Properties

Label 3654.2.g.e.2899.1
Level $3654$
Weight $2$
Character 3654.2899
Analytic conductor $29.177$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3654,2,Mod(2899,3654)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3654, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3654.2899"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3654 = 2 \cdot 3^{2} \cdot 7 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3654.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,0,0,-2,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.1773368986\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1218)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2899.1
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 3654.2899
Dual form 3654.2.g.e.2899.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -1.00000 q^{7} +1.00000i q^{8} -4.00000i q^{11} -2.00000 q^{13} +1.00000i q^{14} +1.00000 q^{16} +6.00000i q^{17} +4.00000i q^{19} -4.00000 q^{22} +4.00000 q^{23} -5.00000 q^{25} +2.00000i q^{26} +1.00000 q^{28} +(2.00000 - 5.00000i) q^{29} +2.00000i q^{31} -1.00000i q^{32} +6.00000 q^{34} -10.0000i q^{37} +4.00000 q^{38} +10.0000i q^{41} +4.00000i q^{44} -4.00000i q^{46} +4.00000i q^{47} +1.00000 q^{49} +5.00000i q^{50} +2.00000 q^{52} +12.0000 q^{53} -1.00000i q^{56} +(-5.00000 - 2.00000i) q^{58} +10.0000 q^{59} +14.0000i q^{61} +2.00000 q^{62} -1.00000 q^{64} -6.00000i q^{68} +4.00000i q^{73} -10.0000 q^{74} -4.00000i q^{76} +4.00000i q^{77} -10.0000i q^{79} +10.0000 q^{82} -6.00000 q^{83} +4.00000 q^{88} +2.00000i q^{89} +2.00000 q^{91} -4.00000 q^{92} +4.00000 q^{94} -8.00000i q^{97} -1.00000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 2 q^{7} - 4 q^{13} + 2 q^{16} - 8 q^{22} + 8 q^{23} - 10 q^{25} + 2 q^{28} + 4 q^{29} + 12 q^{34} + 8 q^{38} + 2 q^{49} + 4 q^{52} + 24 q^{53} - 10 q^{58} + 20 q^{59} + 4 q^{62} - 2 q^{64}+ \cdots + 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3654\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(407\) \(2089\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0 0
\(11\) 4.00000i 1.20605i −0.797724 0.603023i \(-0.793963\pi\)
0.797724 0.603023i \(-0.206037\pi\)
\(12\) 0 0
\(13\) −2.00000 −0.554700 −0.277350 0.960769i \(-0.589456\pi\)
−0.277350 + 0.960769i \(0.589456\pi\)
\(14\) 1.00000i 0.267261i
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 6.00000i 1.45521i 0.685994 + 0.727607i \(0.259367\pi\)
−0.685994 + 0.727607i \(0.740633\pi\)
\(18\) 0 0
\(19\) 4.00000i 0.917663i 0.888523 + 0.458831i \(0.151732\pi\)
−0.888523 + 0.458831i \(0.848268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −4.00000 −0.852803
\(23\) 4.00000 0.834058 0.417029 0.908893i \(-0.363071\pi\)
0.417029 + 0.908893i \(0.363071\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 2.00000i 0.392232i
\(27\) 0 0
\(28\) 1.00000 0.188982
\(29\) 2.00000 5.00000i 0.371391 0.928477i
\(30\) 0 0
\(31\) 2.00000i 0.359211i 0.983739 + 0.179605i \(0.0574821\pi\)
−0.983739 + 0.179605i \(0.942518\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 0 0
\(37\) 10.0000i 1.64399i −0.569495 0.821995i \(-0.692861\pi\)
0.569495 0.821995i \(-0.307139\pi\)
\(38\) 4.00000 0.648886
\(39\) 0 0
\(40\) 0 0
\(41\) 10.0000i 1.56174i 0.624695 + 0.780869i \(0.285223\pi\)
−0.624695 + 0.780869i \(0.714777\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 4.00000i 0.603023i
\(45\) 0 0
\(46\) 4.00000i 0.589768i
\(47\) 4.00000i 0.583460i 0.956501 + 0.291730i \(0.0942309\pi\)
−0.956501 + 0.291730i \(0.905769\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 5.00000i 0.707107i
\(51\) 0 0
\(52\) 2.00000 0.277350
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1.00000i 0.133631i
\(57\) 0 0
\(58\) −5.00000 2.00000i −0.656532 0.262613i
\(59\) 10.0000 1.30189 0.650945 0.759125i \(-0.274373\pi\)
0.650945 + 0.759125i \(0.274373\pi\)
\(60\) 0 0
\(61\) 14.0000i 1.79252i 0.443533 + 0.896258i \(0.353725\pi\)
−0.443533 + 0.896258i \(0.646275\pi\)
\(62\) 2.00000 0.254000
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 4.00000i 0.468165i 0.972217 + 0.234082i \(0.0752085\pi\)
−0.972217 + 0.234082i \(0.924791\pi\)
\(74\) −10.0000 −1.16248
\(75\) 0 0
\(76\) 4.00000i 0.458831i
\(77\) 4.00000i 0.455842i
\(78\) 0 0
\(79\) 10.0000i 1.12509i −0.826767 0.562544i \(-0.809823\pi\)
0.826767 0.562544i \(-0.190177\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 10.0000 1.10432
\(83\) −6.00000 −0.658586 −0.329293 0.944228i \(-0.606810\pi\)
−0.329293 + 0.944228i \(0.606810\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 4.00000 0.426401
\(89\) 2.00000i 0.212000i 0.994366 + 0.106000i \(0.0338043\pi\)
−0.994366 + 0.106000i \(0.966196\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) −4.00000 −0.417029
\(93\) 0 0
\(94\) 4.00000 0.412568
\(95\) 0 0
\(96\) 0 0
\(97\) 8.00000i 0.812277i −0.913812 0.406138i \(-0.866875\pi\)
0.913812 0.406138i \(-0.133125\pi\)
\(98\) 1.00000i 0.101015i
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) 18.0000i 1.79107i −0.444994 0.895533i \(-0.646794\pi\)
0.444994 0.895533i \(-0.353206\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 2.00000i 0.196116i
\(105\) 0 0
\(106\) 12.0000i 1.16554i
\(107\) 6.00000 0.580042 0.290021 0.957020i \(-0.406338\pi\)
0.290021 + 0.957020i \(0.406338\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1.00000 −0.0944911
\(113\) 18.0000i 1.69330i 0.532152 + 0.846649i \(0.321383\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −2.00000 + 5.00000i −0.185695 + 0.464238i
\(117\) 0 0
\(118\) 10.0000i 0.920575i
\(119\) 6.00000i 0.550019i
\(120\) 0 0
\(121\) −5.00000 −0.454545
\(122\) 14.0000 1.26750
\(123\) 0 0
\(124\) 2.00000i 0.179605i
\(125\) 0 0
\(126\) 0 0
\(127\) 14.0000i 1.24230i 0.783692 + 0.621150i \(0.213334\pi\)
−0.783692 + 0.621150i \(0.786666\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) 0 0
\(131\) 4.00000i 0.349482i −0.984614 0.174741i \(-0.944091\pi\)
0.984614 0.174741i \(-0.0559088\pi\)
\(132\) 0 0
\(133\) 4.00000i 0.346844i
\(134\) 0 0
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 14.0000i 1.19610i −0.801459 0.598050i \(-0.795942\pi\)
0.801459 0.598050i \(-0.204058\pi\)
\(138\) 0 0
\(139\) 8.00000 0.678551 0.339276 0.940687i \(-0.389818\pi\)
0.339276 + 0.940687i \(0.389818\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 8.00000i 0.668994i
\(144\) 0 0
\(145\) 0 0
\(146\) 4.00000 0.331042
\(147\) 0 0
\(148\) 10.0000i 0.821995i
\(149\) 16.0000 1.31077 0.655386 0.755295i \(-0.272506\pi\)
0.655386 + 0.755295i \(0.272506\pi\)
\(150\) 0 0
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) −4.00000 −0.324443
\(153\) 0 0
\(154\) 4.00000 0.322329
\(155\) 0 0
\(156\) 0 0
\(157\) 22.0000i 1.75579i 0.478852 + 0.877896i \(0.341053\pi\)
−0.478852 + 0.877896i \(0.658947\pi\)
\(158\) −10.0000 −0.795557
\(159\) 0 0
\(160\) 0 0
\(161\) −4.00000 −0.315244
\(162\) 0 0
\(163\) 8.00000i 0.626608i 0.949653 + 0.313304i \(0.101436\pi\)
−0.949653 + 0.313304i \(0.898564\pi\)
\(164\) 10.0000i 0.780869i
\(165\) 0 0
\(166\) 6.00000i 0.465690i
\(167\) 20.0000 1.54765 0.773823 0.633402i \(-0.218342\pi\)
0.773823 + 0.633402i \(0.218342\pi\)
\(168\) 0 0
\(169\) −9.00000 −0.692308
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 8.00000 0.608229 0.304114 0.952636i \(-0.401639\pi\)
0.304114 + 0.952636i \(0.401639\pi\)
\(174\) 0 0
\(175\) 5.00000 0.377964
\(176\) 4.00000i 0.301511i
\(177\) 0 0
\(178\) 2.00000 0.149906
\(179\) 22.0000 1.64436 0.822179 0.569230i \(-0.192758\pi\)
0.822179 + 0.569230i \(0.192758\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 2.00000i 0.148250i
\(183\) 0 0
\(184\) 4.00000i 0.294884i
\(185\) 0 0
\(186\) 0 0
\(187\) 24.0000 1.75505
\(188\) 4.00000i 0.291730i
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000i 0.868290i 0.900843 + 0.434145i \(0.142949\pi\)
−0.900843 + 0.434145i \(0.857051\pi\)
\(192\) 0 0
\(193\) 12.0000i 0.863779i 0.901927 + 0.431889i \(0.142153\pi\)
−0.901927 + 0.431889i \(0.857847\pi\)
\(194\) −8.00000 −0.574367
\(195\) 0 0
\(196\) −1.00000 −0.0714286
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 5.00000i 0.353553i
\(201\) 0 0
\(202\) −18.0000 −1.26648
\(203\) −2.00000 + 5.00000i −0.140372 + 0.350931i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −2.00000 −0.138675
\(209\) 16.0000 1.10674
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −12.0000 −0.824163
\(213\) 0 0
\(214\) 6.00000i 0.410152i
\(215\) 0 0
\(216\) 0 0
\(217\) 2.00000i 0.135769i
\(218\) 10.0000i 0.677285i
\(219\) 0 0
\(220\) 0 0
\(221\) 12.0000i 0.807207i
\(222\) 0 0
\(223\) 16.0000 1.07144 0.535720 0.844396i \(-0.320040\pi\)
0.535720 + 0.844396i \(0.320040\pi\)
\(224\) 1.00000i 0.0668153i
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) −2.00000 −0.132745 −0.0663723 0.997795i \(-0.521143\pi\)
−0.0663723 + 0.997795i \(0.521143\pi\)
\(228\) 0 0
\(229\) 6.00000i 0.396491i 0.980152 + 0.198246i \(0.0635244\pi\)
−0.980152 + 0.198246i \(0.936476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 5.00000 + 2.00000i 0.328266 + 0.131306i
\(233\) −26.0000 −1.70332 −0.851658 0.524097i \(-0.824403\pi\)
−0.851658 + 0.524097i \(0.824403\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −10.0000 −0.650945
\(237\) 0 0
\(238\) −6.00000 −0.388922
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) −22.0000 −1.41714 −0.708572 0.705638i \(-0.750660\pi\)
−0.708572 + 0.705638i \(0.750660\pi\)
\(242\) 5.00000i 0.321412i
\(243\) 0 0
\(244\) 14.0000i 0.896258i
\(245\) 0 0
\(246\) 0 0
\(247\) 8.00000i 0.509028i
\(248\) −2.00000 −0.127000
\(249\) 0 0
\(250\) 0 0
\(251\) 12.0000i 0.757433i −0.925513 0.378717i \(-0.876365\pi\)
0.925513 0.378717i \(-0.123635\pi\)
\(252\) 0 0
\(253\) 16.0000i 1.00591i
\(254\) 14.0000 0.878438
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −6.00000 −0.374270 −0.187135 0.982334i \(-0.559920\pi\)
−0.187135 + 0.982334i \(0.559920\pi\)
\(258\) 0 0
\(259\) 10.0000i 0.621370i
\(260\) 0 0
\(261\) 0 0
\(262\) −4.00000 −0.247121
\(263\) 24.0000i 1.47990i −0.672660 0.739952i \(-0.734848\pi\)
0.672660 0.739952i \(-0.265152\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.00000 −0.245256
\(267\) 0 0
\(268\) 0 0
\(269\) 18.0000i 1.09748i −0.835993 0.548740i \(-0.815108\pi\)
0.835993 0.548740i \(-0.184892\pi\)
\(270\) 0 0
\(271\) 26.0000i 1.57939i 0.613501 + 0.789694i \(0.289761\pi\)
−0.613501 + 0.789694i \(0.710239\pi\)
\(272\) 6.00000i 0.363803i
\(273\) 0 0
\(274\) −14.0000 −0.845771
\(275\) 20.0000i 1.20605i
\(276\) 0 0
\(277\) −10.0000 −0.600842 −0.300421 0.953807i \(-0.597127\pi\)
−0.300421 + 0.953807i \(0.597127\pi\)
\(278\) 8.00000i 0.479808i
\(279\) 0 0
\(280\) 0 0
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) 24.0000 1.42665 0.713326 0.700832i \(-0.247188\pi\)
0.713326 + 0.700832i \(0.247188\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 8.00000 0.473050
\(287\) 10.0000i 0.590281i
\(288\) 0 0
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 0 0
\(292\) 4.00000i 0.234082i
\(293\) 26.0000i 1.51894i −0.650545 0.759468i \(-0.725459\pi\)
0.650545 0.759468i \(-0.274541\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) 16.0000i 0.926855i
\(299\) −8.00000 −0.462652
\(300\) 0 0
\(301\) 0 0
\(302\) 16.0000i 0.920697i
\(303\) 0 0
\(304\) 4.00000i 0.229416i
\(305\) 0 0
\(306\) 0 0
\(307\) 16.0000i 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) 4.00000i 0.227921i
\(309\) 0 0
\(310\) 0 0
\(311\) 16.0000i 0.907277i −0.891186 0.453638i \(-0.850126\pi\)
0.891186 0.453638i \(-0.149874\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 22.0000 1.24153
\(315\) 0 0
\(316\) 10.0000i 0.562544i
\(317\) 6.00000i 0.336994i 0.985702 + 0.168497i \(0.0538913\pi\)
−0.985702 + 0.168497i \(0.946109\pi\)
\(318\) 0 0
\(319\) −20.0000 8.00000i −1.11979 0.447914i
\(320\) 0 0
\(321\) 0 0
\(322\) 4.00000i 0.222911i
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) 10.0000 0.554700
\(326\) 8.00000 0.443079
\(327\) 0 0
\(328\) −10.0000 −0.552158
\(329\) 4.00000i 0.220527i
\(330\) 0 0
\(331\) 20.0000i 1.09930i 0.835395 + 0.549650i \(0.185239\pi\)
−0.835395 + 0.549650i \(0.814761\pi\)
\(332\) 6.00000 0.329293
\(333\) 0 0
\(334\) 20.0000i 1.09435i
\(335\) 0 0
\(336\) 0 0
\(337\) 36.0000i 1.96104i −0.196407 0.980522i \(-0.562927\pi\)
0.196407 0.980522i \(-0.437073\pi\)
\(338\) 9.00000i 0.489535i
\(339\) 0 0
\(340\) 0 0
\(341\) 8.00000 0.433224
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 8.00000i 0.430083i
\(347\) 22.0000 1.18102 0.590511 0.807030i \(-0.298926\pi\)
0.590511 + 0.807030i \(0.298926\pi\)
\(348\) 0 0
\(349\) 26.0000 1.39175 0.695874 0.718164i \(-0.255017\pi\)
0.695874 + 0.718164i \(0.255017\pi\)
\(350\) 5.00000i 0.267261i
\(351\) 0 0
\(352\) −4.00000 −0.213201
\(353\) −14.0000 −0.745145 −0.372572 0.928003i \(-0.621524\pi\)
−0.372572 + 0.928003i \(0.621524\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.00000i 0.106000i
\(357\) 0 0
\(358\) 22.0000i 1.16274i
\(359\) 24.0000i 1.26667i 0.773877 + 0.633336i \(0.218315\pi\)
−0.773877 + 0.633336i \(0.781685\pi\)
\(360\) 0 0
\(361\) 3.00000 0.157895
\(362\) 2.00000i 0.105118i
\(363\) 0 0
\(364\) −2.00000 −0.104828
\(365\) 0 0
\(366\) 0 0
\(367\) 34.0000i 1.77479i 0.461014 + 0.887393i \(0.347486\pi\)
−0.461014 + 0.887393i \(0.652514\pi\)
\(368\) 4.00000 0.208514
\(369\) 0 0
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 24.0000i 1.24101i
\(375\) 0 0
\(376\) −4.00000 −0.206284
\(377\) −4.00000 + 10.0000i −0.206010 + 0.515026i
\(378\) 0 0
\(379\) 20.0000i 1.02733i 0.857991 + 0.513665i \(0.171713\pi\)
−0.857991 + 0.513665i \(0.828287\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 12.0000 0.613973
\(383\) −32.0000 −1.63512 −0.817562 0.575841i \(-0.804675\pi\)
−0.817562 + 0.575841i \(0.804675\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 12.0000 0.610784
\(387\) 0 0
\(388\) 8.00000i 0.406138i
\(389\) 10.0000i 0.507020i 0.967333 + 0.253510i \(0.0815851\pi\)
−0.967333 + 0.253510i \(0.918415\pi\)
\(390\) 0 0
\(391\) 24.0000i 1.21373i
\(392\) 1.00000i 0.0505076i
\(393\) 0 0
\(394\) 12.0000i 0.604551i
\(395\) 0 0
\(396\) 0 0
\(397\) −26.0000 −1.30490 −0.652451 0.757831i \(-0.726259\pi\)
−0.652451 + 0.757831i \(0.726259\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) 4.00000i 0.199254i
\(404\) 18.0000i 0.895533i
\(405\) 0 0
\(406\) 5.00000 + 2.00000i 0.248146 + 0.0992583i
\(407\) −40.0000 −1.98273
\(408\) 0 0
\(409\) 8.00000i 0.395575i −0.980245 0.197787i \(-0.936624\pi\)
0.980245 0.197787i \(-0.0633755\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −10.0000 −0.492068
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000i 0.0980581i
\(417\) 0 0
\(418\) 16.0000i 0.782586i
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) 10.0000i 0.487370i −0.969854 0.243685i \(-0.921644\pi\)
0.969854 0.243685i \(-0.0783563\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 12.0000i 0.582772i
\(425\) 30.0000i 1.45521i
\(426\) 0 0
\(427\) 14.0000i 0.677507i
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) 12.0000i 0.576683i −0.957528 0.288342i \(-0.906896\pi\)
0.957528 0.288342i \(-0.0931039\pi\)
\(434\) −2.00000 −0.0960031
\(435\) 0 0
\(436\) −10.0000 −0.478913
\(437\) 16.0000i 0.765384i
\(438\) 0 0
\(439\) −8.00000 −0.381819 −0.190910 0.981608i \(-0.561144\pi\)
−0.190910 + 0.981608i \(0.561144\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −12.0000 −0.570782
\(443\) 20.0000i 0.950229i 0.879924 + 0.475114i \(0.157593\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 16.0000i 0.757622i
\(447\) 0 0
\(448\) 1.00000 0.0472456
\(449\) 10.0000i 0.471929i −0.971762 0.235965i \(-0.924175\pi\)
0.971762 0.235965i \(-0.0758249\pi\)
\(450\) 0 0
\(451\) 40.0000 1.88353
\(452\) 18.0000i 0.846649i
\(453\) 0 0
\(454\) 2.00000i 0.0938647i
\(455\) 0 0
\(456\) 0 0
\(457\) 30.0000 1.40334 0.701670 0.712502i \(-0.252438\pi\)
0.701670 + 0.712502i \(0.252438\pi\)
\(458\) 6.00000 0.280362
\(459\) 0 0
\(460\) 0 0
\(461\) 18.0000i 0.838344i 0.907907 + 0.419172i \(0.137680\pi\)
−0.907907 + 0.419172i \(0.862320\pi\)
\(462\) 0 0
\(463\) −32.0000 −1.48717 −0.743583 0.668644i \(-0.766875\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) 2.00000 5.00000i 0.0928477 0.232119i
\(465\) 0 0
\(466\) 26.0000i 1.20443i
\(467\) 36.0000i 1.66588i 0.553362 + 0.832941i \(0.313345\pi\)
−0.553362 + 0.832941i \(0.686655\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 10.0000i 0.460287i
\(473\) 0 0
\(474\) 0 0
\(475\) 20.0000i 0.917663i
\(476\) 6.00000i 0.275010i
\(477\) 0 0
\(478\) 0 0
\(479\) 36.0000i 1.64488i 0.568850 + 0.822441i \(0.307388\pi\)
−0.568850 + 0.822441i \(0.692612\pi\)
\(480\) 0 0
\(481\) 20.0000i 0.911922i
\(482\) 22.0000i 1.00207i
\(483\) 0 0
\(484\) 5.00000 0.227273
\(485\) 0 0
\(486\) 0 0
\(487\) 32.0000 1.45006 0.725029 0.688718i \(-0.241826\pi\)
0.725029 + 0.688718i \(0.241826\pi\)
\(488\) −14.0000 −0.633750
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000i 0.541552i 0.962642 + 0.270776i \(0.0872803\pi\)
−0.962642 + 0.270776i \(0.912720\pi\)
\(492\) 0 0
\(493\) 30.0000 + 12.0000i 1.35113 + 0.540453i
\(494\) −8.00000 −0.359937
\(495\) 0 0
\(496\) 2.00000i 0.0898027i
\(497\) 0 0
\(498\) 0 0
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −12.0000 −0.535586
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −16.0000 −0.711287
\(507\) 0 0
\(508\) 14.0000i 0.621150i
\(509\) −20.0000 −0.886484 −0.443242 0.896402i \(-0.646172\pi\)
−0.443242 + 0.896402i \(0.646172\pi\)
\(510\) 0 0
\(511\) 4.00000i 0.176950i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 6.00000i 0.264649i
\(515\) 0 0
\(516\) 0 0
\(517\) 16.0000 0.703679
\(518\) 10.0000 0.439375
\(519\) 0 0
\(520\) 0 0
\(521\) 14.0000 0.613351 0.306676 0.951814i \(-0.400783\pi\)
0.306676 + 0.951814i \(0.400783\pi\)
\(522\) 0 0
\(523\) −12.0000 −0.524723 −0.262362 0.964970i \(-0.584501\pi\)
−0.262362 + 0.964970i \(0.584501\pi\)
\(524\) 4.00000i 0.174741i
\(525\) 0 0
\(526\) −24.0000 −1.04645
\(527\) −12.0000 −0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) 0 0
\(532\) 4.00000i 0.173422i
\(533\) 20.0000i 0.866296i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −18.0000 −0.776035
\(539\) 4.00000i 0.172292i
\(540\) 0 0
\(541\) 6.00000i 0.257960i 0.991647 + 0.128980i \(0.0411703\pi\)
−0.991647 + 0.128980i \(0.958830\pi\)
\(542\) 26.0000 1.11680
\(543\) 0 0
\(544\) 6.00000 0.257248
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 14.0000i 0.598050i
\(549\) 0 0
\(550\) 20.0000 0.852803
\(551\) 20.0000 + 8.00000i 0.852029 + 0.340811i
\(552\) 0 0
\(553\) 10.0000i 0.425243i
\(554\) 10.0000i 0.424859i
\(555\) 0 0
\(556\) −8.00000 −0.339276
\(557\) 16.0000 0.677942 0.338971 0.940797i \(-0.389921\pi\)
0.338971 + 0.940797i \(0.389921\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 30.0000i 1.26547i
\(563\) 12.0000i 0.505740i −0.967500 0.252870i \(-0.918626\pi\)
0.967500 0.252870i \(-0.0813744\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 24.0000i 1.00880i
\(567\) 0 0
\(568\) 0 0
\(569\) 6.00000i 0.251533i 0.992060 + 0.125767i \(0.0401390\pi\)
−0.992060 + 0.125767i \(0.959861\pi\)
\(570\) 0 0
\(571\) −12.0000 −0.502184 −0.251092 0.967963i \(-0.580790\pi\)
−0.251092 + 0.967963i \(0.580790\pi\)
\(572\) 8.00000i 0.334497i
\(573\) 0 0
\(574\) −10.0000 −0.417392
\(575\) −20.0000 −0.834058
\(576\) 0 0
\(577\) 24.0000i 0.999133i 0.866276 + 0.499567i \(0.166507\pi\)
−0.866276 + 0.499567i \(0.833493\pi\)
\(578\) 19.0000i 0.790296i
\(579\) 0 0
\(580\) 0 0
\(581\) 6.00000 0.248922
\(582\) 0 0
\(583\) 48.0000i 1.98796i
\(584\) −4.00000 −0.165521
\(585\) 0 0
\(586\) −26.0000 −1.07405
\(587\) −14.0000 −0.577842 −0.288921 0.957353i \(-0.593296\pi\)
−0.288921 + 0.957353i \(0.593296\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) 0 0
\(592\) 10.0000i 0.410997i
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −16.0000 −0.655386
\(597\) 0 0
\(598\) 8.00000i 0.327144i
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 40.0000i 1.63163i −0.578310 0.815817i \(-0.696288\pi\)
0.578310 0.815817i \(-0.303712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −16.0000 −0.651031
\(605\) 0 0
\(606\) 0 0
\(607\) 6.00000i 0.243532i 0.992559 + 0.121766i \(0.0388558\pi\)
−0.992559 + 0.121766i \(0.961144\pi\)
\(608\) 4.00000 0.162221
\(609\) 0 0
\(610\) 0 0
\(611\) 8.00000i 0.323645i
\(612\) 0 0
\(613\) −34.0000 −1.37325 −0.686624 0.727013i \(-0.740908\pi\)
−0.686624 + 0.727013i \(0.740908\pi\)
\(614\) −16.0000 −0.645707
\(615\) 0 0
\(616\) −4.00000 −0.161165
\(617\) 6.00000i 0.241551i −0.992680 0.120775i \(-0.961462\pi\)
0.992680 0.120775i \(-0.0385381\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −16.0000 −0.641542
\(623\) 2.00000i 0.0801283i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 6.00000i 0.239808i
\(627\) 0 0
\(628\) 22.0000i 0.877896i
\(629\) 60.0000 2.39236
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 10.0000 0.397779
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 0 0
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) −8.00000 + 20.0000i −0.316723 + 0.791808i
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0000i 1.18493i −0.805597 0.592464i \(-0.798155\pi\)
0.805597 0.592464i \(-0.201845\pi\)
\(642\) 0 0
\(643\) −28.0000 −1.10421 −0.552106 0.833774i \(-0.686176\pi\)
−0.552106 + 0.833774i \(0.686176\pi\)
\(644\) 4.00000 0.157622
\(645\) 0 0
\(646\) 24.0000i 0.944267i
\(647\) −28.0000 −1.10079 −0.550397 0.834903i \(-0.685524\pi\)
−0.550397 + 0.834903i \(0.685524\pi\)
\(648\) 0 0
\(649\) 40.0000i 1.57014i
\(650\) 10.0000i 0.392232i
\(651\) 0 0
\(652\) 8.00000i 0.313304i
\(653\) 34.0000i 1.33052i 0.746611 + 0.665261i \(0.231680\pi\)
−0.746611 + 0.665261i \(0.768320\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 10.0000i 0.390434i
\(657\) 0 0
\(658\) −4.00000 −0.155936
\(659\) 44.0000i 1.71400i 0.515319 + 0.856998i \(0.327673\pi\)
−0.515319 + 0.856998i \(0.672327\pi\)
\(660\) 0 0
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 20.0000 0.777322
\(663\) 0 0
\(664\) 6.00000i 0.232845i
\(665\) 0 0
\(666\) 0 0
\(667\) 8.00000 20.0000i 0.309761 0.774403i
\(668\) −20.0000 −0.773823
\(669\) 0 0
\(670\) 0 0
\(671\) 56.0000 2.16186
\(672\) 0 0
\(673\) −2.00000 −0.0770943 −0.0385472 0.999257i \(-0.512273\pi\)
−0.0385472 + 0.999257i \(0.512273\pi\)
\(674\) −36.0000 −1.38667
\(675\) 0 0
\(676\) 9.00000 0.346154
\(677\) 6.00000i 0.230599i −0.993331 0.115299i \(-0.963217\pi\)
0.993331 0.115299i \(-0.0367827\pi\)
\(678\) 0 0
\(679\) 8.00000i 0.307012i
\(680\) 0 0
\(681\) 0 0
\(682\) 8.00000i 0.306336i
\(683\) −30.0000 −1.14792 −0.573959 0.818884i \(-0.694593\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1.00000i 0.0381802i
\(687\) 0 0
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 36.0000 1.36950 0.684752 0.728776i \(-0.259910\pi\)
0.684752 + 0.728776i \(0.259910\pi\)
\(692\) −8.00000 −0.304114
\(693\) 0 0
\(694\) 22.0000i 0.835109i
\(695\) 0 0
\(696\) 0 0
\(697\) −60.0000 −2.27266
\(698\) 26.0000i 0.984115i
\(699\) 0 0
\(700\) −5.00000 −0.188982
\(701\) −12.0000 −0.453234 −0.226617 0.973984i \(-0.572767\pi\)
−0.226617 + 0.973984i \(0.572767\pi\)
\(702\) 0 0
\(703\) 40.0000 1.50863
\(704\) 4.00000i 0.150756i
\(705\) 0 0
\(706\) 14.0000i 0.526897i
\(707\) 18.0000i 0.676960i
\(708\) 0 0
\(709\) −18.0000 −0.676004 −0.338002 0.941145i \(-0.609751\pi\)
−0.338002 + 0.941145i \(0.609751\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −2.00000 −0.0749532
\(713\) 8.00000i 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) −22.0000 −0.822179
\(717\) 0 0
\(718\) 24.0000 0.895672
\(719\) −36.0000 −1.34257 −0.671287 0.741198i \(-0.734258\pi\)
−0.671287 + 0.741198i \(0.734258\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000i 0.111648i
\(723\) 0 0
\(724\) −2.00000 −0.0743294
\(725\) −10.0000 + 25.0000i −0.371391 + 0.928477i
\(726\) 0 0
\(727\) 2.00000i 0.0741759i 0.999312 + 0.0370879i \(0.0118082\pi\)
−0.999312 + 0.0370879i \(0.988192\pi\)
\(728\) 2.00000i 0.0741249i
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 2.00000i 0.0738717i 0.999318 + 0.0369358i \(0.0117597\pi\)
−0.999318 + 0.0369358i \(0.988240\pi\)
\(734\) 34.0000 1.25496
\(735\) 0 0
\(736\) 4.00000i 0.147442i
\(737\) 0 0
\(738\) 0 0
\(739\) 40.0000i 1.47142i −0.677295 0.735712i \(-0.736848\pi\)
0.677295 0.735712i \(-0.263152\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 12.0000i 0.440534i
\(743\) 36.0000i 1.32071i 0.750953 + 0.660356i \(0.229595\pi\)
−0.750953 + 0.660356i \(0.770405\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 10.0000i 0.366126i
\(747\) 0 0
\(748\) −24.0000 −0.877527
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 14.0000i 0.510867i 0.966827 + 0.255434i \(0.0822182\pi\)
−0.966827 + 0.255434i \(0.917782\pi\)
\(752\) 4.00000i 0.145865i
\(753\) 0 0
\(754\) 10.0000 + 4.00000i 0.364179 + 0.145671i
\(755\) 0 0
\(756\) 0 0
\(757\) 10.0000i 0.363456i 0.983349 + 0.181728i \(0.0581691\pi\)
−0.983349 + 0.181728i \(0.941831\pi\)
\(758\) 20.0000 0.726433
\(759\) 0 0
\(760\) 0 0
\(761\) 38.0000 1.37750 0.688749 0.724999i \(-0.258160\pi\)
0.688749 + 0.724999i \(0.258160\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 12.0000i 0.434145i
\(765\) 0 0
\(766\) 32.0000i 1.15621i
\(767\) −20.0000 −0.722158
\(768\) 0 0
\(769\) 4.00000i 0.144244i 0.997396 + 0.0721218i \(0.0229770\pi\)
−0.997396 + 0.0721218i \(0.977023\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 12.0000i 0.431889i
\(773\) 6.00000i 0.215805i 0.994161 + 0.107903i \(0.0344134\pi\)
−0.994161 + 0.107903i \(0.965587\pi\)
\(774\) 0 0
\(775\) 10.0000i 0.359211i
\(776\) 8.00000 0.287183
\(777\) 0 0
\(778\) 10.0000 0.358517
\(779\) −40.0000 −1.43315
\(780\) 0 0
\(781\) 0 0
\(782\) 24.0000 0.858238
\(783\) 0 0
\(784\) 1.00000 0.0357143
\(785\) 0 0
\(786\) 0 0
\(787\) 8.00000 0.285169 0.142585 0.989783i \(-0.454459\pi\)
0.142585 + 0.989783i \(0.454459\pi\)
\(788\) −12.0000 −0.427482
\(789\) 0 0
\(790\) 0 0
\(791\) 18.0000i 0.640006i
\(792\) 0 0
\(793\) 28.0000i 0.994309i
\(794\) 26.0000i 0.922705i
\(795\) 0 0
\(796\) 0 0
\(797\) 30.0000i 1.06265i 0.847167 + 0.531327i \(0.178307\pi\)
−0.847167 + 0.531327i \(0.821693\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 5.00000i 0.176777i
\(801\) 0 0
\(802\) 10.0000i 0.353112i
\(803\) 16.0000 0.564628
\(804\) 0 0
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) 18.0000 0.633238
\(809\) 18.0000i 0.632846i 0.948618 + 0.316423i \(0.102482\pi\)
−0.948618 + 0.316423i \(0.897518\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 2.00000 5.00000i 0.0701862 0.175466i
\(813\) 0 0
\(814\) 40.0000i 1.40200i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −8.00000 −0.279713
\(819\) 0 0
\(820\) 0 0
\(821\) −20.0000 −0.698005 −0.349002 0.937122i \(-0.613479\pi\)
−0.349002 + 0.937122i \(0.613479\pi\)
\(822\) 0 0
\(823\) 54.0000i 1.88232i 0.337959 + 0.941161i \(0.390263\pi\)
−0.337959 + 0.941161i \(0.609737\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 10.0000i 0.347945i
\(827\) 20.0000i 0.695468i 0.937593 + 0.347734i \(0.113049\pi\)
−0.937593 + 0.347734i \(0.886951\pi\)
\(828\) 0 0
\(829\) 34.0000i 1.18087i −0.807086 0.590434i \(-0.798956\pi\)
0.807086 0.590434i \(-0.201044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 2.00000 0.0693375
\(833\) 6.00000i 0.207888i
\(834\) 0 0
\(835\) 0 0
\(836\) −16.0000 −0.553372
\(837\) 0 0
\(838\) 30.0000i 1.03633i
\(839\) 8.00000i 0.276191i −0.990419 0.138095i \(-0.955902\pi\)
0.990419 0.138095i \(-0.0440980\pi\)
\(840\) 0 0
\(841\) −21.0000 20.0000i −0.724138 0.689655i
\(842\) −10.0000 −0.344623
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 5.00000 0.171802
\(848\) 12.0000 0.412082
\(849\) 0 0
\(850\) −30.0000 −1.02899
\(851\) 40.0000i 1.37118i
\(852\) 0 0
\(853\) 26.0000i 0.890223i 0.895475 + 0.445112i \(0.146836\pi\)
−0.895475 + 0.445112i \(0.853164\pi\)
\(854\) −14.0000 −0.479070
\(855\) 0 0
\(856\) 6.00000i 0.205076i
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) 40.0000i 1.36478i 0.730987 + 0.682391i \(0.239060\pi\)
−0.730987 + 0.682391i \(0.760940\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 12.0000i 0.408722i
\(863\) 36.0000 1.22545 0.612727 0.790295i \(-0.290072\pi\)
0.612727 + 0.790295i \(0.290072\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −12.0000 −0.407777
\(867\) 0 0
\(868\) 2.00000i 0.0678844i
\(869\) −40.0000 −1.35691
\(870\) 0 0
\(871\) 0 0
\(872\) 10.0000i 0.338643i
\(873\) 0 0
\(874\) 16.0000 0.541208
\(875\) 0 0
\(876\) 0 0
\(877\) −38.0000 −1.28317 −0.641584 0.767052i \(-0.721723\pi\)
−0.641584 + 0.767052i \(0.721723\pi\)
\(878\) 8.00000i 0.269987i
\(879\) 0 0
\(880\) 0 0
\(881\) 54.0000i 1.81931i −0.415369 0.909653i \(-0.636347\pi\)
0.415369 0.909653i \(-0.363653\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 12.0000i 0.403604i
\(885\) 0 0
\(886\) 20.0000 0.671913
\(887\) 20.0000i 0.671534i 0.941945 + 0.335767i \(0.108996\pi\)
−0.941945 + 0.335767i \(0.891004\pi\)
\(888\) 0 0
\(889\) 14.0000i 0.469545i
\(890\) 0 0
\(891\) 0 0
\(892\) −16.0000 −0.535720
\(893\) −16.0000 −0.535420
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000i 0.0334077i
\(897\) 0 0
\(898\) −10.0000 −0.333704
\(899\) 10.0000 + 4.00000i 0.333519 + 0.133407i
\(900\) 0 0
\(901\) 72.0000i 2.39867i
\(902\) 40.0000i 1.33185i
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) 0 0
\(906\) 0 0
\(907\) 20.0000i 0.664089i −0.943264 0.332045i \(-0.892262\pi\)
0.943264 0.332045i \(-0.107738\pi\)
\(908\) 2.00000 0.0663723
\(909\) 0 0
\(910\) 0 0
\(911\) 20.0000i 0.662630i −0.943520 0.331315i \(-0.892508\pi\)
0.943520 0.331315i \(-0.107492\pi\)
\(912\) 0 0
\(913\) 24.0000i 0.794284i
\(914\) 30.0000i 0.992312i
\(915\) 0 0
\(916\) 6.00000i 0.198246i
\(917\) 4.00000i 0.132092i
\(918\) 0 0
\(919\) −56.0000 −1.84727 −0.923635 0.383274i \(-0.874797\pi\)
−0.923635 + 0.383274i \(0.874797\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 18.0000 0.592798
\(923\) 0 0
\(924\) 0 0
\(925\) 50.0000i 1.64399i
\(926\) 32.0000i 1.05159i
\(927\) 0 0
\(928\) −5.00000 2.00000i −0.164133 0.0656532i
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) 0 0
\(931\) 4.00000i 0.131095i
\(932\) 26.0000 0.851658
\(933\) 0 0
\(934\) 36.0000 1.17796
\(935\) 0 0
\(936\) 0 0
\(937\) 50.0000 1.63343 0.816714 0.577042i \(-0.195793\pi\)
0.816714 + 0.577042i \(0.195793\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −40.0000 −1.30396 −0.651981 0.758235i \(-0.726062\pi\)
−0.651981 + 0.758235i \(0.726062\pi\)
\(942\) 0 0
\(943\) 40.0000i 1.30258i
\(944\) 10.0000 0.325472
\(945\) 0 0
\(946\) 0 0
\(947\) 36.0000i 1.16984i −0.811090 0.584921i \(-0.801125\pi\)
0.811090 0.584921i \(-0.198875\pi\)
\(948\) 0 0
\(949\) 8.00000i 0.259691i
\(950\) −20.0000 −0.648886
\(951\) 0 0
\(952\) 6.00000 0.194461
\(953\) −46.0000 −1.49009 −0.745043 0.667016i \(-0.767571\pi\)
−0.745043 + 0.667016i \(0.767571\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 36.0000 1.16311
\(959\) 14.0000i 0.452084i
\(960\) 0 0
\(961\) 27.0000 0.870968
\(962\) 20.0000 0.644826
\(963\) 0 0
\(964\) 22.0000 0.708572
\(965\) 0 0
\(966\) 0 0
\(967\) 6.00000i 0.192947i −0.995336 0.0964735i \(-0.969244\pi\)
0.995336 0.0964735i \(-0.0307563\pi\)
\(968\) 5.00000i 0.160706i
\(969\) 0 0
\(970\) 0 0
\(971\) 20.0000i 0.641831i 0.947108 + 0.320915i \(0.103990\pi\)
−0.947108 + 0.320915i \(0.896010\pi\)
\(972\) 0 0
\(973\) −8.00000 −0.256468
\(974\) 32.0000i 1.02535i
\(975\) 0 0
\(976\) 14.0000i 0.448129i
\(977\) 14.0000 0.447900 0.223950 0.974601i \(-0.428105\pi\)
0.223950 + 0.974601i \(0.428105\pi\)
\(978\) 0 0
\(979\) 8.00000 0.255681
\(980\) 0 0
\(981\) 0 0
\(982\) 12.0000 0.382935
\(983\) 48.0000i 1.53096i 0.643458 + 0.765481i \(0.277499\pi\)
−0.643458 + 0.765481i \(0.722501\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 12.0000 30.0000i 0.382158 0.955395i
\(987\) 0 0
\(988\) 8.00000i 0.254514i
\(989\) 0 0
\(990\) 0 0
\(991\) 56.0000 1.77890 0.889449 0.457034i \(-0.151088\pi\)
0.889449 + 0.457034i \(0.151088\pi\)
\(992\) 2.00000 0.0635001
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 26.0000i 0.823428i −0.911313 0.411714i \(-0.864930\pi\)
0.911313 0.411714i \(-0.135070\pi\)
\(998\) 32.0000i 1.01294i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3654.2.g.e.2899.1 2
3.2 odd 2 1218.2.g.b.463.2 yes 2
29.28 even 2 inner 3654.2.g.e.2899.2 2
87.86 odd 2 1218.2.g.b.463.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1218.2.g.b.463.1 2 87.86 odd 2
1218.2.g.b.463.2 yes 2 3.2 odd 2
3654.2.g.e.2899.1 2 1.1 even 1 trivial
3654.2.g.e.2899.2 2 29.28 even 2 inner