Properties

Label 364.2.x.a.311.1
Level $364$
Weight $2$
Character 364.311
Analytic conductor $2.907$
Analytic rank $0$
Dimension $8$
CM discriminant -52
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [364,2,Mod(103,364)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("364.103"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(364, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.151613669376.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 95x^{4} - 588x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 311.1
Root \(-2.56149 + 0.662382i\) of defining polynomial
Character \(\chi\) \(=\) 364.311
Dual form 364.2.x.a.103.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 - 1.22474i) q^{2} +(-1.00000 + 1.73205i) q^{4} +(-2.56149 + 0.662382i) q^{7} +2.82843 q^{8} +(1.50000 + 2.59808i) q^{9} +(3.26860 - 5.66138i) q^{11} -3.60555i q^{13} +(2.62250 + 2.66880i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(6.12250 + 3.53483i) q^{17} +(2.12132 - 3.67423i) q^{18} +(3.09536 - 1.78711i) q^{19} -9.24500 q^{22} +(2.50000 - 4.33013i) q^{25} +(-4.41588 + 2.54951i) q^{26} +(1.41421 - 5.09902i) q^{28} -2.24500 q^{29} +(4.41588 + 2.54951i) q^{31} +(-2.82843 + 4.89898i) q^{32} -9.99800i q^{34} -6.00000 q^{36} +(-4.37750 - 2.52735i) q^{38} +(6.53720 + 11.3228i) q^{44} +(-11.7539 + 6.78611i) q^{47} +(6.12250 - 3.39338i) q^{49} -7.07107 q^{50} +(6.24500 + 3.60555i) q^{52} +(5.74500 - 9.95063i) q^{53} +(-7.24500 + 1.87350i) q^{56} +(1.58745 + 2.74955i) q^{58} +(-5.56316 - 3.21189i) q^{59} +(-1.74500 + 1.00748i) q^{61} -7.21110i q^{62} +(-5.56316 - 5.66138i) q^{63} +8.00000 q^{64} +(-1.68115 + 2.91183i) q^{67} +(-12.2450 + 7.06965i) q^{68} +9.71211 q^{71} +(4.24264 + 7.34847i) q^{72} +7.14843i q^{76} +(-4.62250 + 16.6667i) q^{77} +(-4.50000 + 7.79423i) q^{81} +15.2971i q^{83} +(9.24500 - 16.0128i) q^{88} +(2.38825 + 9.23560i) q^{91} +(16.6225 + 9.59700i) q^{94} +(-8.48528 - 5.09902i) q^{98} +19.6116 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 12 q^{9} - 4 q^{14} - 16 q^{16} + 24 q^{17} - 24 q^{22} + 20 q^{25} + 32 q^{29} - 48 q^{36} - 60 q^{38} + 24 q^{49} - 4 q^{53} - 8 q^{56} + 36 q^{61} + 64 q^{64} - 48 q^{68} - 12 q^{77}+ \cdots + 108 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 1.22474i −0.500000 0.866025i
\(3\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(4\) −1.00000 + 1.73205i −0.500000 + 0.866025i
\(5\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(6\) 0 0
\(7\) −2.56149 + 0.662382i −0.968154 + 0.250357i
\(8\) 2.82843 1.00000
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 3.26860 5.66138i 0.985520 1.70697i 0.345918 0.938265i \(-0.387568\pi\)
0.639602 0.768706i \(-0.279099\pi\)
\(12\) 0 0
\(13\) 3.60555i 1.00000i
\(14\) 2.62250 + 2.66880i 0.700892 + 0.713267i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 6.12250 + 3.53483i 1.48492 + 0.857321i 0.999853 0.0171533i \(-0.00546033\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 2.12132 3.67423i 0.500000 0.866025i
\(19\) 3.09536 1.78711i 0.710124 0.409991i −0.100983 0.994888i \(-0.532199\pi\)
0.811107 + 0.584898i \(0.198865\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −9.24500 −1.97104
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 2.50000 4.33013i 0.500000 0.866025i
\(26\) −4.41588 + 2.54951i −0.866025 + 0.500000i
\(27\) 0 0
\(28\) 1.41421 5.09902i 0.267261 0.963624i
\(29\) −2.24500 −0.416886 −0.208443 0.978035i \(-0.566840\pi\)
−0.208443 + 0.978035i \(0.566840\pi\)
\(30\) 0 0
\(31\) 4.41588 + 2.54951i 0.793116 + 0.457905i 0.841058 0.540945i \(-0.181933\pi\)
−0.0479427 + 0.998850i \(0.515266\pi\)
\(32\) −2.82843 + 4.89898i −0.500000 + 0.866025i
\(33\) 0 0
\(34\) 9.99800i 1.71464i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(38\) −4.37750 2.52735i −0.710124 0.409991i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 6.53720 + 11.3228i 0.985520 + 1.70697i
\(45\) 0 0
\(46\) 0 0
\(47\) −11.7539 + 6.78611i −1.71448 + 0.989855i −0.786201 + 0.617971i \(0.787955\pi\)
−0.928279 + 0.371884i \(0.878712\pi\)
\(48\) 0 0
\(49\) 6.12250 3.39338i 0.874643 0.484768i
\(50\) −7.07107 −1.00000
\(51\) 0 0
\(52\) 6.24500 + 3.60555i 0.866025 + 0.500000i
\(53\) 5.74500 9.95063i 0.789136 1.36682i −0.137361 0.990521i \(-0.543862\pi\)
0.926497 0.376303i \(-0.122805\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −7.24500 + 1.87350i −0.968154 + 0.250357i
\(57\) 0 0
\(58\) 1.58745 + 2.74955i 0.208443 + 0.361034i
\(59\) −5.56316 3.21189i −0.724262 0.418153i 0.0920575 0.995754i \(-0.470656\pi\)
−0.816319 + 0.577601i \(0.803989\pi\)
\(60\) 0 0
\(61\) −1.74500 + 1.00748i −0.223424 + 0.128994i −0.607535 0.794293i \(-0.707841\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 7.21110i 0.915811i
\(63\) −5.56316 5.66138i −0.700892 0.713267i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −1.68115 + 2.91183i −0.205385 + 0.355737i −0.950255 0.311472i \(-0.899178\pi\)
0.744870 + 0.667209i \(0.232511\pi\)
\(68\) −12.2450 + 7.06965i −1.48492 + 0.857321i
\(69\) 0 0
\(70\) 0 0
\(71\) 9.71211 1.15262 0.576308 0.817233i \(-0.304493\pi\)
0.576308 + 0.817233i \(0.304493\pi\)
\(72\) 4.24264 + 7.34847i 0.500000 + 0.866025i
\(73\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 7.14843i 0.819981i
\(77\) −4.62250 + 16.6667i −0.526783 + 1.89934i
\(78\) 0 0
\(79\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 15.2971i 1.67907i 0.543305 + 0.839535i \(0.317173\pi\)
−0.543305 + 0.839535i \(0.682827\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 9.24500 16.0128i 0.985520 1.70697i
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 2.38825 + 9.23560i 0.250357 + 0.968154i
\(92\) 0 0
\(93\) 0 0
\(94\) 16.6225 + 9.59700i 1.71448 + 0.989855i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) −8.48528 5.09902i −0.857143 0.515079i
\(99\) 19.6116 1.97104
\(100\) 5.00000 + 8.66025i 0.500000 + 0.866025i
\(101\) 12.4900 + 7.21110i 1.24280 + 0.717532i 0.969664 0.244443i \(-0.0786053\pi\)
0.273138 + 0.961975i \(0.411939\pi\)
\(102\) 0 0
\(103\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(104\) 10.1980i 1.00000i
\(105\) 0 0
\(106\) −16.2493 −1.57827
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) 0 0
\(109\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.41755 + 7.54851i 0.700892 + 0.713267i
\(113\) −16.2450 −1.52820 −0.764100 0.645097i \(-0.776817\pi\)
−0.764100 + 0.645097i \(0.776817\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2.24500 3.88845i 0.208443 0.361034i
\(117\) 9.36750 5.40833i 0.866025 0.500000i
\(118\) 9.08460i 0.836305i
\(119\) −18.0241 4.99900i −1.65227 0.458258i
\(120\) 0 0
\(121\) −15.8675 27.4833i −1.44250 2.49848i
\(122\) 2.46780 + 1.42478i 0.223424 + 0.128994i
\(123\) 0 0
\(124\) −8.83176 + 5.09902i −0.793116 + 0.457905i
\(125\) 0 0
\(126\) −3.00000 + 10.8167i −0.267261 + 0.963624i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) −5.65685 9.79796i −0.500000 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) −6.74500 + 6.62798i −0.584866 + 0.574718i
\(134\) 4.75500 0.410770
\(135\) 0 0
\(136\) 17.3170 + 9.99800i 1.48492 + 0.857321i
\(137\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.86750 11.8949i −0.576308 0.998194i
\(143\) −20.4124 11.7851i −1.70697 0.985520i
\(144\) 6.00000 10.3923i 0.500000 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) 8.21835 14.2346i 0.668800 1.15839i −0.309440 0.950919i \(-0.600142\pi\)
0.978240 0.207476i \(-0.0665249\pi\)
\(152\) 8.75500 5.05470i 0.710124 0.409991i
\(153\) 21.2090i 1.71464i
\(154\) 23.6810 6.12372i 1.90827 0.493464i
\(155\) 0 0
\(156\) 0 0
\(157\) −14.8775 8.58953i −1.18735 0.685519i −0.229650 0.973273i \(-0.573758\pi\)
−0.957704 + 0.287754i \(0.907091\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 12.7279 1.00000
\(163\) −11.3933 19.7337i −0.892389 1.54566i −0.837004 0.547197i \(-0.815695\pi\)
−0.0553849 0.998465i \(-0.517639\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 18.7350 10.8167i 1.45412 0.839535i
\(167\) 16.4218i 1.27076i 0.772201 + 0.635378i \(0.219156\pi\)
−0.772201 + 0.635378i \(0.780844\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) 9.28608 + 5.36132i 0.710124 + 0.409991i
\(172\) 0 0
\(173\) −22.7450 + 13.1318i −1.72927 + 0.998395i −0.836315 + 0.548250i \(0.815294\pi\)
−0.892956 + 0.450145i \(0.851372\pi\)
\(174\) 0 0
\(175\) −3.53553 + 12.7475i −0.267261 + 0.963624i
\(176\) −26.1488 −1.97104
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 3.03975i 0.225943i −0.993598 0.112972i \(-0.963963\pi\)
0.993598 0.112972i \(-0.0360369\pi\)
\(182\) 9.62250 9.45555i 0.713267 0.700892i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 40.0240 23.1079i 2.92685 1.68981i
\(188\) 27.1444i 1.97971i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.244998 + 13.9979i −0.0174999 + 0.999847i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) −13.8675 24.0192i −0.985520 1.70697i
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 7.07107 12.2474i 0.500000 0.866025i
\(201\) 0 0
\(202\) 20.3961i 1.43506i
\(203\) 5.75055 1.48705i 0.403609 0.104370i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −12.4900 + 7.21110i −0.866025 + 0.500000i
\(209\) 23.3654i 1.61622i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 11.4900 + 19.9013i 0.789136 + 1.36682i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −13.0000 3.60555i −0.882498 0.244761i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.7450 22.0750i 0.857321 1.48492i
\(222\) 0 0
\(223\) 0.724645i 0.0485258i −0.999706 0.0242629i \(-0.992276\pi\)
0.999706 0.0242629i \(-0.00772388\pi\)
\(224\) 4.00000 14.4222i 0.267261 0.963624i
\(225\) 15.0000 1.00000
\(226\) 11.4869 + 19.8960i 0.764100 + 1.32346i
\(227\) 4.41588 + 2.54951i 0.293092 + 0.169217i 0.639336 0.768928i \(-0.279209\pi\)
−0.346243 + 0.938145i \(0.612543\pi\)
\(228\) 0 0
\(229\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.34981 −0.416886
\(233\) 14.9900 + 25.9634i 0.982027 + 1.70092i 0.654466 + 0.756091i \(0.272893\pi\)
0.327561 + 0.944830i \(0.393773\pi\)
\(234\) −13.2476 7.64853i −0.866025 0.500000i
\(235\) 0 0
\(236\) 11.1263 6.42378i 0.724262 0.418153i
\(237\) 0 0
\(238\) 6.62250 + 25.6098i 0.429273 + 1.66004i
\(239\) −0.187388 −0.0121211 −0.00606055 0.999982i \(-0.501929\pi\)
−0.00606055 + 0.999982i \(0.501929\pi\)
\(240\) 0 0
\(241\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(242\) −22.4400 + 38.8673i −1.44250 + 2.49848i
\(243\) 0 0
\(244\) 4.02990i 0.257988i
\(245\) 0 0
\(246\) 0 0
\(247\) −6.44351 11.1605i −0.409991 0.710124i
\(248\) 12.4900 + 7.21110i 0.793116 + 0.457905i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 15.3690 3.97429i 0.968154 0.250357i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) −24.9800 + 14.4222i −1.55821 + 0.899632i −0.560781 + 0.827964i \(0.689499\pi\)
−0.997429 + 0.0716680i \(0.977168\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −3.36750 5.83268i −0.208443 0.361034i
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 12.8870 + 3.57421i 0.790154 + 0.219149i
\(267\) 0 0
\(268\) −3.36229 5.82366i −0.205385 0.355737i
\(269\) 27.1225 + 15.6592i 1.65369 + 0.954757i 0.975537 + 0.219834i \(0.0705517\pi\)
0.678151 + 0.734923i \(0.262782\pi\)
\(270\) 0 0
\(271\) −26.6031 + 15.3593i −1.61602 + 0.933012i −0.628090 + 0.778141i \(0.716163\pi\)
−0.987935 + 0.154872i \(0.950504\pi\)
\(272\) 28.2786i 1.71464i
\(273\) 0 0
\(274\) 0 0
\(275\) −16.3430 28.3069i −0.985520 1.70697i
\(276\) 0 0
\(277\) −1.25500 + 2.17373i −0.0754058 + 0.130607i −0.901263 0.433273i \(-0.857359\pi\)
0.825857 + 0.563880i \(0.190692\pi\)
\(278\) 0 0
\(279\) 15.2971i 0.915811i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) −9.71211 + 16.8219i −0.576308 + 0.998194i
\(285\) 0 0
\(286\) 33.3333i 1.97104i
\(287\) 0 0
\(288\) −16.9706 −1.00000
\(289\) 16.4900 + 28.5615i 0.970000 + 1.68009i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −23.2450 −1.33760
\(303\) 0 0
\(304\) −12.3814 7.14843i −0.710124 0.409991i
\(305\) 0 0
\(306\) 25.9756 14.9970i 1.48492 0.857321i
\(307\) 33.5682i 1.91584i 0.287037 + 0.957920i \(0.407330\pi\)
−0.287037 + 0.957920i \(0.592670\pi\)
\(308\) −24.2450 24.6731i −1.38149 1.40588i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 18.7350 10.8167i 1.05896 0.611393i 0.133819 0.991006i \(-0.457276\pi\)
0.925146 + 0.379612i \(0.123943\pi\)
\(314\) 24.2949i 1.37104i
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(318\) 0 0
\(319\) −7.33800 + 12.7098i −0.410849 + 0.711612i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 25.2685 1.40597
\(324\) −9.00000 15.5885i −0.500000 0.866025i
\(325\) −15.6125 9.01388i −0.866025 0.500000i
\(326\) −16.1125 + 27.9077i −0.892389 + 1.54566i
\(327\) 0 0
\(328\) 0 0
\(329\) 25.6125 25.1681i 1.41206 1.38756i
\(330\) 0 0
\(331\) 3.53553 + 6.12372i 0.194331 + 0.336590i 0.946681 0.322173i \(-0.104413\pi\)
−0.752350 + 0.658763i \(0.771080\pi\)
\(332\) −26.4953 15.2971i −1.45412 0.839535i
\(333\) 0 0
\(334\) 20.1125 11.6120i 1.10051 0.635378i
\(335\) 0 0
\(336\) 0 0
\(337\) 11.7550 0.640336 0.320168 0.947361i \(-0.396261\pi\)
0.320168 + 0.947361i \(0.396261\pi\)
\(338\) 9.19239 + 15.9217i 0.500000 + 0.866025i
\(339\) 0 0
\(340\) 0 0
\(341\) 28.8675 16.6667i 1.56326 0.902550i
\(342\) 15.1641i 0.819981i
\(343\) −13.4350 + 12.7475i −0.725423 + 0.688303i
\(344\) 0 0
\(345\) 0 0
\(346\) 32.1663 + 18.5712i 1.72927 + 0.998395i
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 18.1125 4.68375i 0.968154 0.250357i
\(351\) 0 0
\(352\) 18.4900 + 32.0256i 0.985520 + 1.70697i
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −6.36396 11.0227i −0.335877 0.581756i 0.647776 0.761831i \(-0.275699\pi\)
−0.983653 + 0.180075i \(0.942366\pi\)
\(360\) 0 0
\(361\) −3.11249 + 5.39100i −0.163816 + 0.283737i
\(362\) −3.72292 + 2.14943i −0.195672 + 0.112972i
\(363\) 0 0
\(364\) −18.3848 5.09902i −0.963624 0.267261i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.12465 + 29.2939i −0.421811 + 1.52086i
\(372\) 0 0
\(373\) −17.3675 30.0814i −0.899255 1.55756i −0.828449 0.560065i \(-0.810776\pi\)
−0.0708063 0.997490i \(-0.522557\pi\)
\(374\) −56.6025 32.6795i −2.92685 1.68981i
\(375\) 0 0
\(376\) −33.2450 + 19.1940i −1.71448 + 0.989855i
\(377\) 8.09446i 0.416886i
\(378\) 0 0
\(379\) 15.5563 0.799076 0.399538 0.916717i \(-0.369171\pi\)
0.399538 + 0.916717i \(0.369171\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 22.0794 12.7475i 1.12820 0.651369i 0.184722 0.982791i \(-0.440862\pi\)
0.943483 + 0.331422i \(0.107528\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −19.6125 + 33.9698i −0.994393 + 1.72234i −0.405616 + 0.914044i \(0.632943\pi\)
−0.588777 + 0.808296i \(0.700390\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 17.3170 9.59792i 0.874643 0.484768i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −19.6116 + 33.9683i −0.985520 + 1.70697i
\(397\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 9.19239 15.9217i 0.457905 0.793116i
\(404\) −24.9800 + 14.4222i −1.24280 + 0.717532i
\(405\) 0 0
\(406\) −5.88751 5.99145i −0.292192 0.297351i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 16.3775 + 4.54230i 0.805884 + 0.223512i
\(414\) 0 0
\(415\) 0 0
\(416\) 17.6635 + 10.1980i 0.866025 + 0.500000i
\(417\) 0 0
\(418\) −28.6166 + 16.5218i −1.39968 + 0.808108i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) −35.2616 20.3583i −1.71448 0.989855i
\(424\) 16.2493 28.1446i 0.789136 1.36682i
\(425\) 30.6125 17.6741i 1.48492 0.857321i
\(426\) 0 0
\(427\) 3.80247 3.73650i 0.184014 0.180822i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.6066 + 18.3712i −0.510902 + 0.884908i 0.489018 + 0.872274i \(0.337355\pi\)
−0.999920 + 0.0126347i \(0.995978\pi\)
\(432\) 0 0
\(433\) 40.4030i 1.94164i −0.239804 0.970821i \(-0.577083\pi\)
0.239804 0.970821i \(-0.422917\pi\)
\(434\) 4.77651 + 18.4712i 0.229280 + 0.886646i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 18.0000 + 10.8167i 0.857143 + 0.515079i
\(442\) −36.0483 −1.71464
\(443\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −0.887505 + 0.512401i −0.0420246 + 0.0242629i
\(447\) 0 0
\(448\) −20.4919 + 5.29906i −0.968154 + 0.250357i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) −10.6066 18.3712i −0.500000 0.866025i
\(451\) 0 0
\(452\) 16.2450 28.1372i 0.764100 1.32346i
\(453\) 0 0
\(454\) 7.21110i 0.338434i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) −24.0416 −1.11731 −0.558655 0.829400i \(-0.688682\pi\)
−0.558655 + 0.829400i \(0.688682\pi\)
\(464\) 4.49000 + 7.77690i 0.208443 + 0.361034i
\(465\) 0 0
\(466\) 21.1991 36.7178i 0.982027 1.70092i
\(467\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(468\) 21.6333i 1.00000i
\(469\) 2.37750 8.57220i 0.109783 0.395827i
\(470\) 0 0
\(471\) 0 0
\(472\) −15.7350 9.08460i −0.724262 0.418153i
\(473\) 0 0
\(474\) 0 0
\(475\) 17.8711i 0.819981i
\(476\) 26.6827 26.2197i 1.22300 1.20178i
\(477\) 34.4700 1.57827
\(478\) 0.132503 + 0.229502i 0.00606055 + 0.0104972i
\(479\) 24.1353 + 13.9345i 1.10277 + 0.636685i 0.936947 0.349470i \(-0.113638\pi\)
0.165824 + 0.986155i \(0.446972\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 63.4700 2.88500
\(485\) 0 0
\(486\) 0 0
\(487\) 13.1681 22.8078i 0.596703 1.03352i −0.396601 0.917991i \(-0.629810\pi\)
0.993304 0.115529i \(-0.0368564\pi\)
\(488\) −4.93560 + 2.84957i −0.223424 + 0.128994i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −13.7450 7.93568i −0.619044 0.357405i
\(494\) −9.11249 + 15.7833i −0.409991 + 0.710124i
\(495\) 0 0
\(496\) 20.3961i 0.915811i
\(497\) −24.8775 + 6.43313i −1.11591 + 0.288565i
\(498\) 0 0
\(499\) 13.4350 + 23.2702i 0.601434 + 1.04172i 0.992604 + 0.121396i \(0.0387372\pi\)
−0.391170 + 0.920319i \(0.627929\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) −15.7350 16.0128i −0.700892 0.713267i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274 1.00000
\(513\) 0 0
\(514\) 35.3270 + 20.3961i 1.55821 + 0.899632i
\(515\) 0 0
\(516\) 0 0
\(517\) 88.7243i 3.90209i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.2250 18.0278i −1.36799 0.789810i −0.377320 0.926083i \(-0.623154\pi\)
−0.990671 + 0.136272i \(0.956488\pi\)
\(522\) −4.76236 + 8.24865i −0.208443 + 0.361034i
\(523\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 18.0241 + 31.2187i 0.785144 + 1.35991i
\(528\) 0 0
\(529\) −11.5000 + 19.9186i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 19.2714i 0.836305i
\(532\) −4.73499 18.3107i −0.205288 0.793868i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −4.75500 + 8.23591i −0.205385 + 0.355737i
\(537\) 0 0
\(538\) 44.2909i 1.90951i
\(539\) 0.800801 45.7534i 0.0344929 1.97074i
\(540\) 0 0
\(541\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(542\) 37.6225 + 21.7214i 1.61602 + 0.933012i
\(543\) 0 0
\(544\) −34.6341 + 19.9960i −1.48492 + 0.857321i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) −5.23499 3.02243i −0.223424 0.128994i
\(550\) −23.1125 + 40.0320i −0.985520 + 1.70697i
\(551\) −6.94908 + 4.01205i −0.296041 + 0.170919i
\(552\) 0 0
\(553\) 0 0
\(554\) 3.54968 0.150812
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(558\) 18.7350 10.8167i 0.793116 0.457905i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 6.36396 22.9456i 0.267261 0.963624i
\(568\) 27.4700 1.15262
\(569\) 21.9900 + 38.0878i 0.921869 + 1.59672i 0.796521 + 0.604610i \(0.206671\pi\)
0.125347 + 0.992113i \(0.459996\pi\)
\(570\) 0 0
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 40.8248 23.5702i 1.70697 0.985520i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.500000 + 0.866025i
\(577\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(578\) 23.3204 40.3921i 0.970000 1.68009i
\(579\) 0 0
\(580\) 0 0
\(581\) −10.1325 39.1833i −0.420367 1.62560i
\(582\) 0 0
\(583\) −37.5562 65.0493i −1.55542 2.69406i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 36.4178i 1.50312i −0.659663 0.751561i \(-0.729301\pi\)
0.659663 0.751561i \(-0.270699\pi\)
\(588\) 0 0
\(589\) 18.2250 0.750948
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 27.2885i 1.11312i −0.830808 0.556560i \(-0.812121\pi\)
0.830808 0.556560i \(-0.187879\pi\)
\(602\) 0 0
\(603\) −10.0869 −0.410770
\(604\) 16.4367 + 28.4692i 0.668800 + 1.15839i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(608\) 20.2188i 0.819981i
\(609\) 0 0
\(610\) 0 0
\(611\) 24.4677 + 42.3792i 0.989855 + 1.71448i
\(612\) −36.7350 21.2090i −1.48492 0.857321i
\(613\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(614\) 41.1125 23.7363i 1.65917 0.957920i
\(615\) 0 0
\(616\) −13.0744 + 47.1404i −0.526783 + 1.89934i
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 4.41588 + 2.54951i 0.177489 + 0.102473i 0.586112 0.810230i \(-0.300658\pi\)
−0.408623 + 0.912703i \(0.633991\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 21.6506i −0.500000 0.866025i
\(626\) −26.4953 15.2971i −1.05896 0.611393i
\(627\) 0 0
\(628\) 29.7550 17.1791i 1.18735 0.685519i
\(629\) 0 0
\(630\) 0 0
\(631\) 35.3553 1.40747 0.703737 0.710461i \(-0.251513\pi\)
0.703737 + 0.710461i \(0.251513\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −12.2350 22.0750i −0.484768 0.874643i
\(638\) 20.7550 0.821698
\(639\) 14.5682 + 25.2328i 0.576308 + 0.998194i
\(640\) 0 0
\(641\) −2.00000 + 3.46410i −0.0789953 + 0.136824i −0.902817 0.430026i \(-0.858505\pi\)
0.823821 + 0.566849i \(0.191838\pi\)
\(642\) 0 0
\(643\) 50.7146i 1.99999i 0.00313699 + 0.999995i \(0.499001\pi\)
−0.00313699 + 0.999995i \(0.500999\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −17.8675 30.9474i −0.702987 1.21761i
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) −12.7279 + 22.0454i −0.500000 + 0.866025i
\(649\) −36.3675 + 20.9968i −1.42755 + 0.824196i
\(650\) 25.4951i 1.00000i
\(651\) 0 0
\(652\) 45.5730 1.78478
\(653\) −4.00000 6.92820i −0.156532 0.271122i 0.777084 0.629397i \(-0.216698\pi\)
−0.933616 + 0.358276i \(0.883365\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −48.9353 13.5722i −1.90770 0.529100i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(662\) 5.00000 8.66025i 0.194331 0.336590i
\(663\) 0 0
\(664\) 43.2666i 1.67907i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −28.4434 16.4218i −1.10051 0.635378i
\(669\) 0 0
\(670\) 0 0
\(671\) 13.1721i 0.508505i
\(672\) 0 0
\(673\) −12.0000 −0.462566 −0.231283 0.972887i \(-0.574292\pi\)
−0.231283 + 0.972887i \(0.574292\pi\)
\(674\) −8.31204 14.3969i −0.320168 0.554547i
\(675\) 0 0
\(676\) 13.0000 22.5167i 0.500000 0.866025i
\(677\) −43.7450 + 25.2562i −1.68126 + 0.970674i −0.720429 + 0.693529i \(0.756055\pi\)
−0.960828 + 0.277145i \(0.910612\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −40.8248 23.5702i −1.56326 0.902550i
\(683\) 19.0919 33.0681i 0.730531 1.26532i −0.226126 0.974098i \(-0.572606\pi\)
0.956657 0.291218i \(-0.0940605\pi\)
\(684\) −18.5722 + 10.7226i −0.710124 + 0.409991i
\(685\) 0 0
\(686\) 25.1125 + 7.44060i 0.958800 + 0.284084i
\(687\) 0 0
\(688\) 0 0
\(689\) −35.8775 20.7139i −1.36682 0.789136i
\(690\) 0 0
\(691\) −41.4524 + 23.9325i −1.57692 + 0.910437i −0.581637 + 0.813449i \(0.697587\pi\)
−0.995286 + 0.0969879i \(0.969079\pi\)
\(692\) 52.5273i 1.99679i
\(693\) −50.2350 + 12.9904i −1.90827 + 0.493464i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −18.5439 18.8713i −0.700892 0.713267i
\(701\) 16.0000 0.604312 0.302156 0.953259i \(-0.402294\pi\)
0.302156 + 0.953259i \(0.402294\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 26.1488 45.2911i 0.985520 1.70697i
\(705\) 0 0
\(706\) 0 0
\(707\) −36.7696 10.1980i −1.38286 0.383537i
\(708\) 0 0
\(709\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −9.00000 + 15.5885i −0.335877 + 0.581756i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 8.80347 0.327631
\(723\) 0 0
\(724\) 5.26501 + 3.03975i 0.195672 + 0.112972i
\(725\) −5.61249 + 9.72113i −0.208443 + 0.361034i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 6.75500 + 26.1222i 0.250357 + 0.968154i
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.9900 + 19.0352i 0.404822 + 0.701172i
\(738\) 0 0
\(739\) −20.5061 + 35.5176i −0.754329 + 1.30654i 0.191378 + 0.981516i \(0.438704\pi\)
−0.945707 + 0.325020i \(0.894629\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 41.6225 10.7633i 1.52801 0.395132i
\(743\) 39.4106 1.44583 0.722917 0.690935i \(-0.242801\pi\)
0.722917 + 0.690935i \(0.242801\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −24.5613 + 42.5415i −0.899255 + 1.55756i
\(747\) −39.7429 + 22.9456i −1.45412 + 0.839535i
\(748\) 92.4315i 3.37963i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 47.0155 + 27.1444i 1.71448 + 0.989855i
\(753\) 0 0
\(754\) 9.91364 5.72364i 0.361034 0.208443i
\(755\) 0 0
\(756\) 0 0
\(757\) 20.4700 0.743994 0.371997 0.928234i \(-0.378673\pi\)
0.371997 + 0.928234i \(0.378673\pi\)
\(758\) −11.0000 19.0526i −0.399538 0.692020i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −31.2250 18.0278i −1.12820 0.651369i
\(767\) −11.5806 + 20.0583i −0.418153 + 0.724262i
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(774\) 0 0
\(775\) 22.0794 12.7475i 0.793116 0.457905i
\(776\) 0 0
\(777\) 0 0
\(778\) 55.4725 1.98879
\(779\) 0 0
\(780\) 0 0
\(781\) 31.7450 54.9839i 1.13593 1.96748i
\(782\) 0 0
\(783\) 0 0
\(784\) −24.0000 14.4222i −0.857143 0.515079i
\(785\) 0 0
\(786\) 0 0
\(787\) 25.3480 + 14.6347i 0.903559 + 0.521670i 0.878353 0.478012i \(-0.158643\pi\)
0.0252056 + 0.999682i \(0.491976\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 41.6115 10.7604i 1.47953 0.382596i
\(792\) 55.4700 1.97104
\(793\) 3.63250 + 6.29168i 0.128994 + 0.223424i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.21110i 0.255430i −0.991811 0.127715i \(-0.959236\pi\)
0.991811 0.127715i \(-0.0407643\pi\)
\(798\) 0 0
\(799\) −95.9508 −3.39450
\(800\) 14.1421 + 24.4949i 0.500000 + 0.866025i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −26.0000 −0.915811
\(807\) 0 0
\(808\) 35.3270 + 20.3961i 1.24280 + 0.717532i
\(809\) −26.6125 + 46.0942i −0.935645 + 1.62059i −0.162167 + 0.986763i \(0.551848\pi\)
−0.773479 + 0.633822i \(0.781485\pi\)
\(810\) 0 0
\(811\) 56.0892i 1.96956i −0.173809 0.984779i \(-0.555608\pi\)
0.173809 0.984779i \(-0.444392\pi\)
\(812\) −3.17491 + 11.4473i −0.111417 + 0.401721i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −20.4124 + 20.0583i −0.713267 + 0.700892i
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −6.01748 23.2702i −0.209375 0.809672i
\(827\) −42.2107 −1.46781 −0.733905 0.679252i \(-0.762304\pi\)
−0.733905 + 0.679252i \(0.762304\pi\)
\(828\) 0 0
\(829\) −47.2350 27.2711i −1.64054 0.947166i −0.980642 0.195810i \(-0.937266\pi\)
−0.659897 0.751356i \(-0.729400\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 28.8444i 1.00000i
\(833\) 49.4800 + 0.866025i 1.71438 + 0.0300060i
\(834\) 0 0
\(835\) 0 0
\(836\) 40.4700 + 23.3654i 1.39968 + 0.808108i
\(837\) 0 0
\(838\) 0 0
\(839\) 53.5642i 1.84924i −0.380889 0.924621i \(-0.624382\pi\)
0.380889 0.924621i \(-0.375618\pi\)
\(840\) 0 0
\(841\) −23.9600 −0.826206
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 57.5820i 1.97971i
\(847\) 58.8490 + 59.8880i 2.02207 + 2.05778i
\(848\) −45.9600 −1.57827
\(849\) 0 0
\(850\) −43.2926 24.9950i −1.48492 0.857321i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) −7.26501 2.01495i −0.248603 0.0689502i
\(855\) 0 0
\(856\) 0 0
\(857\) 17.4800 + 10.0921i 0.597105 + 0.344739i 0.767902 0.640567i \(-0.221301\pi\)
−0.170797 + 0.985306i \(0.554634\pi\)
\(858\) 0 0
\(859\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 30.0000 1.02180
\(863\) 23.3345 + 40.4166i 0.794316 + 1.37580i 0.923272 + 0.384146i \(0.125504\pi\)
−0.128956 + 0.991650i \(0.541163\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −49.4833 + 28.5692i −1.68151 + 0.970821i
\(867\) 0 0
\(868\) 19.2450 18.9111i 0.653218 0.641885i
\(869\) 0 0
\(870\) 0 0
\(871\) 10.4988 + 6.06146i 0.355737 + 0.205385i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.6888i 1.94359i −0.235836 0.971793i \(-0.575783\pi\)
0.235836 0.971793i \(-0.424217\pi\)
\(882\) 0.519719 29.6939i 0.0174999 0.999847i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 25.4900 + 44.1500i 0.857321 + 1.48492i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 29.4174 + 50.9524i 0.985520 + 1.70697i
\(892\) 1.25512 + 0.724645i 0.0420246 + 0.0242629i
\(893\) −24.2550 + 42.0109i −0.811663 + 1.40584i
\(894\) 0 0
\(895\) 0 0
\(896\) 20.9800 + 21.3504i 0.700892 + 0.713267i
\(897\) 0 0
\(898\) 0 0
\(899\) −9.91364 5.72364i −0.330638 0.190894i
\(900\) −15.0000 + 25.9808i −0.500000 + 0.866025i
\(901\) 70.3475 40.6151i 2.34361 1.35309i
\(902\) 0 0
\(903\) 0 0
\(904\) −45.9478 −1.52820
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) −8.83176 + 5.09902i −0.293092 + 0.169217i
\(909\) 43.2666i 1.43506i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 86.6025 + 50.0000i 2.86612 + 1.65476i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 35.0175i 1.15262i
\(924\) 0 0
\(925\) 0 0
\(926\) 17.0000 + 29.4449i 0.558655 + 0.967618i
\(927\) 0 0
\(928\) 6.34981 10.9982i 0.208443 0.361034i
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) 12.8870 21.4453i 0.422355 0.702841i
\(932\) −59.9600 −1.96405
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 26.4953 15.2971i 0.866025 0.500000i
\(937\) 32.3432i 1.05661i 0.849056 + 0.528303i \(0.177171\pi\)
−0.849056 + 0.528303i \(0.822829\pi\)
\(938\) −12.1799 + 3.14963i −0.397688 + 0.102839i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 25.6951i 0.836305i
\(945\) 0 0
\(946\) 0 0
\(947\) 9.61841 + 16.6596i 0.312556 + 0.541364i 0.978915 0.204268i \(-0.0654813\pi\)
−0.666359 + 0.745631i \(0.732148\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −21.8875 + 12.6368i −0.710124 + 0.409991i
\(951\) 0 0
\(952\) −50.9800 14.1393i −1.65227 0.458258i
\(953\) −38.9600 −1.26204 −0.631019 0.775768i \(-0.717363\pi\)
−0.631019 + 0.775768i \(0.717363\pi\)
\(954\) −24.3740 42.2169i −0.789136 1.36682i
\(955\) 0 0
\(956\) 0.187388 0.324565i 0.00606055 0.0104972i
\(957\) 0 0
\(958\) 39.4128i 1.27337i
\(959\) 0 0
\(960\) 0 0
\(961\) −2.50000 4.33013i −0.0806452 0.139682i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −62.0097 −1.99410 −0.997049 0.0767681i \(-0.975540\pi\)
−0.997049 + 0.0767681i \(0.975540\pi\)
\(968\) −44.8801 77.7345i −1.44250 2.49848i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −37.2450 −1.19341
\(975\) 0 0
\(976\) 6.97999 + 4.02990i 0.223424 + 0.128994i
\(977\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 38.9846 + 22.5078i 1.24341 + 0.717886i 0.969788 0.243950i \(-0.0784433\pi\)
0.273627 + 0.961836i \(0.411777\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 22.4455i 0.714810i
\(987\) 0 0
\(988\) 25.7740 0.819981
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) −24.9800 + 14.4222i −0.793116 + 0.457905i
\(993\) 0 0
\(994\) 25.4700 + 25.9197i 0.807859 + 0.822122i
\(995\) 0 0
\(996\) 0 0
\(997\) 15.7650 + 9.10193i 0.499283 + 0.288261i 0.728417 0.685134i \(-0.240256\pi\)
−0.229135 + 0.973395i \(0.573590\pi\)
\(998\) 19.0000 32.9090i 0.601434 1.04172i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 364.2.x.a.311.1 yes 8
4.3 odd 2 inner 364.2.x.a.311.4 yes 8
7.5 odd 6 inner 364.2.x.a.103.1 8
13.12 even 2 inner 364.2.x.a.311.4 yes 8
28.19 even 6 inner 364.2.x.a.103.4 yes 8
52.51 odd 2 CM 364.2.x.a.311.1 yes 8
91.12 odd 6 inner 364.2.x.a.103.4 yes 8
364.103 even 6 inner 364.2.x.a.103.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.x.a.103.1 8 7.5 odd 6 inner
364.2.x.a.103.1 8 364.103 even 6 inner
364.2.x.a.103.4 yes 8 28.19 even 6 inner
364.2.x.a.103.4 yes 8 91.12 odd 6 inner
364.2.x.a.311.1 yes 8 1.1 even 1 trivial
364.2.x.a.311.1 yes 8 52.51 odd 2 CM
364.2.x.a.311.4 yes 8 4.3 odd 2 inner
364.2.x.a.311.4 yes 8 13.12 even 2 inner