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0.258819 0.965926i 0.258819 0.965926i
\(449\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −1.44859 + 1.24662i −1.44859 + 1.24662i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.60470 1.18432i −1.60470 1.18432i −0.846724 0.532032i \(-0.821429\pi\)
−0.757972 0.652287i \(-0.773810\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(462\) 0 0
\(463\) −1.75727 + 0.614896i −1.75727 + 0.614896i −0.999301 0.0373912i \(-0.988095\pi\)
−0.757972 + 0.652287i \(0.773810\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.185912 0.982566i \(-0.440476\pi\)
−0.185912 + 0.982566i \(0.559524\pi\)
\(468\) 0.241329 + 0.689679i 0.241329 + 0.689679i
\(469\) 0.218511 + 0.202749i 0.218511 + 0.202749i
\(470\) 0 0
\(471\) −0.988831 + 1.71271i −0.988831 + 1.71271i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(480\) 0 0
\(481\) 0.242647 0.786643i 0.242647 0.786643i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.781831 + 0.623490i −0.781831 + 0.623490i
\(485\) 0 0
\(486\) 0 0
\(487\) −0.515298 0.698204i −0.515298 0.698204i 0.467269 0.884115i \(-0.345238\pi\)
−0.982566 + 0.185912i \(0.940476\pi\)
\(488\) 0 0
\(489\) −1.86175 −1.86175
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0.678448 0.541044i 0.678448 0.541044i
\(497\) 0 0
\(498\) 0 0
\(499\) −0.487076 + 1.57906i −0.487076 + 1.57906i 0.294755 + 0.955573i \(0.404762\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.846724 0.532032i \(-0.178571\pi\)
−0.846724 + 0.532032i \(0.821429\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −0.457978 + 0.0866541i −0.457978 + 0.0866541i
\(508\) −1.31399 0.352083i −1.31399 0.352083i
\(509\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(510\) 0 0
\(511\) −0.826239 + 1.43109i −0.826239 + 1.43109i
\(512\) 0 0
\(513\) 0.109597 0.579233i 0.109597 0.579233i
\(514\) 0 0
\(515\) 0 0
\(516\) 1.09839 + 1.61105i 1.09839 + 1.61105i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(522\) 0 0
\(523\) 1.44984 + 1.07003i 1.44984 + 1.07003i 0.982566 + 0.185912i \(0.0595238\pi\)
0.467269 + 0.884115i \(0.345238\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.930874 0.365341i −0.930874 0.365341i
\(530\) 0 0
\(531\) 0 0
\(532\) 0.350063 + 0.474319i 0.350063 + 0.474319i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.40097 1.29991i −1.40097 1.29991i −0.900969 0.433884i \(-0.857143\pi\)
−0.500000 0.866025i \(-0.666667\pi\)
\(542\) 0 0
\(543\) −1.18521 1.01996i −1.18521 1.01996i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0.862311 0.0971591i 0.862311 0.0971591i 0.330279 0.943883i \(-0.392857\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(548\) 0 0
\(549\) 0.728639 1.85654i 0.728639 1.85654i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −0.126552 + 0.0795176i −0.126552 + 0.0795176i
\(554\) 0 0
\(555\) 0 0
\(556\) −1.04876 + 1.53825i −1.04876 + 1.53825i
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) 1.28363 0.618165i 1.28363 0.618165i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.999301 0.0373912i \(-0.988095\pi\)
0.999301 + 0.0373912i \(0.0119048\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.884115 0.467269i 0.884115 0.467269i
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 0.123490 + 0.0841939i 0.123490 + 0.0841939i 0.623490 0.781831i \(-0.285714\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.0747301 0.997204i 0.0747301 0.997204i
\(577\) −0.582674 + 1.10247i −0.582674 + 1.10247i 0.399892 + 0.916562i \(0.369048\pi\)
−0.982566 + 0.185912i \(0.940476\pi\)
\(578\) 0 0
\(579\) 1.49419 + 0.460898i 1.49419 + 0.460898i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(589\) 0.511558i 0.511558i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.734893 + 0.853961i −0.734893 + 0.853961i
\(593\) 0 0 0.399892 0.916562i \(-0.369048\pi\)
−0.399892 + 0.916562i \(0.630952\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0.635647 + 1.20270i 0.635647 + 1.20270i
\(598\) 0 0
\(599\) 0 0 −0.294755 0.955573i \(-0.595238\pi\)
0.294755 + 0.955573i \(0.404762\pi\)
\(600\) 0 0
\(601\) 1.68862 + 0.385418i 1.68862 + 0.385418i 0.955573 0.294755i \(-0.0952381\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(602\) 0 0
\(603\) 0.252395 + 0.158591i 0.252395 + 0.158591i
\(604\) −0.284841 1.88980i −0.284841 1.88980i
\(605\) 0 0
\(606\) 0 0
\(607\) 0.258819 + 0.965926i 0.258819 + 0.965926i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.0324469 0.867161i 0.0324469 0.867161i −0.884115 0.467269i \(-0.845238\pi\)
0.916562 0.399892i \(-0.130952\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.943883 0.330279i \(-0.892857\pi\)
0.943883 + 0.330279i \(0.107143\pi\)
\(618\) 0 0
\(619\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −0.712362 0.162592i −0.712362 0.162592i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) −0.924099 1.74848i −0.924099 1.74848i
\(629\) 0 0
\(630\) 0 0
\(631\) 0.0931869 + 0.116853i 0.0931869 + 0.116853i 0.826239 0.563320i \(-0.190476\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(632\) 0 0
\(633\) −1.07789 + 1.25253i −1.07789 + 1.25253i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0.669716 + 0.292194i 0.669716 + 0.292194i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.0747301 0.997204i \(-0.523810\pi\)
0.0747301 + 0.997204i \(0.476190\pi\)
\(642\) 0 0
\(643\) −0.221428 + 1.96523i −0.221428 + 1.96523i 0.0373912 + 0.999301i \(0.488095\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.399892 0.916562i \(-0.630952\pi\)
0.399892 + 0.916562i \(0.369048\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −0.678448 + 0.541044i −0.678448 + 0.541044i
\(652\) 0.990509 1.57639i 0.990509 1.57639i
\(653\) 0 0 0.593820 0.804598i \(-0.297619\pi\)
−0.593820 + 0.804598i \(0.702381\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −0.545779 + 1.55975i −0.545779 + 1.55975i
\(658\) 0 0
\(659\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(660\) 0 0
\(661\) −1.17809 1.26968i −1.17809 1.26968i −0.955573 0.294755i \(-0.904762\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −0.0841939 + 0.123490i −0.0841939 + 0.123490i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.158591 0.252395i −0.158591 0.252395i 0.757972 0.652287i \(-0.226190\pi\)
−0.916562 + 0.399892i \(0.869048\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0.170287 0.433884i 0.170287 0.433884i
\(677\) 0 0 0.884115 0.467269i \(-0.154762\pi\)
−0.884115 + 0.467269i \(0.845238\pi\)
\(678\) 0 0
\(679\) −0.432142 1.40097i −0.432142 1.40097i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.804598 0.593820i \(-0.202381\pi\)
−0.804598 + 0.593820i \(0.797619\pi\)
\(684\) 0.432142 + 0.400969i 0.432142 + 0.400969i
\(685\) 0 0
\(686\) 0 0
\(687\) −0.961910 0.961910i −0.961910 0.961910i
\(688\) −1.94849 + 0.0729074i −1.94849 + 0.0729074i
\(689\) 0 0
\(690\) 0 0
\(691\) 1.61232 0.632789i 1.61232 0.632789i 0.623490 0.781831i \(-0.285714\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(702\) 0 0
\(703\) −0.123476 0.652587i −0.123476 0.652587i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0.825886 + 1.21135i 0.825886 + 1.21135i 0.974928 + 0.222521i \(0.0714286\pi\)
−0.149042 + 0.988831i \(0.547619\pi\)
\(710\) 0 0
\(711\) −0.109562 + 0.101659i −0.109562 + 0.101659i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.988831 0.149042i \(-0.0476190\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(720\) 0 0
\(721\) −1.19158 1.49419i −1.19158 1.49419i
\(722\) 0 0
\(723\) 0.194437 + 0.225940i 0.194437 + 0.225940i
\(724\) 1.49419 0.460898i 1.49419 0.460898i
\(725\) 0 0
\(726\) 0 0
\(727\) −0.111964 0.993712i −0.111964 0.993712i −0.916562 0.399892i \(-0.869048\pi\)
0.804598 0.593820i \(-0.202381\pi\)
\(728\) 0 0
\(729\) 0.781831 0.623490i 0.781831 0.623490i
\(730\) 0 0
\(731\) 0 0
\(732\) 1.18432 + 1.60470i 1.18432 + 1.60470i
\(733\) −0.0548194 1.46508i −0.0548194 1.46508i −0.707107 0.707107i \(-0.750000\pi\)
0.652287 0.757972i \(-0.273810\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.97213 0.147791i 1.97213 0.147791i 0.974928 0.222521i \(-0.0714286\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(740\) 0 0
\(741\) 0.336770 0.268565i 0.336770 0.268565i
\(742\) 0 0
\(743\) 0 0 −0.111964 0.993712i \(-0.535714\pi\)
0.111964 + 0.993712i \(0.464286\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.88980 + 0.284841i −1.88980 + 0.284841i −0.988831 0.149042i \(-0.952381\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.0747301 + 0.997204i −0.0747301 + 0.997204i
\(757\) 0.0984511 + 0.281357i 0.0984511 + 0.281357i 0.982566 0.185912i \(-0.0595238\pi\)
−0.884115 + 0.467269i \(0.845238\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.563320 0.826239i \(-0.690476\pi\)
0.563320 + 0.826239i \(0.309524\pi\)
\(762\) 0 0
\(763\) 1.94318 + 0.367670i 1.94318 + 0.367670i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.804598 + 0.593820i 0.804598 + 0.593820i
\(769\) 0 0 0.974928 0.222521i \(-0.0714286\pi\)
−0.974928 + 0.222521i \(0.928571\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −1.18521 + 1.01996i −1.18521 + 1.01996i
\(773\) 0 0 −0.884115 0.467269i \(-0.845238\pi\)
0.884115 + 0.467269i \(0.154762\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0.734893 0.853961i 0.734893 0.853961i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.680173 0.733052i −0.680173 0.733052i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.32958 0.981275i 1.32958 0.981275i 0.330279 0.943883i \(-0.392857\pi\)
0.999301 0.0373912i \(-0.0119048\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1.28840 0.680940i 1.28840 0.680940i
\(794\) 0 0
\(795\) 0 0
\(796\) −1.35654 0.101659i −1.35654 0.101659i
\(797\) 0 0 −0.532032 0.846724i \(-0.678571\pi\)
0.532032 + 0.846724i \(0.321429\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.268565 + 0.129334i −0.268565 + 0.129334i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 −0.680173 0.733052i \(-0.738095\pi\)
0.680173 + 0.733052i \(0.261905\pi\)
\(810\) 0 0
\(811\) 0.129334 0.268565i 0.129334 0.268565i −0.826239 0.563320i \(-0.809524\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(812\) 0 0
\(813\) −0.516445 + 1.47592i −0.516445 + 1.47592i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.682573 0.924853i 0.682573 0.924853i
\(818\) 0 0
\(819\) 0.712362 + 0.162592i 0.712362 + 0.162592i
\(820\) 0 0
\(821\) 0 0 0.0747301 0.997204i \(-0.476190\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(822\) 0 0
\(823\) −0.235740 0.540323i −0.235740 0.540323i 0.757972 0.652287i \(-0.226190\pi\)
−0.993712 + 0.111964i \(0.964286\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.111964 0.993712i \(-0.464286\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(828\) 0 0
\(829\) −0.149042 1.98883i −0.149042 1.98883i −0.149042 0.988831i \(-0.547619\pi\)
1.00000i \(-0.5\pi\)
\(830\) 0 0
\(831\) 1.26631 1.36476i 1.26631 1.36476i
\(832\) 0.516670 0.516670i 0.516670 0.516670i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −0.566034 + 0.657743i −0.566034 + 0.657743i
\(838\) 0 0
\(839\) 0 0 −0.623490 0.781831i \(-0.714286\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(840\) 0 0
\(841\) −0.623490 + 0.781831i −0.623490 + 0.781831i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.487076 1.57906i −0.487076 1.57906i
\(845\) 0 0
\(846\) 0 0
\(847\) 0.111964 + 0.993712i 0.111964 + 0.993712i
\(848\) 0 0
\(849\) 0.0222759 + 0.147791i 0.0222759 + 0.147791i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0.420068 + 0.146988i 0.420068 + 0.146988i 0.532032 0.846724i \(-0.321429\pi\)
−0.111964 + 0.993712i \(0.535714\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.0373912 0.999301i \(-0.488095\pi\)
−0.0373912 + 0.999301i \(0.511905\pi\)
\(858\) 0 0
\(859\) −1.61105 + 1.09839i −1.61105 + 1.09839i −0.680173 + 0.733052i \(0.738095\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.846724 + 0.532032i 0.846724 + 0.532032i
\(868\) −0.0971591 0.862311i −0.0971591 0.862311i
\(869\) 0 0
\(870\) 0 0
\(871\) 0.0641992 + 0.208129i 0.0641992 + 0.208129i
\(872\) 0 0
\(873\) −0.685064 1.29620i −0.685064 1.29620i
\(874\) 0 0
\(875\) 0 0
\(876\) −1.03030 1.29196i −1.03030 1.29196i
\(877\) −0.235740 + 0.540323i −0.235740 + 0.540323i −0.993712 0.111964i \(-0.964286\pi\)
0.757972 + 0.652287i \(0.226190\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 1.31645 1.31645i 1.31645 1.31645i 0.399892 0.916562i \(-0.369048\pi\)
0.916562 0.399892i \(-0.130952\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.916562 0.399892i \(-0.869048\pi\)
0.916562 + 0.399892i \(0.130952\pi\)
\(888\) 0 0
\(889\) −0.997204 + 0.925270i −0.997204 + 0.925270i
\(890\) 0 0
\(891\) 0 0
\(892\) −0.0597679 0.136990i −0.0597679 0.136990i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 1.94849 0.0729074i 1.94849 0.0729074i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −0.297876 0.0111457i −0.297876 0.0111457i −0.111964 0.993712i \(-0.535714\pi\)
−0.185912 + 0.982566i \(0.559524\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.900969 0.433884i \(-0.142857\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(912\) −0.569423 + 0.152577i −0.569423 + 0.152577i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 1.32624 0.302705i 1.32624 0.302705i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.24349 0.0931869i −1.24349 0.0931869i −0.563320 0.826239i \(-0.690476\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(920\) 0 0
\(921\) −0.162592 + 0.414278i −0.162592 + 0.414278i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.44859 1.24662i −1.44859 1.24662i
\(928\) 0 0
\(929\) 0 0 −0.733052 0.680173i \(-0.761905\pi\)
0.733052 + 0.680173i \(0.238095\pi\)
\(930\) 0 0
\(931\) 0.587862 0.0440542i 0.587862 0.0440542i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.442244 0.0498289i −0.442244 0.0498289i −0.111964 0.993712i \(-0.535714\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(938\) 0 0
\(939\) −1.40881 1.12349i −1.40881 1.12349i
\(940\) 0 0
\(941\) 0 0 −0.930874 0.365341i \(-0.880952\pi\)
0.930874 + 0.365341i \(0.119048\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.804598 0.593820i \(-0.797619\pi\)
0.804598 + 0.593820i \(0.202381\pi\)
\(948\) −0.0277864 0.146855i −0.0277864 0.146855i
\(949\) −1.04567 + 0.603718i −1.04567 + 0.603718i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.943883 0.330279i \(-0.107143\pi\)
−0.943883 + 0.330279i \(0.892857\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.123490 + 0.213891i −0.123490 + 0.213891i
\(962\) 0 0
\(963\) 0 0
\(964\) −0.294755 + 0.0444272i −0.294755 + 0.0444272i
\(965\) 0 0
\(966\) 0 0
\(967\) 0.499153 0.313638i 0.499153 0.313638i −0.258819 0.965926i \(-0.583333\pi\)
0.757972 + 0.652287i \(0.226190\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.294755 0.955573i \(-0.404762\pi\)
−0.294755 + 0.955573i \(0.595238\pi\)
\(972\) 0.111964 + 0.993712i 0.111964 + 0.993712i
\(973\) 0.744498 + 1.70641i 0.744498 + 1.70641i
\(974\) 0 0
\(975\) 0 0
\(976\) −1.98883 + 0.149042i −1.98883 + 0.149042i
\(977\) 0 0 −0.593820 0.804598i \(-0.702381\pi\)
0.593820 + 0.804598i \(0.297619\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.97766 1.97766
\(982\) 0 0
\(983\) 0 0 −0.593820 0.804598i \(-0.702381\pi\)
0.593820 + 0.804598i \(0.297619\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0.0482281 + 0.428036i 0.0482281 + 0.428036i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.425270 0.131178i 0.425270 0.131178i −0.0747301 0.997204i \(-0.523810\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 0 0
\(993\) 1.24139 0.780014i 1.24139 0.780014i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.982566 + 0.185912i −0.982566 + 0.185912i −0.652287 0.757972i \(-0.726190\pi\)
−0.330279 + 0.943883i \(0.607143\pi\)
\(998\) 0 0
\(999\) 0.563320 0.975699i 0.563320 0.975699i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3675.1.cy.a.2882.2 yes 48
3.2 odd 2 CM 3675.1.cy.a.2882.2 yes 48
5.2 odd 4 inner 3675.1.cy.a.1118.2 yes 48
5.3 odd 4 inner 3675.1.cy.a.1118.1 yes 48
5.4 even 2 inner 3675.1.cy.a.2882.1 yes 48
15.2 even 4 inner 3675.1.cy.a.1118.2 yes 48
15.8 even 4 inner 3675.1.cy.a.1118.1 yes 48
15.14 odd 2 inner 3675.1.cy.a.2882.1 yes 48
49.38 odd 42 inner 3675.1.cy.a.332.1 48
147.38 even 42 inner 3675.1.cy.a.332.1 48
245.38 even 84 inner 3675.1.cy.a.2243.2 yes 48
245.87 even 84 inner 3675.1.cy.a.2243.1 yes 48
245.234 odd 42 inner 3675.1.cy.a.332.2 yes 48
735.38 odd 84 inner 3675.1.cy.a.2243.2 yes 48
735.332 odd 84 inner 3675.1.cy.a.2243.1 yes 48
735.479 even 42 inner 3675.1.cy.a.332.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3675.1.cy.a.332.1 48 49.38 odd 42 inner
3675.1.cy.a.332.1 48 147.38 even 42 inner
3675.1.cy.a.332.2 yes 48 245.234 odd 42 inner
3675.1.cy.a.332.2 yes 48 735.479 even 42 inner
3675.1.cy.a.1118.1 yes 48 5.3 odd 4 inner
3675.1.cy.a.1118.1 yes 48 15.8 even 4 inner
3675.1.cy.a.1118.2 yes 48 5.2 odd 4 inner
3675.1.cy.a.1118.2 yes 48 15.2 even 4 inner
3675.1.cy.a.2243.1 yes 48 245.87 even 84 inner
3675.1.cy.a.2243.1 yes 48 735.332 odd 84 inner
3675.1.cy.a.2243.2 yes 48 245.38 even 84 inner
3675.1.cy.a.2243.2 yes 48 735.38 odd 84 inner
3675.1.cy.a.2882.1 yes 48 5.4 even 2 inner
3675.1.cy.a.2882.1 yes 48 15.14 odd 2 inner
3675.1.cy.a.2882.2 yes 48 1.1 even 1 trivial
3675.1.cy.a.2882.2 yes 48 3.2 odd 2 CM