Properties

Label 3654.2.g.i
Level $3654$
Weight $2$
Character orbit 3654.g
Analytic conductor $29.177$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(2899,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.2899"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,-8,0,4,0,0,0,0,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{33})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 17x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} - q^{4} - 2 q^{5} + q^{7} + \beta_{2} q^{8} + 2 \beta_{2} q^{10} + ( - 4 \beta_{2} - \beta_1) q^{11} + (\beta_{3} - 3) q^{13} - \beta_{2} q^{14} + q^{16} + ( - 2 \beta_{2} - 2 \beta_1) q^{17}+ \cdots - \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 8 q^{5} + 4 q^{7} - 10 q^{13} + 4 q^{16} + 8 q^{20} - 14 q^{22} + 22 q^{23} - 4 q^{25} - 4 q^{28} + 10 q^{29} - 4 q^{34} - 8 q^{35} + 14 q^{38} + 4 q^{49} + 10 q^{52} + 6 q^{53} + 10 q^{58}+ \cdots - 2 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 17x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 9\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 9 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 8\beta_{2} - 9\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3654\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(2089\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2899.1
2.37228i
3.37228i
3.37228i
2.37228i
1.00000i 0 −1.00000 −2.00000 0 1.00000 1.00000i 0 2.00000i
2899.2 1.00000i 0 −1.00000 −2.00000 0 1.00000 1.00000i 0 2.00000i
2899.3 1.00000i 0 −1.00000 −2.00000 0 1.00000 1.00000i 0 2.00000i
2899.4 1.00000i 0 −1.00000 −2.00000 0 1.00000 1.00000i 0 2.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3654.2.g.i 4
3.b odd 2 1 3654.2.g.m yes 4
29.b even 2 1 inner 3654.2.g.i 4
87.d odd 2 1 3654.2.g.m yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3654.2.g.i 4 1.a even 1 1 trivial
3654.2.g.i 4 29.b even 2 1 inner
3654.2.g.m yes 4 3.b odd 2 1
3654.2.g.m yes 4 87.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3654, [\chi])\):

\( T_{5} + 2 \) Copy content Toggle raw display
\( T_{11}^{4} + 41T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{2} + 5T_{13} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T + 2)^{4} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 41T^{2} + 16 \) Copy content Toggle raw display
$13$ \( (T^{2} + 5 T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 68T^{2} + 1024 \) Copy content Toggle raw display
$19$ \( T^{4} + 41T^{2} + 16 \) Copy content Toggle raw display
$23$ \( (T^{2} - 11 T + 22)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 10 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$31$ \( T^{4} + 68T^{2} + 1024 \) Copy content Toggle raw display
$37$ \( T^{4} + 161T^{2} + 4624 \) Copy content Toggle raw display
$41$ \( T^{4} + 84T^{2} + 576 \) Copy content Toggle raw display
$43$ \( (T^{2} + 100)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 17T^{2} + 64 \) Copy content Toggle raw display
$53$ \( (T^{2} - 3 T - 72)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 5 T - 68)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 7 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 10 T - 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 77T^{2} + 484 \) Copy content Toggle raw display
$79$ \( T^{4} + 68T^{2} + 1024 \) Copy content Toggle raw display
$83$ \( (T^{2} + 3 T - 204)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 132)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 21T^{2} + 36 \) Copy content Toggle raw display
show more
show less