Properties

Label 3645.2.a.g.1.6
Level $3645$
Weight $2$
Character 3645.1
Self dual yes
Analytic conductor $29.105$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3645,2,Mod(1,3645)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3645.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3645, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3645 = 3^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3645.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,-3,0,9,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(29.1054715368\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 3 x^{14} - 15 x^{13} + 47 x^{12} + 84 x^{11} - 279 x^{10} - 219 x^{9} + 783 x^{8} + 279 x^{7} + \cdots + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(1.30569\) of defining polynomial
Character \(\chi\) \(=\) 3645.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.30569 q^{2} -0.295165 q^{4} +1.00000 q^{5} +0.875317 q^{7} +2.99678 q^{8} -1.30569 q^{10} +2.41809 q^{11} +0.511284 q^{13} -1.14290 q^{14} -3.32255 q^{16} -7.14686 q^{17} +1.42378 q^{19} -0.295165 q^{20} -3.15729 q^{22} -2.21921 q^{23} +1.00000 q^{25} -0.667581 q^{26} -0.258363 q^{28} +5.58162 q^{29} -4.33407 q^{31} -1.65533 q^{32} +9.33161 q^{34} +0.875317 q^{35} -4.34834 q^{37} -1.85902 q^{38} +2.99678 q^{40} -9.25117 q^{41} -10.3472 q^{43} -0.713737 q^{44} +2.89761 q^{46} +10.2588 q^{47} -6.23382 q^{49} -1.30569 q^{50} -0.150913 q^{52} -1.32921 q^{53} +2.41809 q^{55} +2.62314 q^{56} -7.28788 q^{58} +4.76495 q^{59} -13.2046 q^{61} +5.65897 q^{62} +8.80646 q^{64} +0.511284 q^{65} -2.72949 q^{67} +2.10950 q^{68} -1.14290 q^{70} -4.06901 q^{71} -16.3419 q^{73} +5.67760 q^{74} -0.420251 q^{76} +2.11660 q^{77} +6.44868 q^{79} -3.32255 q^{80} +12.0792 q^{82} +10.7958 q^{83} -7.14686 q^{85} +13.5102 q^{86} +7.24650 q^{88} -8.70945 q^{89} +0.447536 q^{91} +0.655033 q^{92} -13.3949 q^{94} +1.42378 q^{95} +15.3410 q^{97} +8.13946 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 3 q^{2} + 9 q^{4} + 15 q^{5} - 12 q^{7} - 9 q^{8} - 3 q^{10} - 12 q^{13} - 3 q^{16} - 12 q^{17} - 24 q^{19} + 9 q^{20} - 18 q^{22} - 18 q^{23} + 15 q^{25} + 9 q^{26} - 30 q^{28} + 3 q^{29} - 24 q^{31}+ \cdots - 15 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30569 −0.923265 −0.461632 0.887071i \(-0.652736\pi\)
−0.461632 + 0.887071i \(0.652736\pi\)
\(3\) 0 0
\(4\) −0.295165 −0.147582
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 0.875317 0.330839 0.165419 0.986223i \(-0.447102\pi\)
0.165419 + 0.986223i \(0.447102\pi\)
\(8\) 2.99678 1.05952
\(9\) 0 0
\(10\) −1.30569 −0.412896
\(11\) 2.41809 0.729083 0.364541 0.931187i \(-0.381226\pi\)
0.364541 + 0.931187i \(0.381226\pi\)
\(12\) 0 0
\(13\) 0.511284 0.141805 0.0709024 0.997483i \(-0.477412\pi\)
0.0709024 + 0.997483i \(0.477412\pi\)
\(14\) −1.14290 −0.305452
\(15\) 0 0
\(16\) −3.32255 −0.830637
\(17\) −7.14686 −1.73337 −0.866685 0.498856i \(-0.833754\pi\)
−0.866685 + 0.498856i \(0.833754\pi\)
\(18\) 0 0
\(19\) 1.42378 0.326638 0.163319 0.986573i \(-0.447780\pi\)
0.163319 + 0.986573i \(0.447780\pi\)
\(20\) −0.295165 −0.0660009
\(21\) 0 0
\(22\) −3.15729 −0.673136
\(23\) −2.21921 −0.462737 −0.231369 0.972866i \(-0.574320\pi\)
−0.231369 + 0.972866i \(0.574320\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −0.667581 −0.130923
\(27\) 0 0
\(28\) −0.258363 −0.0488260
\(29\) 5.58162 1.03648 0.518240 0.855235i \(-0.326587\pi\)
0.518240 + 0.855235i \(0.326587\pi\)
\(30\) 0 0
\(31\) −4.33407 −0.778422 −0.389211 0.921149i \(-0.627252\pi\)
−0.389211 + 0.921149i \(0.627252\pi\)
\(32\) −1.65533 −0.292625
\(33\) 0 0
\(34\) 9.33161 1.60036
\(35\) 0.875317 0.147956
\(36\) 0 0
\(37\) −4.34834 −0.714863 −0.357431 0.933939i \(-0.616347\pi\)
−0.357431 + 0.933939i \(0.616347\pi\)
\(38\) −1.85902 −0.301573
\(39\) 0 0
\(40\) 2.99678 0.473833
\(41\) −9.25117 −1.44479 −0.722395 0.691480i \(-0.756959\pi\)
−0.722395 + 0.691480i \(0.756959\pi\)
\(42\) 0 0
\(43\) −10.3472 −1.57793 −0.788965 0.614438i \(-0.789383\pi\)
−0.788965 + 0.614438i \(0.789383\pi\)
\(44\) −0.713737 −0.107600
\(45\) 0 0
\(46\) 2.89761 0.427229
\(47\) 10.2588 1.49640 0.748201 0.663472i \(-0.230918\pi\)
0.748201 + 0.663472i \(0.230918\pi\)
\(48\) 0 0
\(49\) −6.23382 −0.890546
\(50\) −1.30569 −0.184653
\(51\) 0 0
\(52\) −0.150913 −0.0209279
\(53\) −1.32921 −0.182581 −0.0912907 0.995824i \(-0.529099\pi\)
−0.0912907 + 0.995824i \(0.529099\pi\)
\(54\) 0 0
\(55\) 2.41809 0.326056
\(56\) 2.62314 0.350531
\(57\) 0 0
\(58\) −7.28788 −0.956946
\(59\) 4.76495 0.620343 0.310172 0.950681i \(-0.399614\pi\)
0.310172 + 0.950681i \(0.399614\pi\)
\(60\) 0 0
\(61\) −13.2046 −1.69067 −0.845336 0.534234i \(-0.820600\pi\)
−0.845336 + 0.534234i \(0.820600\pi\)
\(62\) 5.65897 0.718690
\(63\) 0 0
\(64\) 8.80646 1.10081
\(65\) 0.511284 0.0634170
\(66\) 0 0
\(67\) −2.72949 −0.333460 −0.166730 0.986003i \(-0.553321\pi\)
−0.166730 + 0.986003i \(0.553321\pi\)
\(68\) 2.10950 0.255815
\(69\) 0 0
\(70\) −1.14290 −0.136602
\(71\) −4.06901 −0.482902 −0.241451 0.970413i \(-0.577623\pi\)
−0.241451 + 0.970413i \(0.577623\pi\)
\(72\) 0 0
\(73\) −16.3419 −1.91268 −0.956340 0.292257i \(-0.905594\pi\)
−0.956340 + 0.292257i \(0.905594\pi\)
\(74\) 5.67760 0.660008
\(75\) 0 0
\(76\) −0.420251 −0.0482060
\(77\) 2.11660 0.241209
\(78\) 0 0
\(79\) 6.44868 0.725533 0.362766 0.931880i \(-0.381832\pi\)
0.362766 + 0.931880i \(0.381832\pi\)
\(80\) −3.32255 −0.371472
\(81\) 0 0
\(82\) 12.0792 1.33392
\(83\) 10.7958 1.18499 0.592497 0.805573i \(-0.298142\pi\)
0.592497 + 0.805573i \(0.298142\pi\)
\(84\) 0 0
\(85\) −7.14686 −0.775186
\(86\) 13.5102 1.45685
\(87\) 0 0
\(88\) 7.24650 0.772479
\(89\) −8.70945 −0.923199 −0.461600 0.887088i \(-0.652724\pi\)
−0.461600 + 0.887088i \(0.652724\pi\)
\(90\) 0 0
\(91\) 0.447536 0.0469145
\(92\) 0.655033 0.0682919
\(93\) 0 0
\(94\) −13.3949 −1.38157
\(95\) 1.42378 0.146077
\(96\) 0 0
\(97\) 15.3410 1.55764 0.778822 0.627244i \(-0.215817\pi\)
0.778822 + 0.627244i \(0.215817\pi\)
\(98\) 8.13946 0.822209
\(99\) 0 0
\(100\) −0.295165 −0.0295165
\(101\) 14.0624 1.39926 0.699631 0.714505i \(-0.253348\pi\)
0.699631 + 0.714505i \(0.253348\pi\)
\(102\) 0 0
\(103\) −17.3787 −1.71237 −0.856185 0.516669i \(-0.827172\pi\)
−0.856185 + 0.516669i \(0.827172\pi\)
\(104\) 1.53221 0.150245
\(105\) 0 0
\(106\) 1.73554 0.168571
\(107\) 12.3424 1.19318 0.596592 0.802545i \(-0.296521\pi\)
0.596592 + 0.802545i \(0.296521\pi\)
\(108\) 0 0
\(109\) 10.1941 0.976414 0.488207 0.872728i \(-0.337651\pi\)
0.488207 + 0.872728i \(0.337651\pi\)
\(110\) −3.15729 −0.301036
\(111\) 0 0
\(112\) −2.90828 −0.274807
\(113\) 3.51805 0.330950 0.165475 0.986214i \(-0.447084\pi\)
0.165475 + 0.986214i \(0.447084\pi\)
\(114\) 0 0
\(115\) −2.21921 −0.206942
\(116\) −1.64750 −0.152966
\(117\) 0 0
\(118\) −6.22156 −0.572741
\(119\) −6.25578 −0.573466
\(120\) 0 0
\(121\) −5.15282 −0.468438
\(122\) 17.2411 1.56094
\(123\) 0 0
\(124\) 1.27927 0.114882
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −4.76746 −0.423043 −0.211522 0.977373i \(-0.567842\pi\)
−0.211522 + 0.977373i \(0.567842\pi\)
\(128\) −8.18786 −0.723711
\(129\) 0 0
\(130\) −0.667581 −0.0585507
\(131\) 5.43969 0.475267 0.237634 0.971355i \(-0.423628\pi\)
0.237634 + 0.971355i \(0.423628\pi\)
\(132\) 0 0
\(133\) 1.24626 0.108065
\(134\) 3.56388 0.307872
\(135\) 0 0
\(136\) −21.4176 −1.83654
\(137\) 5.38051 0.459688 0.229844 0.973227i \(-0.426178\pi\)
0.229844 + 0.973227i \(0.426178\pi\)
\(138\) 0 0
\(139\) 5.81081 0.492866 0.246433 0.969160i \(-0.420741\pi\)
0.246433 + 0.969160i \(0.420741\pi\)
\(140\) −0.258363 −0.0218357
\(141\) 0 0
\(142\) 5.31288 0.445847
\(143\) 1.23633 0.103387
\(144\) 0 0
\(145\) 5.58162 0.463528
\(146\) 21.3376 1.76591
\(147\) 0 0
\(148\) 1.28348 0.105501
\(149\) −2.23916 −0.183439 −0.0917197 0.995785i \(-0.529236\pi\)
−0.0917197 + 0.995785i \(0.529236\pi\)
\(150\) 0 0
\(151\) −3.91707 −0.318766 −0.159383 0.987217i \(-0.550951\pi\)
−0.159383 + 0.987217i \(0.550951\pi\)
\(152\) 4.26676 0.346080
\(153\) 0 0
\(154\) −2.76363 −0.222700
\(155\) −4.33407 −0.348121
\(156\) 0 0
\(157\) −4.42110 −0.352842 −0.176421 0.984315i \(-0.556452\pi\)
−0.176421 + 0.984315i \(0.556452\pi\)
\(158\) −8.41999 −0.669859
\(159\) 0 0
\(160\) −1.65533 −0.130866
\(161\) −1.94251 −0.153092
\(162\) 0 0
\(163\) −7.00769 −0.548884 −0.274442 0.961604i \(-0.588493\pi\)
−0.274442 + 0.961604i \(0.588493\pi\)
\(164\) 2.73062 0.213226
\(165\) 0 0
\(166\) −14.0960 −1.09406
\(167\) −15.9979 −1.23795 −0.618976 0.785410i \(-0.712452\pi\)
−0.618976 + 0.785410i \(0.712452\pi\)
\(168\) 0 0
\(169\) −12.7386 −0.979891
\(170\) 9.33161 0.715702
\(171\) 0 0
\(172\) 3.05412 0.232875
\(173\) −17.1530 −1.30412 −0.652059 0.758168i \(-0.726095\pi\)
−0.652059 + 0.758168i \(0.726095\pi\)
\(174\) 0 0
\(175\) 0.875317 0.0661678
\(176\) −8.03423 −0.605603
\(177\) 0 0
\(178\) 11.3719 0.852357
\(179\) −3.59067 −0.268380 −0.134190 0.990956i \(-0.542843\pi\)
−0.134190 + 0.990956i \(0.542843\pi\)
\(180\) 0 0
\(181\) 21.9154 1.62896 0.814479 0.580193i \(-0.197023\pi\)
0.814479 + 0.580193i \(0.197023\pi\)
\(182\) −0.584345 −0.0433145
\(183\) 0 0
\(184\) −6.65049 −0.490281
\(185\) −4.34834 −0.319696
\(186\) 0 0
\(187\) −17.2818 −1.26377
\(188\) −3.02804 −0.220843
\(189\) 0 0
\(190\) −1.85902 −0.134868
\(191\) −20.4556 −1.48011 −0.740057 0.672544i \(-0.765202\pi\)
−0.740057 + 0.672544i \(0.765202\pi\)
\(192\) 0 0
\(193\) 6.30430 0.453793 0.226897 0.973919i \(-0.427142\pi\)
0.226897 + 0.973919i \(0.427142\pi\)
\(194\) −20.0307 −1.43812
\(195\) 0 0
\(196\) 1.84001 0.131429
\(197\) −21.0255 −1.49801 −0.749004 0.662565i \(-0.769468\pi\)
−0.749004 + 0.662565i \(0.769468\pi\)
\(198\) 0 0
\(199\) 0.692612 0.0490980 0.0245490 0.999699i \(-0.492185\pi\)
0.0245490 + 0.999699i \(0.492185\pi\)
\(200\) 2.99678 0.211904
\(201\) 0 0
\(202\) −18.3612 −1.29189
\(203\) 4.88569 0.342908
\(204\) 0 0
\(205\) −9.25117 −0.646130
\(206\) 22.6912 1.58097
\(207\) 0 0
\(208\) −1.69877 −0.117788
\(209\) 3.44284 0.238146
\(210\) 0 0
\(211\) −10.4254 −0.717713 −0.358857 0.933393i \(-0.616833\pi\)
−0.358857 + 0.933393i \(0.616833\pi\)
\(212\) 0.392337 0.0269458
\(213\) 0 0
\(214\) −16.1154 −1.10162
\(215\) −10.3472 −0.705672
\(216\) 0 0
\(217\) −3.79369 −0.257532
\(218\) −13.3103 −0.901489
\(219\) 0 0
\(220\) −0.713737 −0.0481201
\(221\) −3.65408 −0.245800
\(222\) 0 0
\(223\) 4.81521 0.322451 0.161225 0.986918i \(-0.448455\pi\)
0.161225 + 0.986918i \(0.448455\pi\)
\(224\) −1.44894 −0.0968116
\(225\) 0 0
\(226\) −4.59349 −0.305554
\(227\) 3.57710 0.237421 0.118710 0.992929i \(-0.462124\pi\)
0.118710 + 0.992929i \(0.462124\pi\)
\(228\) 0 0
\(229\) −6.87527 −0.454331 −0.227165 0.973856i \(-0.572946\pi\)
−0.227165 + 0.973856i \(0.572946\pi\)
\(230\) 2.89761 0.191063
\(231\) 0 0
\(232\) 16.7269 1.09817
\(233\) −7.54985 −0.494607 −0.247304 0.968938i \(-0.579544\pi\)
−0.247304 + 0.968938i \(0.579544\pi\)
\(234\) 0 0
\(235\) 10.2588 0.669211
\(236\) −1.40645 −0.0915518
\(237\) 0 0
\(238\) 8.16812 0.529461
\(239\) −7.78731 −0.503719 −0.251860 0.967764i \(-0.581042\pi\)
−0.251860 + 0.967764i \(0.581042\pi\)
\(240\) 0 0
\(241\) 12.2989 0.792239 0.396120 0.918199i \(-0.370357\pi\)
0.396120 + 0.918199i \(0.370357\pi\)
\(242\) 6.72800 0.432493
\(243\) 0 0
\(244\) 3.89753 0.249514
\(245\) −6.23382 −0.398264
\(246\) 0 0
\(247\) 0.727957 0.0463188
\(248\) −12.9883 −0.824756
\(249\) 0 0
\(250\) −1.30569 −0.0825793
\(251\) 22.7754 1.43757 0.718784 0.695233i \(-0.244699\pi\)
0.718784 + 0.695233i \(0.244699\pi\)
\(252\) 0 0
\(253\) −5.36626 −0.337374
\(254\) 6.22483 0.390581
\(255\) 0 0
\(256\) −6.92208 −0.432630
\(257\) −3.45438 −0.215478 −0.107739 0.994179i \(-0.534361\pi\)
−0.107739 + 0.994179i \(0.534361\pi\)
\(258\) 0 0
\(259\) −3.80618 −0.236504
\(260\) −0.150913 −0.00935924
\(261\) 0 0
\(262\) −7.10256 −0.438798
\(263\) −31.7543 −1.95805 −0.979027 0.203730i \(-0.934693\pi\)
−0.979027 + 0.203730i \(0.934693\pi\)
\(264\) 0 0
\(265\) −1.32921 −0.0816528
\(266\) −1.62723 −0.0997722
\(267\) 0 0
\(268\) 0.805650 0.0492129
\(269\) 9.71620 0.592407 0.296204 0.955125i \(-0.404279\pi\)
0.296204 + 0.955125i \(0.404279\pi\)
\(270\) 0 0
\(271\) −26.3970 −1.60351 −0.801753 0.597655i \(-0.796099\pi\)
−0.801753 + 0.597655i \(0.796099\pi\)
\(272\) 23.7458 1.43980
\(273\) 0 0
\(274\) −7.02530 −0.424414
\(275\) 2.41809 0.145817
\(276\) 0 0
\(277\) −5.64315 −0.339064 −0.169532 0.985525i \(-0.554226\pi\)
−0.169532 + 0.985525i \(0.554226\pi\)
\(278\) −7.58714 −0.455046
\(279\) 0 0
\(280\) 2.62314 0.156762
\(281\) 29.2188 1.74305 0.871524 0.490353i \(-0.163132\pi\)
0.871524 + 0.490353i \(0.163132\pi\)
\(282\) 0 0
\(283\) −12.2896 −0.730543 −0.365272 0.930901i \(-0.619024\pi\)
−0.365272 + 0.930901i \(0.619024\pi\)
\(284\) 1.20103 0.0712679
\(285\) 0 0
\(286\) −1.61427 −0.0954539
\(287\) −8.09771 −0.477993
\(288\) 0 0
\(289\) 34.0777 2.00457
\(290\) −7.28788 −0.427959
\(291\) 0 0
\(292\) 4.82357 0.282278
\(293\) 12.6899 0.741350 0.370675 0.928763i \(-0.379126\pi\)
0.370675 + 0.928763i \(0.379126\pi\)
\(294\) 0 0
\(295\) 4.76495 0.277426
\(296\) −13.0310 −0.757413
\(297\) 0 0
\(298\) 2.92366 0.169363
\(299\) −1.13465 −0.0656184
\(300\) 0 0
\(301\) −9.05707 −0.522041
\(302\) 5.11449 0.294306
\(303\) 0 0
\(304\) −4.73058 −0.271318
\(305\) −13.2046 −0.756092
\(306\) 0 0
\(307\) −14.3449 −0.818705 −0.409352 0.912376i \(-0.634245\pi\)
−0.409352 + 0.912376i \(0.634245\pi\)
\(308\) −0.624746 −0.0355982
\(309\) 0 0
\(310\) 5.65897 0.321408
\(311\) −3.98915 −0.226204 −0.113102 0.993583i \(-0.536079\pi\)
−0.113102 + 0.993583i \(0.536079\pi\)
\(312\) 0 0
\(313\) −1.01036 −0.0571089 −0.0285545 0.999592i \(-0.509090\pi\)
−0.0285545 + 0.999592i \(0.509090\pi\)
\(314\) 5.77260 0.325767
\(315\) 0 0
\(316\) −1.90342 −0.107076
\(317\) 0.329357 0.0184986 0.00924928 0.999957i \(-0.497056\pi\)
0.00924928 + 0.999957i \(0.497056\pi\)
\(318\) 0 0
\(319\) 13.4969 0.755680
\(320\) 8.80646 0.492296
\(321\) 0 0
\(322\) 2.53633 0.141344
\(323\) −10.1756 −0.566184
\(324\) 0 0
\(325\) 0.511284 0.0283610
\(326\) 9.14989 0.506766
\(327\) 0 0
\(328\) −27.7237 −1.53079
\(329\) 8.97972 0.495068
\(330\) 0 0
\(331\) −8.73866 −0.480320 −0.240160 0.970733i \(-0.577200\pi\)
−0.240160 + 0.970733i \(0.577200\pi\)
\(332\) −3.18654 −0.174884
\(333\) 0 0
\(334\) 20.8883 1.14296
\(335\) −2.72949 −0.149128
\(336\) 0 0
\(337\) −29.3357 −1.59802 −0.799009 0.601319i \(-0.794642\pi\)
−0.799009 + 0.601319i \(0.794642\pi\)
\(338\) 16.6327 0.904699
\(339\) 0 0
\(340\) 2.10950 0.114404
\(341\) −10.4802 −0.567534
\(342\) 0 0
\(343\) −11.5838 −0.625466
\(344\) −31.0082 −1.67185
\(345\) 0 0
\(346\) 22.3966 1.20405
\(347\) 15.6418 0.839698 0.419849 0.907594i \(-0.362083\pi\)
0.419849 + 0.907594i \(0.362083\pi\)
\(348\) 0 0
\(349\) −17.7955 −0.952570 −0.476285 0.879291i \(-0.658017\pi\)
−0.476285 + 0.879291i \(0.658017\pi\)
\(350\) −1.14290 −0.0610904
\(351\) 0 0
\(352\) −4.00276 −0.213348
\(353\) −26.9462 −1.43420 −0.717100 0.696970i \(-0.754531\pi\)
−0.717100 + 0.696970i \(0.754531\pi\)
\(354\) 0 0
\(355\) −4.06901 −0.215961
\(356\) 2.57072 0.136248
\(357\) 0 0
\(358\) 4.68832 0.247785
\(359\) 5.96933 0.315049 0.157525 0.987515i \(-0.449649\pi\)
0.157525 + 0.987515i \(0.449649\pi\)
\(360\) 0 0
\(361\) −16.9728 −0.893308
\(362\) −28.6148 −1.50396
\(363\) 0 0
\(364\) −0.132097 −0.00692376
\(365\) −16.3419 −0.855376
\(366\) 0 0
\(367\) −25.3254 −1.32198 −0.660988 0.750396i \(-0.729863\pi\)
−0.660988 + 0.750396i \(0.729863\pi\)
\(368\) 7.37343 0.384367
\(369\) 0 0
\(370\) 5.67760 0.295164
\(371\) −1.16348 −0.0604050
\(372\) 0 0
\(373\) 7.68704 0.398020 0.199010 0.979997i \(-0.436227\pi\)
0.199010 + 0.979997i \(0.436227\pi\)
\(374\) 22.5647 1.16679
\(375\) 0 0
\(376\) 30.7434 1.58547
\(377\) 2.85380 0.146978
\(378\) 0 0
\(379\) 34.2011 1.75679 0.878397 0.477932i \(-0.158613\pi\)
0.878397 + 0.477932i \(0.158613\pi\)
\(380\) −0.420251 −0.0215584
\(381\) 0 0
\(382\) 26.7087 1.36654
\(383\) −4.64116 −0.237152 −0.118576 0.992945i \(-0.537833\pi\)
−0.118576 + 0.992945i \(0.537833\pi\)
\(384\) 0 0
\(385\) 2.11660 0.107872
\(386\) −8.23148 −0.418971
\(387\) 0 0
\(388\) −4.52813 −0.229881
\(389\) −5.29722 −0.268580 −0.134290 0.990942i \(-0.542875\pi\)
−0.134290 + 0.990942i \(0.542875\pi\)
\(390\) 0 0
\(391\) 15.8604 0.802095
\(392\) −18.6814 −0.943553
\(393\) 0 0
\(394\) 27.4529 1.38306
\(395\) 6.44868 0.324468
\(396\) 0 0
\(397\) −13.3367 −0.669352 −0.334676 0.942333i \(-0.608627\pi\)
−0.334676 + 0.942333i \(0.608627\pi\)
\(398\) −0.904339 −0.0453304
\(399\) 0 0
\(400\) −3.32255 −0.166127
\(401\) 0.445017 0.0222231 0.0111115 0.999938i \(-0.496463\pi\)
0.0111115 + 0.999938i \(0.496463\pi\)
\(402\) 0 0
\(403\) −2.21594 −0.110384
\(404\) −4.15073 −0.206506
\(405\) 0 0
\(406\) −6.37921 −0.316595
\(407\) −10.5147 −0.521194
\(408\) 0 0
\(409\) −9.40699 −0.465146 −0.232573 0.972579i \(-0.574714\pi\)
−0.232573 + 0.972579i \(0.574714\pi\)
\(410\) 12.0792 0.596549
\(411\) 0 0
\(412\) 5.12957 0.252716
\(413\) 4.17084 0.205234
\(414\) 0 0
\(415\) 10.7958 0.529945
\(416\) −0.846347 −0.0414956
\(417\) 0 0
\(418\) −4.49529 −0.219872
\(419\) 25.6132 1.25129 0.625644 0.780109i \(-0.284836\pi\)
0.625644 + 0.780109i \(0.284836\pi\)
\(420\) 0 0
\(421\) 8.30798 0.404906 0.202453 0.979292i \(-0.435109\pi\)
0.202453 + 0.979292i \(0.435109\pi\)
\(422\) 13.6124 0.662639
\(423\) 0 0
\(424\) −3.98336 −0.193449
\(425\) −7.14686 −0.346674
\(426\) 0 0
\(427\) −11.5582 −0.559340
\(428\) −3.64304 −0.176093
\(429\) 0 0
\(430\) 13.5102 0.651522
\(431\) −30.4309 −1.46580 −0.732902 0.680335i \(-0.761834\pi\)
−0.732902 + 0.680335i \(0.761834\pi\)
\(432\) 0 0
\(433\) −12.0997 −0.581475 −0.290737 0.956803i \(-0.593901\pi\)
−0.290737 + 0.956803i \(0.593901\pi\)
\(434\) 4.95339 0.237771
\(435\) 0 0
\(436\) −3.00893 −0.144102
\(437\) −3.15967 −0.151148
\(438\) 0 0
\(439\) 10.8885 0.519678 0.259839 0.965652i \(-0.416331\pi\)
0.259839 + 0.965652i \(0.416331\pi\)
\(440\) 7.24650 0.345463
\(441\) 0 0
\(442\) 4.77111 0.226938
\(443\) −24.0822 −1.14418 −0.572090 0.820191i \(-0.693867\pi\)
−0.572090 + 0.820191i \(0.693867\pi\)
\(444\) 0 0
\(445\) −8.70945 −0.412867
\(446\) −6.28719 −0.297707
\(447\) 0 0
\(448\) 7.70844 0.364190
\(449\) 2.46422 0.116294 0.0581469 0.998308i \(-0.481481\pi\)
0.0581469 + 0.998308i \(0.481481\pi\)
\(450\) 0 0
\(451\) −22.3702 −1.05337
\(452\) −1.03840 −0.0488424
\(453\) 0 0
\(454\) −4.67060 −0.219202
\(455\) 0.447536 0.0209808
\(456\) 0 0
\(457\) −16.5775 −0.775461 −0.387731 0.921773i \(-0.626741\pi\)
−0.387731 + 0.921773i \(0.626741\pi\)
\(458\) 8.97700 0.419468
\(459\) 0 0
\(460\) 0.655033 0.0305411
\(461\) 22.8463 1.06406 0.532029 0.846726i \(-0.321430\pi\)
0.532029 + 0.846726i \(0.321430\pi\)
\(462\) 0 0
\(463\) 31.9280 1.48382 0.741909 0.670501i \(-0.233921\pi\)
0.741909 + 0.670501i \(0.233921\pi\)
\(464\) −18.5452 −0.860939
\(465\) 0 0
\(466\) 9.85779 0.456653
\(467\) −6.09121 −0.281868 −0.140934 0.990019i \(-0.545010\pi\)
−0.140934 + 0.990019i \(0.545010\pi\)
\(468\) 0 0
\(469\) −2.38917 −0.110322
\(470\) −13.3949 −0.617859
\(471\) 0 0
\(472\) 14.2795 0.657267
\(473\) −25.0204 −1.15044
\(474\) 0 0
\(475\) 1.42378 0.0653276
\(476\) 1.84649 0.0846335
\(477\) 0 0
\(478\) 10.1678 0.465066
\(479\) 27.7101 1.26610 0.633052 0.774109i \(-0.281802\pi\)
0.633052 + 0.774109i \(0.281802\pi\)
\(480\) 0 0
\(481\) −2.22324 −0.101371
\(482\) −16.0585 −0.731447
\(483\) 0 0
\(484\) 1.52093 0.0691333
\(485\) 15.3410 0.696600
\(486\) 0 0
\(487\) 5.25389 0.238076 0.119038 0.992890i \(-0.462019\pi\)
0.119038 + 0.992890i \(0.462019\pi\)
\(488\) −39.5712 −1.79131
\(489\) 0 0
\(490\) 8.13946 0.367703
\(491\) 30.0480 1.35605 0.678023 0.735041i \(-0.262837\pi\)
0.678023 + 0.735041i \(0.262837\pi\)
\(492\) 0 0
\(493\) −39.8911 −1.79660
\(494\) −0.950489 −0.0427645
\(495\) 0 0
\(496\) 14.4002 0.646586
\(497\) −3.56167 −0.159763
\(498\) 0 0
\(499\) 29.9091 1.33892 0.669458 0.742850i \(-0.266527\pi\)
0.669458 + 0.742850i \(0.266527\pi\)
\(500\) −0.295165 −0.0132002
\(501\) 0 0
\(502\) −29.7376 −1.32726
\(503\) −16.7420 −0.746489 −0.373244 0.927733i \(-0.621755\pi\)
−0.373244 + 0.927733i \(0.621755\pi\)
\(504\) 0 0
\(505\) 14.0624 0.625769
\(506\) 7.00669 0.311485
\(507\) 0 0
\(508\) 1.40719 0.0624338
\(509\) −24.8195 −1.10011 −0.550053 0.835130i \(-0.685392\pi\)
−0.550053 + 0.835130i \(0.685392\pi\)
\(510\) 0 0
\(511\) −14.3044 −0.632789
\(512\) 25.4138 1.12314
\(513\) 0 0
\(514\) 4.51036 0.198943
\(515\) −17.3787 −0.765795
\(516\) 0 0
\(517\) 24.8068 1.09100
\(518\) 4.96970 0.218356
\(519\) 0 0
\(520\) 1.53221 0.0671917
\(521\) −13.4986 −0.591383 −0.295692 0.955283i \(-0.595550\pi\)
−0.295692 + 0.955283i \(0.595550\pi\)
\(522\) 0 0
\(523\) −19.4838 −0.851967 −0.425983 0.904731i \(-0.640072\pi\)
−0.425983 + 0.904731i \(0.640072\pi\)
\(524\) −1.60560 −0.0701412
\(525\) 0 0
\(526\) 41.4614 1.80780
\(527\) 30.9750 1.34929
\(528\) 0 0
\(529\) −18.0751 −0.785874
\(530\) 1.73554 0.0753872
\(531\) 0 0
\(532\) −0.367853 −0.0159484
\(533\) −4.72998 −0.204878
\(534\) 0 0
\(535\) 12.3424 0.533608
\(536\) −8.17969 −0.353309
\(537\) 0 0
\(538\) −12.6864 −0.546949
\(539\) −15.0740 −0.649281
\(540\) 0 0
\(541\) 29.9338 1.28695 0.643476 0.765466i \(-0.277491\pi\)
0.643476 + 0.765466i \(0.277491\pi\)
\(542\) 34.4664 1.48046
\(543\) 0 0
\(544\) 11.8305 0.507227
\(545\) 10.1941 0.436666
\(546\) 0 0
\(547\) 8.44227 0.360965 0.180483 0.983578i \(-0.442234\pi\)
0.180483 + 0.983578i \(0.442234\pi\)
\(548\) −1.58814 −0.0678419
\(549\) 0 0
\(550\) −3.15729 −0.134627
\(551\) 7.94701 0.338554
\(552\) 0 0
\(553\) 5.64464 0.240034
\(554\) 7.36823 0.313046
\(555\) 0 0
\(556\) −1.71515 −0.0727385
\(557\) −10.7951 −0.457402 −0.228701 0.973497i \(-0.573448\pi\)
−0.228701 + 0.973497i \(0.573448\pi\)
\(558\) 0 0
\(559\) −5.29035 −0.223758
\(560\) −2.90828 −0.122897
\(561\) 0 0
\(562\) −38.1508 −1.60929
\(563\) −15.5336 −0.654661 −0.327331 0.944910i \(-0.606149\pi\)
−0.327331 + 0.944910i \(0.606149\pi\)
\(564\) 0 0
\(565\) 3.51805 0.148005
\(566\) 16.0465 0.674485
\(567\) 0 0
\(568\) −12.1939 −0.511646
\(569\) −36.4539 −1.52823 −0.764113 0.645083i \(-0.776823\pi\)
−0.764113 + 0.645083i \(0.776823\pi\)
\(570\) 0 0
\(571\) −24.2843 −1.01627 −0.508133 0.861279i \(-0.669664\pi\)
−0.508133 + 0.861279i \(0.669664\pi\)
\(572\) −0.364922 −0.0152582
\(573\) 0 0
\(574\) 10.5731 0.441314
\(575\) −2.21921 −0.0925475
\(576\) 0 0
\(577\) 44.0901 1.83549 0.917747 0.397166i \(-0.130006\pi\)
0.917747 + 0.397166i \(0.130006\pi\)
\(578\) −44.4950 −1.85075
\(579\) 0 0
\(580\) −1.64750 −0.0684087
\(581\) 9.44975 0.392042
\(582\) 0 0
\(583\) −3.21416 −0.133117
\(584\) −48.9732 −2.02653
\(585\) 0 0
\(586\) −16.5691 −0.684462
\(587\) 7.39258 0.305124 0.152562 0.988294i \(-0.451248\pi\)
0.152562 + 0.988294i \(0.451248\pi\)
\(588\) 0 0
\(589\) −6.17077 −0.254262
\(590\) −6.22156 −0.256137
\(591\) 0 0
\(592\) 14.4476 0.593791
\(593\) 33.5458 1.37756 0.688781 0.724969i \(-0.258146\pi\)
0.688781 + 0.724969i \(0.258146\pi\)
\(594\) 0 0
\(595\) −6.25578 −0.256462
\(596\) 0.660923 0.0270725
\(597\) 0 0
\(598\) 1.48150 0.0605831
\(599\) −6.83459 −0.279254 −0.139627 0.990204i \(-0.544590\pi\)
−0.139627 + 0.990204i \(0.544590\pi\)
\(600\) 0 0
\(601\) 21.9144 0.893905 0.446953 0.894558i \(-0.352509\pi\)
0.446953 + 0.894558i \(0.352509\pi\)
\(602\) 11.8257 0.481982
\(603\) 0 0
\(604\) 1.15618 0.0470444
\(605\) −5.15282 −0.209492
\(606\) 0 0
\(607\) 42.1226 1.70971 0.854853 0.518871i \(-0.173648\pi\)
0.854853 + 0.518871i \(0.173648\pi\)
\(608\) −2.35684 −0.0955823
\(609\) 0 0
\(610\) 17.2411 0.698073
\(611\) 5.24517 0.212197
\(612\) 0 0
\(613\) −1.28897 −0.0520610 −0.0260305 0.999661i \(-0.508287\pi\)
−0.0260305 + 0.999661i \(0.508287\pi\)
\(614\) 18.7300 0.755881
\(615\) 0 0
\(616\) 6.34299 0.255566
\(617\) 8.24737 0.332027 0.166013 0.986124i \(-0.446911\pi\)
0.166013 + 0.986124i \(0.446911\pi\)
\(618\) 0 0
\(619\) 35.6864 1.43436 0.717179 0.696889i \(-0.245433\pi\)
0.717179 + 0.696889i \(0.245433\pi\)
\(620\) 1.27927 0.0513766
\(621\) 0 0
\(622\) 5.20861 0.208846
\(623\) −7.62353 −0.305430
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 1.31922 0.0527267
\(627\) 0 0
\(628\) 1.30495 0.0520733
\(629\) 31.0770 1.23912
\(630\) 0 0
\(631\) −14.0413 −0.558975 −0.279487 0.960149i \(-0.590165\pi\)
−0.279487 + 0.960149i \(0.590165\pi\)
\(632\) 19.3253 0.768718
\(633\) 0 0
\(634\) −0.430040 −0.0170791
\(635\) −4.76746 −0.189191
\(636\) 0 0
\(637\) −3.18725 −0.126284
\(638\) −17.6228 −0.697693
\(639\) 0 0
\(640\) −8.18786 −0.323654
\(641\) 13.5576 0.535491 0.267746 0.963490i \(-0.413721\pi\)
0.267746 + 0.963490i \(0.413721\pi\)
\(642\) 0 0
\(643\) 1.68805 0.0665702 0.0332851 0.999446i \(-0.489403\pi\)
0.0332851 + 0.999446i \(0.489403\pi\)
\(644\) 0.573362 0.0225936
\(645\) 0 0
\(646\) 13.2862 0.522738
\(647\) −42.5869 −1.67426 −0.837132 0.547001i \(-0.815769\pi\)
−0.837132 + 0.547001i \(0.815769\pi\)
\(648\) 0 0
\(649\) 11.5221 0.452281
\(650\) −0.667581 −0.0261847
\(651\) 0 0
\(652\) 2.06842 0.0810057
\(653\) 14.8606 0.581541 0.290770 0.956793i \(-0.406088\pi\)
0.290770 + 0.956793i \(0.406088\pi\)
\(654\) 0 0
\(655\) 5.43969 0.212546
\(656\) 30.7375 1.20010
\(657\) 0 0
\(658\) −11.7248 −0.457079
\(659\) −6.78383 −0.264261 −0.132130 0.991232i \(-0.542182\pi\)
−0.132130 + 0.991232i \(0.542182\pi\)
\(660\) 0 0
\(661\) 5.92404 0.230418 0.115209 0.993341i \(-0.463246\pi\)
0.115209 + 0.993341i \(0.463246\pi\)
\(662\) 11.4100 0.443463
\(663\) 0 0
\(664\) 32.3527 1.25553
\(665\) 1.24626 0.0483279
\(666\) 0 0
\(667\) −12.3868 −0.479618
\(668\) 4.72201 0.182700
\(669\) 0 0
\(670\) 3.56388 0.137685
\(671\) −31.9299 −1.23264
\(672\) 0 0
\(673\) −29.1472 −1.12354 −0.561771 0.827293i \(-0.689880\pi\)
−0.561771 + 0.827293i \(0.689880\pi\)
\(674\) 38.3034 1.47539
\(675\) 0 0
\(676\) 3.75999 0.144615
\(677\) 3.51001 0.134901 0.0674504 0.997723i \(-0.478514\pi\)
0.0674504 + 0.997723i \(0.478514\pi\)
\(678\) 0 0
\(679\) 13.4283 0.515330
\(680\) −21.4176 −0.821327
\(681\) 0 0
\(682\) 13.6839 0.523984
\(683\) −13.7747 −0.527075 −0.263537 0.964649i \(-0.584889\pi\)
−0.263537 + 0.964649i \(0.584889\pi\)
\(684\) 0 0
\(685\) 5.38051 0.205579
\(686\) 15.1249 0.577471
\(687\) 0 0
\(688\) 34.3790 1.31069
\(689\) −0.679605 −0.0258909
\(690\) 0 0
\(691\) −20.2774 −0.771389 −0.385694 0.922627i \(-0.626038\pi\)
−0.385694 + 0.922627i \(0.626038\pi\)
\(692\) 5.06296 0.192465
\(693\) 0 0
\(694\) −20.4234 −0.775263
\(695\) 5.81081 0.220417
\(696\) 0 0
\(697\) 66.1169 2.50436
\(698\) 23.2354 0.879474
\(699\) 0 0
\(700\) −0.258363 −0.00976521
\(701\) −6.62140 −0.250087 −0.125043 0.992151i \(-0.539907\pi\)
−0.125043 + 0.992151i \(0.539907\pi\)
\(702\) 0 0
\(703\) −6.19109 −0.233501
\(704\) 21.2948 0.802579
\(705\) 0 0
\(706\) 35.1834 1.32415
\(707\) 12.3091 0.462930
\(708\) 0 0
\(709\) −9.75038 −0.366183 −0.183092 0.983096i \(-0.558610\pi\)
−0.183092 + 0.983096i \(0.558610\pi\)
\(710\) 5.31288 0.199389
\(711\) 0 0
\(712\) −26.1003 −0.978150
\(713\) 9.61822 0.360205
\(714\) 0 0
\(715\) 1.23633 0.0462363
\(716\) 1.05984 0.0396081
\(717\) 0 0
\(718\) −7.79412 −0.290874
\(719\) 35.1862 1.31222 0.656112 0.754663i \(-0.272200\pi\)
0.656112 + 0.754663i \(0.272200\pi\)
\(720\) 0 0
\(721\) −15.2118 −0.566519
\(722\) 22.1613 0.824759
\(723\) 0 0
\(724\) −6.46865 −0.240406
\(725\) 5.58162 0.207296
\(726\) 0 0
\(727\) −39.0744 −1.44919 −0.724595 0.689175i \(-0.757973\pi\)
−0.724595 + 0.689175i \(0.757973\pi\)
\(728\) 1.34117 0.0497070
\(729\) 0 0
\(730\) 21.3376 0.789739
\(731\) 73.9499 2.73514
\(732\) 0 0
\(733\) 34.2261 1.26417 0.632084 0.774900i \(-0.282200\pi\)
0.632084 + 0.774900i \(0.282200\pi\)
\(734\) 33.0672 1.22053
\(735\) 0 0
\(736\) 3.67354 0.135408
\(737\) −6.60017 −0.243120
\(738\) 0 0
\(739\) 9.27481 0.341180 0.170590 0.985342i \(-0.445433\pi\)
0.170590 + 0.985342i \(0.445433\pi\)
\(740\) 1.28348 0.0471816
\(741\) 0 0
\(742\) 1.51915 0.0557698
\(743\) −24.3655 −0.893883 −0.446941 0.894563i \(-0.647487\pi\)
−0.446941 + 0.894563i \(0.647487\pi\)
\(744\) 0 0
\(745\) −2.23916 −0.0820366
\(746\) −10.0369 −0.367478
\(747\) 0 0
\(748\) 5.10098 0.186510
\(749\) 10.8035 0.394752
\(750\) 0 0
\(751\) −41.4309 −1.51184 −0.755918 0.654666i \(-0.772809\pi\)
−0.755918 + 0.654666i \(0.772809\pi\)
\(752\) −34.0854 −1.24297
\(753\) 0 0
\(754\) −3.72618 −0.135700
\(755\) −3.91707 −0.142557
\(756\) 0 0
\(757\) −2.02213 −0.0734956 −0.0367478 0.999325i \(-0.511700\pi\)
−0.0367478 + 0.999325i \(0.511700\pi\)
\(758\) −44.6562 −1.62199
\(759\) 0 0
\(760\) 4.26676 0.154772
\(761\) −24.0178 −0.870646 −0.435323 0.900274i \(-0.643366\pi\)
−0.435323 + 0.900274i \(0.643366\pi\)
\(762\) 0 0
\(763\) 8.92304 0.323036
\(764\) 6.03777 0.218439
\(765\) 0 0
\(766\) 6.05993 0.218954
\(767\) 2.43624 0.0879676
\(768\) 0 0
\(769\) 3.52388 0.127074 0.0635371 0.997979i \(-0.479762\pi\)
0.0635371 + 0.997979i \(0.479762\pi\)
\(770\) −2.76363 −0.0995943
\(771\) 0 0
\(772\) −1.86081 −0.0669720
\(773\) 12.0905 0.434866 0.217433 0.976075i \(-0.430232\pi\)
0.217433 + 0.976075i \(0.430232\pi\)
\(774\) 0 0
\(775\) −4.33407 −0.155684
\(776\) 45.9737 1.65036
\(777\) 0 0
\(778\) 6.91654 0.247970
\(779\) −13.1717 −0.471923
\(780\) 0 0
\(781\) −9.83924 −0.352076
\(782\) −20.7088 −0.740546
\(783\) 0 0
\(784\) 20.7122 0.739720
\(785\) −4.42110 −0.157796
\(786\) 0 0
\(787\) −29.8291 −1.06329 −0.531646 0.846967i \(-0.678426\pi\)
−0.531646 + 0.846967i \(0.678426\pi\)
\(788\) 6.20600 0.221080
\(789\) 0 0
\(790\) −8.41999 −0.299570
\(791\) 3.07941 0.109491
\(792\) 0 0
\(793\) −6.75129 −0.239745
\(794\) 17.4137 0.617989
\(795\) 0 0
\(796\) −0.204435 −0.00724600
\(797\) −47.2619 −1.67410 −0.837051 0.547124i \(-0.815722\pi\)
−0.837051 + 0.547124i \(0.815722\pi\)
\(798\) 0 0
\(799\) −73.3183 −2.59382
\(800\) −1.65533 −0.0585249
\(801\) 0 0
\(802\) −0.581055 −0.0205178
\(803\) −39.5163 −1.39450
\(804\) 0 0
\(805\) −1.94251 −0.0684646
\(806\) 2.89334 0.101914
\(807\) 0 0
\(808\) 42.1419 1.48255
\(809\) −13.1706 −0.463052 −0.231526 0.972829i \(-0.574372\pi\)
−0.231526 + 0.972829i \(0.574372\pi\)
\(810\) 0 0
\(811\) 4.32307 0.151803 0.0759017 0.997115i \(-0.475816\pi\)
0.0759017 + 0.997115i \(0.475816\pi\)
\(812\) −1.44208 −0.0506072
\(813\) 0 0
\(814\) 13.7290 0.481200
\(815\) −7.00769 −0.245469
\(816\) 0 0
\(817\) −14.7321 −0.515412
\(818\) 12.2826 0.429453
\(819\) 0 0
\(820\) 2.73062 0.0953575
\(821\) −4.21823 −0.147217 −0.0736086 0.997287i \(-0.523452\pi\)
−0.0736086 + 0.997287i \(0.523452\pi\)
\(822\) 0 0
\(823\) −16.8374 −0.586915 −0.293458 0.955972i \(-0.594806\pi\)
−0.293458 + 0.955972i \(0.594806\pi\)
\(824\) −52.0801 −1.81429
\(825\) 0 0
\(826\) −5.44584 −0.189485
\(827\) −5.50934 −0.191579 −0.0957893 0.995402i \(-0.530537\pi\)
−0.0957893 + 0.995402i \(0.530537\pi\)
\(828\) 0 0
\(829\) 54.9072 1.90700 0.953502 0.301386i \(-0.0974494\pi\)
0.953502 + 0.301386i \(0.0974494\pi\)
\(830\) −14.0960 −0.489279
\(831\) 0 0
\(832\) 4.50260 0.156100
\(833\) 44.5523 1.54364
\(834\) 0 0
\(835\) −15.9979 −0.553629
\(836\) −1.01621 −0.0351462
\(837\) 0 0
\(838\) −33.4430 −1.15527
\(839\) 40.7607 1.40722 0.703608 0.710588i \(-0.251571\pi\)
0.703608 + 0.710588i \(0.251571\pi\)
\(840\) 0 0
\(841\) 2.15449 0.0742927
\(842\) −10.8477 −0.373835
\(843\) 0 0
\(844\) 3.07721 0.105922
\(845\) −12.7386 −0.438221
\(846\) 0 0
\(847\) −4.51035 −0.154978
\(848\) 4.41637 0.151659
\(849\) 0 0
\(850\) 9.33161 0.320072
\(851\) 9.64988 0.330794
\(852\) 0 0
\(853\) 23.8165 0.815461 0.407730 0.913102i \(-0.366320\pi\)
0.407730 + 0.913102i \(0.366320\pi\)
\(854\) 15.0915 0.516419
\(855\) 0 0
\(856\) 36.9875 1.26421
\(857\) −5.24163 −0.179051 −0.0895254 0.995985i \(-0.528535\pi\)
−0.0895254 + 0.995985i \(0.528535\pi\)
\(858\) 0 0
\(859\) 52.2205 1.78174 0.890870 0.454259i \(-0.150096\pi\)
0.890870 + 0.454259i \(0.150096\pi\)
\(860\) 3.05412 0.104145
\(861\) 0 0
\(862\) 39.7334 1.35332
\(863\) 21.3677 0.727366 0.363683 0.931523i \(-0.381519\pi\)
0.363683 + 0.931523i \(0.381519\pi\)
\(864\) 0 0
\(865\) −17.1530 −0.583219
\(866\) 15.7985 0.536855
\(867\) 0 0
\(868\) 1.11976 0.0380073
\(869\) 15.5935 0.528973
\(870\) 0 0
\(871\) −1.39555 −0.0472863
\(872\) 30.5494 1.03453
\(873\) 0 0
\(874\) 4.12556 0.139549
\(875\) 0.875317 0.0295911
\(876\) 0 0
\(877\) 35.3397 1.19334 0.596668 0.802488i \(-0.296491\pi\)
0.596668 + 0.802488i \(0.296491\pi\)
\(878\) −14.2170 −0.479800
\(879\) 0 0
\(880\) −8.03423 −0.270834
\(881\) −1.26259 −0.0425376 −0.0212688 0.999774i \(-0.506771\pi\)
−0.0212688 + 0.999774i \(0.506771\pi\)
\(882\) 0 0
\(883\) −44.4546 −1.49602 −0.748009 0.663689i \(-0.768990\pi\)
−0.748009 + 0.663689i \(0.768990\pi\)
\(884\) 1.07856 0.0362758
\(885\) 0 0
\(886\) 31.4440 1.05638
\(887\) 4.80118 0.161208 0.0806040 0.996746i \(-0.474315\pi\)
0.0806040 + 0.996746i \(0.474315\pi\)
\(888\) 0 0
\(889\) −4.17304 −0.139959
\(890\) 11.3719 0.381186
\(891\) 0 0
\(892\) −1.42128 −0.0475881
\(893\) 14.6063 0.488782
\(894\) 0 0
\(895\) −3.59067 −0.120023
\(896\) −7.16698 −0.239432
\(897\) 0 0
\(898\) −3.21752 −0.107370
\(899\) −24.1912 −0.806820
\(900\) 0 0
\(901\) 9.49970 0.316481
\(902\) 29.2086 0.972541
\(903\) 0 0
\(904\) 10.5428 0.350649
\(905\) 21.9154 0.728492
\(906\) 0 0
\(907\) 22.5939 0.750218 0.375109 0.926981i \(-0.377605\pi\)
0.375109 + 0.926981i \(0.377605\pi\)
\(908\) −1.05584 −0.0350391
\(909\) 0 0
\(910\) −0.584345 −0.0193708
\(911\) −18.2580 −0.604914 −0.302457 0.953163i \(-0.597807\pi\)
−0.302457 + 0.953163i \(0.597807\pi\)
\(912\) 0 0
\(913\) 26.1053 0.863958
\(914\) 21.6451 0.715956
\(915\) 0 0
\(916\) 2.02934 0.0670513
\(917\) 4.76145 0.157237
\(918\) 0 0
\(919\) −20.5698 −0.678534 −0.339267 0.940690i \(-0.610179\pi\)
−0.339267 + 0.940690i \(0.610179\pi\)
\(920\) −6.65049 −0.219260
\(921\) 0 0
\(922\) −29.8303 −0.982407
\(923\) −2.08042 −0.0684779
\(924\) 0 0
\(925\) −4.34834 −0.142973
\(926\) −41.6881 −1.36996
\(927\) 0 0
\(928\) −9.23945 −0.303300
\(929\) 8.10385 0.265879 0.132939 0.991124i \(-0.457558\pi\)
0.132939 + 0.991124i \(0.457558\pi\)
\(930\) 0 0
\(931\) −8.87560 −0.290886
\(932\) 2.22845 0.0729953
\(933\) 0 0
\(934\) 7.95325 0.260238
\(935\) −17.2818 −0.565175
\(936\) 0 0
\(937\) 27.2407 0.889914 0.444957 0.895552i \(-0.353219\pi\)
0.444957 + 0.895552i \(0.353219\pi\)
\(938\) 3.11953 0.101856
\(939\) 0 0
\(940\) −3.02804 −0.0987639
\(941\) 37.8407 1.23357 0.616786 0.787131i \(-0.288434\pi\)
0.616786 + 0.787131i \(0.288434\pi\)
\(942\) 0 0
\(943\) 20.5303 0.668559
\(944\) −15.8318 −0.515280
\(945\) 0 0
\(946\) 32.6690 1.06216
\(947\) 26.4272 0.858768 0.429384 0.903122i \(-0.358731\pi\)
0.429384 + 0.903122i \(0.358731\pi\)
\(948\) 0 0
\(949\) −8.35538 −0.271227
\(950\) −1.85902 −0.0603147
\(951\) 0 0
\(952\) −18.7472 −0.607600
\(953\) 18.1144 0.586782 0.293391 0.955993i \(-0.405216\pi\)
0.293391 + 0.955993i \(0.405216\pi\)
\(954\) 0 0
\(955\) −20.4556 −0.661927
\(956\) 2.29854 0.0743402
\(957\) 0 0
\(958\) −36.1808 −1.16895
\(959\) 4.70966 0.152083
\(960\) 0 0
\(961\) −12.2158 −0.394058
\(962\) 2.90287 0.0935922
\(963\) 0 0
\(964\) −3.63019 −0.116921
\(965\) 6.30430 0.202943
\(966\) 0 0
\(967\) 42.7148 1.37362 0.686808 0.726839i \(-0.259012\pi\)
0.686808 + 0.726839i \(0.259012\pi\)
\(968\) −15.4419 −0.496321
\(969\) 0 0
\(970\) −20.0307 −0.643146
\(971\) 7.24330 0.232449 0.116224 0.993223i \(-0.462921\pi\)
0.116224 + 0.993223i \(0.462921\pi\)
\(972\) 0 0
\(973\) 5.08630 0.163059
\(974\) −6.85997 −0.219808
\(975\) 0 0
\(976\) 43.8728 1.40434
\(977\) 20.0997 0.643048 0.321524 0.946901i \(-0.395805\pi\)
0.321524 + 0.946901i \(0.395805\pi\)
\(978\) 0 0
\(979\) −21.0603 −0.673089
\(980\) 1.84001 0.0587768
\(981\) 0 0
\(982\) −39.2334 −1.25199
\(983\) −33.5146 −1.06895 −0.534475 0.845185i \(-0.679490\pi\)
−0.534475 + 0.845185i \(0.679490\pi\)
\(984\) 0 0
\(985\) −21.0255 −0.669930
\(986\) 52.0855 1.65874
\(987\) 0 0
\(988\) −0.214868 −0.00683585
\(989\) 22.9626 0.730167
\(990\) 0 0
\(991\) −53.2001 −1.68996 −0.844979 0.534800i \(-0.820387\pi\)
−0.844979 + 0.534800i \(0.820387\pi\)
\(992\) 7.17434 0.227786
\(993\) 0 0
\(994\) 4.65045 0.147503
\(995\) 0.692612 0.0219573
\(996\) 0 0
\(997\) 43.3210 1.37199 0.685995 0.727606i \(-0.259367\pi\)
0.685995 + 0.727606i \(0.259367\pi\)
\(998\) −39.0521 −1.23617
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3645.2.a.g.1.6 15
3.2 odd 2 3645.2.a.h.1.10 15
27.5 odd 18 135.2.k.a.106.4 30
27.11 odd 18 135.2.k.a.121.4 yes 30
27.16 even 9 405.2.k.a.91.2 30
27.22 even 9 405.2.k.a.316.2 30
135.32 even 36 675.2.u.c.349.8 60
135.38 even 36 675.2.u.c.499.8 60
135.59 odd 18 675.2.l.d.376.2 30
135.92 even 36 675.2.u.c.499.3 60
135.113 even 36 675.2.u.c.349.3 60
135.119 odd 18 675.2.l.d.526.2 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.k.a.106.4 30 27.5 odd 18
135.2.k.a.121.4 yes 30 27.11 odd 18
405.2.k.a.91.2 30 27.16 even 9
405.2.k.a.316.2 30 27.22 even 9
675.2.l.d.376.2 30 135.59 odd 18
675.2.l.d.526.2 30 135.119 odd 18
675.2.u.c.349.3 60 135.113 even 36
675.2.u.c.349.8 60 135.32 even 36
675.2.u.c.499.3 60 135.92 even 36
675.2.u.c.499.8 60 135.38 even 36
3645.2.a.g.1.6 15 1.1 even 1 trivial
3645.2.a.h.1.10 15 3.2 odd 2