Properties

Label 364.2.x.a
Level $364$
Weight $2$
Character orbit 364.x
Analytic conductor $2.907$
Analytic rank $0$
Dimension $8$
CM discriminant -52
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [364,2,Mod(103,364)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("364.103"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(364, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.151613669376.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 95x^{4} - 588x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} - \beta_{2}) q^{2} + (2 \beta_{3} - 2) q^{4} + \beta_1 q^{7} - 2 \beta_{6} q^{8} + 3 \beta_{3} q^{9} + ( - \beta_{7} + \beta_{6} + \cdots - 2 \beta_1) q^{11} - \beta_{5} q^{13} + (\beta_{5} + \beta_{4} + \beta_{3} - 1) q^{14}+ \cdots + (3 \beta_{7} - 3 \beta_{6} - 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 12 q^{9} - 4 q^{14} - 16 q^{16} + 24 q^{17} - 24 q^{22} + 20 q^{25} + 32 q^{29} - 48 q^{36} - 60 q^{38} + 24 q^{49} - 4 q^{53} - 8 q^{56} + 36 q^{61} + 64 q^{64} - 48 q^{68} - 12 q^{77}+ \cdots + 108 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 12x^{6} + 95x^{4} - 588x^{2} + 2401 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -11\nu^{7} + 475\nu^{5} - 1045\nu^{3} + 6468\nu ) / 32585 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -12\nu^{6} + 95\nu^{4} - 1140\nu^{2} + 7056 ) / 4655 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -23\nu^{6} + 570\nu^{4} - 2185\nu^{2} + 13524 ) / 4655 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{6} + 18 ) / 95 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -12\nu^{7} + 95\nu^{5} - 209\nu^{3} + 2401\nu ) / 6517 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{7} - 12\nu^{5} + 95\nu^{3} - 588\nu ) / 343 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{5} + \beta_{4} - 6\beta_{3} + 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{7} + 7\beta_{6} + 5\beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 12\beta_{4} - 23\beta_{3} \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 11\beta_{7} + 95\beta_{2} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -95\beta_{5} + 18 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -665\beta_{6} + 665\beta_{2} + 113\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(\beta_{3}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
103.1
−2.56149 0.662382i
1.85439 + 1.88713i
−1.85439 1.88713i
2.56149 + 0.662382i
−2.56149 + 0.662382i
1.85439 1.88713i
−1.85439 + 1.88713i
2.56149 0.662382i
−0.707107 + 1.22474i 0 −1.00000 1.73205i 0 0 −2.56149 0.662382i 2.82843 1.50000 2.59808i 0
103.2 −0.707107 + 1.22474i 0 −1.00000 1.73205i 0 0 1.85439 + 1.88713i 2.82843 1.50000 2.59808i 0
103.3 0.707107 1.22474i 0 −1.00000 1.73205i 0 0 −1.85439 1.88713i −2.82843 1.50000 2.59808i 0
103.4 0.707107 1.22474i 0 −1.00000 1.73205i 0 0 2.56149 + 0.662382i −2.82843 1.50000 2.59808i 0
311.1 −0.707107 1.22474i 0 −1.00000 + 1.73205i 0 0 −2.56149 + 0.662382i 2.82843 1.50000 + 2.59808i 0
311.2 −0.707107 1.22474i 0 −1.00000 + 1.73205i 0 0 1.85439 1.88713i 2.82843 1.50000 + 2.59808i 0
311.3 0.707107 + 1.22474i 0 −1.00000 + 1.73205i 0 0 −1.85439 + 1.88713i −2.82843 1.50000 + 2.59808i 0
311.4 0.707107 + 1.22474i 0 −1.00000 + 1.73205i 0 0 2.56149 0.662382i −2.82843 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 103.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
52.b odd 2 1 CM by \(\Q(\sqrt{-13}) \)
4.b odd 2 1 inner
7.d odd 6 1 inner
13.b even 2 1 inner
28.f even 6 1 inner
91.s odd 6 1 inner
364.x even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 364.2.x.a 8
4.b odd 2 1 inner 364.2.x.a 8
7.d odd 6 1 inner 364.2.x.a 8
13.b even 2 1 inner 364.2.x.a 8
28.f even 6 1 inner 364.2.x.a 8
52.b odd 2 1 CM 364.2.x.a 8
91.s odd 6 1 inner 364.2.x.a 8
364.x even 6 1 inner 364.2.x.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
364.2.x.a 8 1.a even 1 1 trivial
364.2.x.a 8 4.b odd 2 1 inner
364.2.x.a 8 7.d odd 6 1 inner
364.2.x.a 8 13.b even 2 1 inner
364.2.x.a 8 28.f even 6 1 inner
364.2.x.a 8 52.b odd 2 1 CM
364.2.x.a 8 91.s odd 6 1 inner
364.2.x.a 8 364.x even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} \) acting on \(S_{2}^{\mathrm{new}}(364, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 2 T^{2} + 4)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} \) Copy content Toggle raw display
$7$ \( T^{8} - 12 T^{6} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( T^{8} + 48 T^{6} + \cdots + 50625 \) Copy content Toggle raw display
$13$ \( (T^{2} + 13)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} - 12 T^{3} + 47 T^{2} + \cdots + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} - 88 T^{6} + \cdots + 923521 \) Copy content Toggle raw display
$23$ \( T^{8} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8 T - 23)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} - 26 T^{2} + 676)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( T^{8} - 256 T^{6} + \cdots + 174900625 \) Copy content Toggle raw display
$53$ \( (T^{4} + 2 T^{3} + \cdots + 24025)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} - 120 T^{6} + \cdots + 10556001 \) Copy content Toggle raw display
$61$ \( (T^{4} - 18 T^{3} + \cdots + 625)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 160 T^{6} + \cdots + 2825761 \) Copy content Toggle raw display
$71$ \( (T^{4} - 376 T^{2} + 26569)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{2} + 234)^{4} \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less