Properties

Label 364.2.x.a.103.3
Level $364$
Weight $2$
Character 364.103
Analytic conductor $2.907$
Analytic rank $0$
Dimension $8$
CM discriminant -52
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [364,2,Mod(103,364)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("364.103"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(364, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 364 = 2^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 364.x (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.90655463357\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.151613669376.6
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} + 95x^{4} - 588x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 103.3
Root \(-1.85439 - 1.88713i\) of defining polynomial
Character \(\chi\) \(=\) 364.103
Dual form 364.2.x.a.311.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.707107 - 1.22474i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(-1.85439 - 1.88713i) q^{7} -2.82843 q^{8} +(1.50000 - 2.59808i) q^{9} +(1.14728 + 1.98715i) q^{11} -3.60555i q^{13} +(-3.62250 + 0.936750i) q^{14} +(-2.00000 + 3.46410i) q^{16} +(-0.122499 + 0.0707248i) q^{17} +(-2.12132 - 3.67423i) q^{18} +(-7.51124 - 4.33662i) q^{19} +3.24500 q^{22} +(2.50000 + 4.33013i) q^{25} +(-4.41588 - 2.54951i) q^{26} +(-1.41421 + 5.09902i) q^{28} +10.2450 q^{29} +(4.41588 - 2.54951i) q^{31} +(2.82843 + 4.89898i) q^{32} +0.200040i q^{34} -6.00000 q^{36} +(-10.6225 + 6.13290i) q^{38} +(2.29456 - 3.97429i) q^{44} +(7.33800 + 4.23660i) q^{47} +(-0.122499 + 6.99893i) q^{49} +7.07107 q^{50} +(-6.24500 + 3.60555i) q^{52} +(-6.74500 - 11.6827i) q^{53} +(5.24500 + 5.33760i) q^{56} +(7.24431 - 12.5475i) q^{58} +(-7.68448 + 4.43664i) q^{59} +(10.7450 + 6.20363i) q^{61} -7.21110i q^{62} +(-7.68448 + 1.98715i) q^{63} +8.00000 q^{64} +(6.09703 + 10.5604i) q^{67} +(0.244998 + 0.141450i) q^{68} +16.7832 q^{71} +(-4.24264 + 7.34847i) q^{72} +17.3465i q^{76} +(1.62250 - 5.85000i) q^{77} +(-4.50000 - 7.79423i) q^{81} -15.2971i q^{83} +(-3.24500 - 5.62050i) q^{88} +(-6.80413 + 6.68609i) q^{91} +(10.3775 - 5.99145i) q^{94} +(8.48528 + 5.09902i) q^{98} +6.88368 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} + 12 q^{9} - 4 q^{14} - 16 q^{16} + 24 q^{17} - 24 q^{22} + 20 q^{25} + 32 q^{29} - 48 q^{36} - 60 q^{38} + 24 q^{49} - 4 q^{53} - 8 q^{56} + 36 q^{61} + 64 q^{64} - 48 q^{68} - 12 q^{77}+ \cdots + 108 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/364\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(183\) \(197\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.707107 1.22474i 0.500000 0.866025i
\(3\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(6\) 0 0
\(7\) −1.85439 1.88713i −0.700892 0.713267i
\(8\) −2.82843 −1.00000
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 0 0
\(11\) 1.14728 + 1.98715i 0.345918 + 0.599147i 0.985520 0.169559i \(-0.0542342\pi\)
−0.639602 + 0.768706i \(0.720901\pi\)
\(12\) 0 0
\(13\) 3.60555i 1.00000i
\(14\) −3.62250 + 0.936750i −0.968154 + 0.250357i
\(15\) 0 0
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) −0.122499 + 0.0707248i −0.0297104 + 0.0171533i −0.514782 0.857321i \(-0.672127\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) −2.12132 3.67423i −0.500000 0.866025i
\(19\) −7.51124 4.33662i −1.72320 0.994888i −0.912090 0.409991i \(-0.865532\pi\)
−0.811107 0.584898i \(-0.801135\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 3.24500 0.691836
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) 2.50000 + 4.33013i 0.500000 + 0.866025i
\(26\) −4.41588 2.54951i −0.866025 0.500000i
\(27\) 0 0
\(28\) −1.41421 + 5.09902i −0.267261 + 0.963624i
\(29\) 10.2450 1.90245 0.951224 0.308500i \(-0.0998271\pi\)
0.951224 + 0.308500i \(0.0998271\pi\)
\(30\) 0 0
\(31\) 4.41588 2.54951i 0.793116 0.457905i −0.0479427 0.998850i \(-0.515266\pi\)
0.841058 + 0.540945i \(0.181933\pi\)
\(32\) 2.82843 + 4.89898i 0.500000 + 0.866025i
\(33\) 0 0
\(34\) 0.200040i 0.0343066i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(38\) −10.6225 + 6.13290i −1.72320 + 0.994888i
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 2.29456 3.97429i 0.345918 0.599147i
\(45\) 0 0
\(46\) 0 0
\(47\) 7.33800 + 4.23660i 1.07036 + 0.617971i 0.928279 0.371884i \(-0.121288\pi\)
0.142078 + 0.989855i \(0.454621\pi\)
\(48\) 0 0
\(49\) −0.122499 + 6.99893i −0.0174999 + 0.999847i
\(50\) 7.07107 1.00000
\(51\) 0 0
\(52\) −6.24500 + 3.60555i −0.866025 + 0.500000i
\(53\) −6.74500 11.6827i −0.926497 1.60474i −0.789136 0.614218i \(-0.789471\pi\)
−0.137361 0.990521i \(-0.543862\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 5.24500 + 5.33760i 0.700892 + 0.713267i
\(57\) 0 0
\(58\) 7.24431 12.5475i 0.951224 1.64757i
\(59\) −7.68448 + 4.43664i −1.00043 + 0.577601i −0.908377 0.418153i \(-0.862678\pi\)
−0.0920575 + 0.995754i \(0.529344\pi\)
\(60\) 0 0
\(61\) 10.7450 + 6.20363i 1.37576 + 0.794293i 0.991645 0.128994i \(-0.0411748\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 7.21110i 0.915811i
\(63\) −7.68448 + 1.98715i −0.968154 + 0.250357i
\(64\) 8.00000 1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) 6.09703 + 10.5604i 0.744870 + 1.29015i 0.950255 + 0.311472i \(0.100822\pi\)
−0.205385 + 0.978681i \(0.565845\pi\)
\(68\) 0.244998 + 0.141450i 0.0297104 + 0.0171533i
\(69\) 0 0
\(70\) 0 0
\(71\) 16.7832 1.99180 0.995898 0.0904805i \(-0.0288403\pi\)
0.995898 + 0.0904805i \(0.0288403\pi\)
\(72\) −4.24264 + 7.34847i −0.500000 + 0.866025i
\(73\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 17.3465i 1.98978i
\(77\) 1.62250 5.85000i 0.184901 0.666670i
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 0 0
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 0 0
\(83\) 15.2971i 1.67907i −0.543305 0.839535i \(-0.682827\pi\)
0.543305 0.839535i \(-0.317173\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) −3.24500 5.62050i −0.345918 0.599147i
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 0 0
\(91\) −6.80413 + 6.68609i −0.713267 + 0.700892i
\(92\) 0 0
\(93\) 0 0
\(94\) 10.3775 5.99145i 1.07036 0.617971i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 8.48528 + 5.09902i 0.857143 + 0.515079i
\(99\) 6.88368 0.691836
\(100\) 5.00000 8.66025i 0.500000 0.866025i
\(101\) −12.4900 + 7.21110i −1.24280 + 0.717532i −0.969664 0.244443i \(-0.921395\pi\)
−0.273138 + 0.961975i \(0.588061\pi\)
\(102\) 0 0
\(103\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(104\) 10.1980i 1.00000i
\(105\) 0 0
\(106\) −19.0777 −1.85299
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 10.2460 2.64953i 0.968154 0.250357i
\(113\) −3.75500 −0.353241 −0.176620 0.984279i \(-0.556517\pi\)
−0.176620 + 0.984279i \(0.556517\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −10.2450 17.7449i −0.951224 1.64757i
\(117\) −9.36750 5.40833i −0.866025 0.500000i
\(118\) 12.5487i 1.15520i
\(119\) 0.360627 + 0.100020i 0.0330586 + 0.00916882i
\(120\) 0 0
\(121\) 2.86750 4.96665i 0.260682 0.451514i
\(122\) 15.1957 8.77325i 1.37576 0.794293i
\(123\) 0 0
\(124\) −8.83176 5.09902i −0.793116 0.457905i
\(125\) 0 0
\(126\) −3.00000 + 10.8167i −0.267261 + 0.963624i
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 5.65685 9.79796i 0.500000 0.866025i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(132\) 0 0
\(133\) 5.74500 + 22.2164i 0.498155 + 1.92641i
\(134\) 17.2450 1.48974
\(135\) 0 0
\(136\) 0.346479 0.200040i 0.0297104 0.0171533i
\(137\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 11.8675 20.5551i 0.995898 1.72495i
\(143\) 7.16476 4.13658i 0.599147 0.345918i
\(144\) 6.00000 + 10.3923i 0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(150\) 0 0
\(151\) −3.80247 6.58607i −0.309440 0.535967i 0.668800 0.743443i \(-0.266808\pi\)
−0.978240 + 0.207476i \(0.933475\pi\)
\(152\) 21.2450 + 12.2658i 1.72320 + 0.994888i
\(153\) 0.424349i 0.0343066i
\(154\) −6.01748 6.12372i −0.484902 0.493464i
\(155\) 0 0
\(156\) 0 0
\(157\) −21.1225 + 12.1951i −1.68576 + 0.973273i −0.728055 + 0.685519i \(0.759575\pi\)
−0.957704 + 0.287754i \(0.907091\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) −12.7279 −1.00000
\(163\) −10.6861 + 18.5090i −0.837004 + 1.44973i 0.0553849 + 0.998465i \(0.482361\pi\)
−0.892389 + 0.451268i \(0.850972\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −18.7350 10.8167i −1.45412 0.839535i
\(167\) 9.07331i 0.702114i −0.936354 0.351057i \(-0.885822\pi\)
0.936354 0.351057i \(-0.114178\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) 0 0
\(171\) −22.5337 + 13.0099i −1.72320 + 0.994888i
\(172\) 0 0
\(173\) −10.2550 5.92073i −0.779673 0.450145i 0.0566411 0.998395i \(-0.481961\pi\)
−0.836315 + 0.548250i \(0.815294\pi\)
\(174\) 0 0
\(175\) 3.53553 12.7475i 0.267261 0.963624i
\(176\) −9.17824 −0.691836
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 24.6731i 1.83393i 0.398963 + 0.916967i \(0.369370\pi\)
−0.398963 + 0.916967i \(0.630630\pi\)
\(182\) 3.37750 + 13.0611i 0.250357 + 0.968154i
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −0.281081 0.162282i −0.0205547 0.0118673i
\(188\) 16.9464i 1.23594i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 0 0
\(193\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 12.2450 6.78675i 0.874643 0.484768i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 4.86750 8.43075i 0.345918 0.599147i
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −7.07107 12.2474i −0.500000 0.866025i
\(201\) 0 0
\(202\) 20.3961i 1.43506i
\(203\) −18.9982 19.3336i −1.33341 1.35695i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 12.4900 + 7.21110i 0.866025 + 0.500000i
\(209\) 19.9013i 1.37660i
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) −13.4900 + 23.3654i −0.926497 + 1.60474i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −13.0000 3.60555i −0.882498 0.244761i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.255002 + 0.441676i 0.0171533 + 0.0297104i
\(222\) 0 0
\(223\) 26.2197i 1.75580i −0.478841 0.877902i \(-0.658943\pi\)
0.478841 0.877902i \(-0.341057\pi\)
\(224\) 4.00000 14.4222i 0.267261 0.963624i
\(225\) 15.0000 1.00000
\(226\) −2.65519 + 4.59892i −0.176620 + 0.305916i
\(227\) 4.41588 2.54951i 0.293092 0.169217i −0.346243 0.938145i \(-0.612543\pi\)
0.639336 + 0.768928i \(0.279209\pi\)
\(228\) 0 0
\(229\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −28.9772 −1.90245
\(233\) −9.99000 + 17.3032i −0.654466 + 1.13357i 0.327561 + 0.944830i \(0.393773\pi\)
−0.982027 + 0.188739i \(0.939560\pi\)
\(234\) −13.2476 + 7.64853i −0.866025 + 0.500000i
\(235\) 0 0
\(236\) 15.3690 + 8.87327i 1.00043 + 0.577601i
\(237\) 0 0
\(238\) 0.377501 0.370952i 0.0244698 0.0240452i
\(239\) 26.6827 1.72596 0.862979 0.505239i \(-0.168596\pi\)
0.862979 + 0.505239i \(0.168596\pi\)
\(240\) 0 0
\(241\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) −4.05525 7.02390i −0.260682 0.451514i
\(243\) 0 0
\(244\) 24.8145i 1.58859i
\(245\) 0 0
\(246\) 0 0
\(247\) −15.6359 + 27.0822i −0.994888 + 1.72320i
\(248\) −12.4900 + 7.21110i −0.793116 + 0.457905i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 11.1263 + 11.3228i 0.700892 + 0.713267i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 24.9800 + 14.4222i 1.55821 + 0.899632i 0.997429 + 0.0716680i \(0.0228322\pi\)
0.560781 + 0.827964i \(0.310501\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 15.3675 26.6173i 0.951224 1.64757i
\(262\) 0 0
\(263\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 31.2718 + 8.67323i 1.91740 + 0.531790i
\(267\) 0 0
\(268\) 12.1941 21.1207i 0.744870 1.29015i
\(269\) 20.8775 12.0536i 1.27292 0.734923i 0.297386 0.954757i \(-0.403885\pi\)
0.975537 + 0.219834i \(0.0705517\pi\)
\(270\) 0 0
\(271\) 22.1872 + 12.8098i 1.34778 + 0.778141i 0.987935 0.154872i \(-0.0494964\pi\)
0.359844 + 0.933012i \(0.382830\pi\)
\(272\) 0.565799i 0.0343066i
\(273\) 0 0
\(274\) 0 0
\(275\) −5.73640 + 9.93574i −0.345918 + 0.599147i
\(276\) 0 0
\(277\) −13.7450 23.8070i −0.825857 1.43043i −0.901263 0.433273i \(-0.857359\pi\)
0.0754058 0.997153i \(-0.475975\pi\)
\(278\) 0 0
\(279\) 15.2971i 0.915811i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(284\) −16.7832 29.0693i −0.995898 1.72495i
\(285\) 0 0
\(286\) 11.7000i 0.691836i
\(287\) 0 0
\(288\) 16.9706 1.00000
\(289\) −8.49000 + 14.7051i −0.499412 + 0.865006i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) −10.7550 −0.618881
\(303\) 0 0
\(304\) 30.0450 17.3465i 1.72320 0.994888i
\(305\) 0 0
\(306\) 0.519719 + 0.300060i 0.0297104 + 0.0171533i
\(307\) 8.07311i 0.460757i 0.973101 + 0.230378i \(0.0739964\pi\)
−0.973101 + 0.230378i \(0.926004\pi\)
\(308\) −11.7550 + 3.03975i −0.669803 + 0.173206i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 0 0
\(313\) −18.7350 10.8167i −1.05896 0.611393i −0.133819 0.991006i \(-0.542724\pi\)
−0.925146 + 0.379612i \(0.876057\pi\)
\(314\) 34.4929i 1.94655i
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 11.7539 + 20.3583i 0.658091 + 1.13985i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.22683 0.0682624
\(324\) −9.00000 + 15.5885i −0.500000 + 0.866025i
\(325\) 15.6125 9.01388i 0.866025 0.500000i
\(326\) 15.1125 + 26.1756i 0.837004 + 1.44973i
\(327\) 0 0
\(328\) 0 0
\(329\) −5.61249 21.7040i −0.309427 1.19658i
\(330\) 0 0
\(331\) −3.53553 + 6.12372i −0.194331 + 0.336590i −0.946681 0.322173i \(-0.895587\pi\)
0.752350 + 0.658763i \(0.228920\pi\)
\(332\) −26.4953 + 15.2971i −1.45412 + 0.839535i
\(333\) 0 0
\(334\) −11.1125 6.41580i −0.608049 0.351057i
\(335\) 0 0
\(336\) 0 0
\(337\) 24.2450 1.32071 0.660355 0.750954i \(-0.270406\pi\)
0.660355 + 0.750954i \(0.270406\pi\)
\(338\) −9.19239 + 15.9217i −0.500000 + 0.866025i
\(339\) 0 0
\(340\) 0 0
\(341\) 10.1325 + 5.85000i 0.548706 + 0.316795i
\(342\) 36.7974i 1.98978i
\(343\) 13.4350 12.7475i 0.725423 0.688303i
\(344\) 0 0
\(345\) 0 0
\(346\) −14.5028 + 8.37317i −0.779673 + 0.450145i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) −13.1125 13.3440i −0.700892 0.713267i
\(351\) 0 0
\(352\) −6.49000 + 11.2410i −0.345918 + 0.599147i
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.36396 11.0227i 0.335877 0.581756i −0.647776 0.761831i \(-0.724301\pi\)
0.983653 + 0.180075i \(0.0576340\pi\)
\(360\) 0 0
\(361\) 28.1125 + 48.6923i 1.47960 + 2.56275i
\(362\) 30.2182 + 17.4465i 1.58823 + 0.916967i
\(363\) 0 0
\(364\) 18.3848 + 5.09902i 0.963624 + 0.267261i
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −9.53887 + 34.3929i −0.495233 + 1.78559i
\(372\) 0 0
\(373\) 1.36750 2.36857i 0.0708063 0.122640i −0.828449 0.560065i \(-0.810776\pi\)
0.899255 + 0.437425i \(0.144109\pi\)
\(374\) −0.397509 + 0.229502i −0.0205547 + 0.0118673i
\(375\) 0 0
\(376\) −20.7550 11.9829i −1.07036 0.617971i
\(377\) 36.9389i 1.90245i
\(378\) 0 0
\(379\) −15.5563 −0.799076 −0.399538 0.916717i \(-0.630829\pi\)
−0.399538 + 0.916717i \(0.630829\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 22.0794 + 12.7475i 1.12820 + 0.651369i 0.943483 0.331422i \(-0.107528\pi\)
0.184722 + 0.982791i \(0.440862\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.6125 + 20.1134i 0.588777 + 1.01979i 0.994393 + 0.105748i \(0.0337237\pi\)
−0.405616 + 0.914044i \(0.632943\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0.346479 19.7960i 0.0174999 0.999847i
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) −6.88368 11.9229i −0.345918 0.599147i
\(397\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −20.0000 −1.00000
\(401\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(402\) 0 0
\(403\) −9.19239 15.9217i −0.457905 0.793116i
\(404\) 24.9800 + 14.4222i 1.24280 + 0.717532i
\(405\) 0 0
\(406\) −37.1125 + 9.59700i −1.84186 + 0.476291i
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 22.6225 + 6.27435i 1.11318 + 0.308741i
\(414\) 0 0
\(415\) 0 0
\(416\) 17.6635 10.1980i 0.866025 0.500000i
\(417\) 0 0
\(418\) −24.3740 14.0723i −1.19217 0.688299i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 22.0140 12.7098i 1.07036 0.617971i
\(424\) 19.0777 + 33.0436i 0.926497 + 1.60474i
\(425\) −0.612495 0.353624i −0.0297104 0.0171533i
\(426\) 0 0
\(427\) −8.21835 31.7811i −0.397714 1.53800i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 10.6066 + 18.3712i 0.510902 + 0.884908i 0.999920 + 0.0126347i \(0.00402184\pi\)
−0.489018 + 0.872274i \(0.662645\pi\)
\(432\) 0 0
\(433\) 11.5586i 0.555469i 0.960658 + 0.277734i \(0.0895835\pi\)
−0.960658 + 0.277734i \(0.910416\pi\)
\(434\) −13.6083 + 13.3722i −0.653218 + 0.641885i
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 18.0000 + 10.8167i 0.857143 + 0.515079i
\(442\) 0.721255 0.0343066
\(443\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −32.1125 18.5402i −1.52057 0.877902i
\(447\) 0 0
\(448\) −14.8351 15.0970i −0.700892 0.713267i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 10.6066 18.3712i 0.500000 0.866025i
\(451\) 0 0
\(452\) 3.75500 + 6.50385i 0.176620 + 0.305916i
\(453\) 0 0
\(454\) 7.21110i 0.338434i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 24.0416 1.11731 0.558655 0.829400i \(-0.311318\pi\)
0.558655 + 0.829400i \(0.311318\pi\)
\(464\) −20.4900 + 35.4897i −0.951224 + 1.64757i
\(465\) 0 0
\(466\) 14.1280 + 24.4704i 0.654466 + 1.13357i
\(467\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(468\) 21.6333i 1.00000i
\(469\) 8.62250 31.0889i 0.398150 1.43555i
\(470\) 0 0
\(471\) 0 0
\(472\) 21.7350 12.5487i 1.00043 0.577601i
\(473\) 0 0
\(474\) 0 0
\(475\) 43.3662i 1.98978i
\(476\) −0.187388 0.724645i −0.00858889 0.0332140i
\(477\) −40.4700 −1.85299
\(478\) 18.8675 32.6795i 0.862979 1.49472i
\(479\) −37.3830 + 21.5831i −1.70807 + 0.986155i −0.771124 + 0.636685i \(0.780305\pi\)
−0.936947 + 0.349470i \(0.886362\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −11.4700 −0.521363
\(485\) 0 0
\(486\) 0 0
\(487\) −8.75221 15.1593i −0.396601 0.686933i 0.596703 0.802462i \(-0.296477\pi\)
−0.993304 + 0.115529i \(0.963144\pi\)
\(488\) −30.3914 17.5465i −1.37576 0.794293i
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) −1.25500 + 0.724576i −0.0565224 + 0.0326333i
\(494\) 22.1125 + 38.3000i 0.994888 + 1.72320i
\(495\) 0 0
\(496\) 20.3961i 0.915811i
\(497\) −31.1225 31.6720i −1.39603 1.42068i
\(498\) 0 0
\(499\) −13.4350 + 23.2702i −0.601434 + 1.04172i 0.391170 + 0.920319i \(0.372071\pi\)
−0.992604 + 0.121396i \(0.961263\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 21.7350 5.62050i 0.968154 0.250357i
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.6274 −1.00000
\(513\) 0 0
\(514\) 35.3270 20.3961i 1.55821 0.899632i
\(515\) 0 0
\(516\) 0 0
\(517\) 19.4423i 0.855069i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 31.2250 18.0278i 1.36799 0.789810i 0.377320 0.926083i \(-0.376846\pi\)
0.990671 + 0.136272i \(0.0435123\pi\)
\(522\) −21.7329 37.6425i −0.951224 1.64757i
\(523\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.360627 + 0.624625i −0.0157092 + 0.0272091i
\(528\) 0 0
\(529\) −11.5000 19.9186i −0.500000 0.866025i
\(530\) 0 0
\(531\) 26.6198i 1.15520i
\(532\) 32.7350 32.1671i 1.41924 1.39462i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −17.2450 29.8692i −0.744870 1.29015i
\(537\) 0 0
\(538\) 34.0928i 1.46985i
\(539\) −14.0484 + 7.78631i −0.605109 + 0.335380i
\(540\) 0 0
\(541\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(542\) 31.3775 18.1158i 1.34778 0.778141i
\(543\) 0 0
\(544\) −0.692959 0.400080i −0.0297104 0.0171533i
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 32.2350 18.6109i 1.37576 0.794293i
\(550\) 8.11249 + 14.0513i 0.345918 + 0.599147i
\(551\) −76.9526 44.4286i −3.27829 1.89272i
\(552\) 0 0
\(553\) 0 0
\(554\) −38.8767 −1.65171
\(555\) 0 0
\(556\) 0 0
\(557\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(558\) −18.7350 10.8167i −0.793116 0.457905i
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −6.36396 + 22.9456i −0.267261 + 0.963624i
\(568\) −47.4700 −1.99180
\(569\) −2.99000 + 5.17882i −0.125347 + 0.217108i −0.921869 0.387503i \(-0.873338\pi\)
0.796521 + 0.604610i \(0.206671\pi\)
\(570\) 0 0
\(571\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) −14.3295 8.27315i −0.599147 0.345918i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 12.0000 20.7846i 0.500000 0.866025i
\(577\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(578\) 12.0067 + 20.7962i 0.499412 + 0.865006i
\(579\) 0 0
\(580\) 0 0
\(581\) −28.8675 + 28.3667i −1.19763 + 1.17685i
\(582\) 0 0
\(583\) 15.4768 26.8066i 0.640984 1.11022i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.47339i 0.391009i 0.980703 + 0.195504i \(0.0626344\pi\)
−0.980703 + 0.195504i \(0.937366\pi\)
\(588\) 0 0
\(589\) −44.2250 −1.82226
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 0 0
\(601\) 48.9218i 1.99556i 0.0665912 + 0.997780i \(0.478788\pi\)
−0.0665912 + 0.997780i \(0.521212\pi\)
\(602\) 0 0
\(603\) 36.5822 1.48974
\(604\) −7.60493 + 13.1721i −0.309440 + 0.535967i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(608\) 49.0632i 1.98978i
\(609\) 0 0
\(610\) 0 0
\(611\) 15.2753 26.4575i 0.617971 1.07036i
\(612\) 0.734994 0.424349i 0.0297104 0.0171533i
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) 9.88751 + 5.70855i 0.399027 + 0.230378i
\(615\) 0 0
\(616\) −4.58912 + 16.5463i −0.184901 + 0.666670i
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 4.41588 2.54951i 0.177489 0.102473i −0.408623 0.912703i \(-0.633991\pi\)
0.586112 + 0.810230i \(0.300658\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(626\) −26.4953 + 15.2971i −1.05896 + 0.611393i
\(627\) 0 0
\(628\) 42.2450 + 24.3902i 1.68576 + 0.973273i
\(629\) 0 0
\(630\) 0 0
\(631\) −35.3553 −1.40747 −0.703737 0.710461i \(-0.748487\pi\)
−0.703737 + 0.710461i \(0.748487\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 25.2350 + 0.441676i 0.999847 + 0.0174999i
\(638\) 33.2450 1.31618
\(639\) 25.1748 43.6040i 0.995898 1.72495i
\(640\) 0 0
\(641\) −2.00000 3.46410i −0.0789953 0.136824i 0.823821 0.566849i \(-0.191838\pi\)
−0.902817 + 0.430026i \(0.858505\pi\)
\(642\) 0 0
\(643\) 25.2195i 0.994562i 0.867590 + 0.497281i \(0.165668\pi\)
−0.867590 + 0.497281i \(0.834332\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0.867497 1.50255i 0.0341312 0.0591170i
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 12.7279 + 22.0454i 0.500000 + 0.866025i
\(649\) −17.6325 10.1801i −0.692136 0.399605i
\(650\) 25.4951i 1.00000i
\(651\) 0 0
\(652\) 42.7446 1.67401
\(653\) −4.00000 + 6.92820i −0.156532 + 0.271122i −0.933616 0.358276i \(-0.883365\pi\)
0.777084 + 0.629397i \(0.216698\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) −30.5505 8.47319i −1.19098 0.330319i
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(662\) 5.00000 + 8.66025i 0.194331 + 0.336590i
\(663\) 0 0
\(664\) 43.2666i 1.67907i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −15.7154 + 9.07331i −0.608049 + 0.351057i
\(669\) 0 0
\(670\) 0 0
\(671\) 28.4692i 1.09904i
\(672\) 0 0
\(673\) −12.0000 −0.462566 −0.231283 0.972887i \(-0.574292\pi\)
−0.231283 + 0.972887i \(0.574292\pi\)
\(674\) 17.1438 29.6939i 0.660355 1.14377i
\(675\) 0 0
\(676\) 13.0000 + 22.5167i 0.500000 + 0.866025i
\(677\) −31.2550 18.0451i −1.20123 0.693529i −0.240399 0.970674i \(-0.577278\pi\)
−0.960828 + 0.277145i \(0.910612\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 14.3295 8.27315i 0.548706 0.316795i
\(683\) −19.0919 33.0681i −0.730531 1.26532i −0.956657 0.291218i \(-0.905939\pi\)
0.226126 0.974098i \(-0.427394\pi\)
\(684\) 45.0674 + 26.0197i 1.72320 + 0.994888i
\(685\) 0 0
\(686\) −6.11249 25.4684i −0.233376 0.972387i
\(687\) 0 0
\(688\) 0 0
\(689\) −42.1225 + 24.3194i −1.60474 + 0.926497i
\(690\) 0 0
\(691\) 37.0365 + 21.3830i 1.40893 + 0.813449i 0.995286 0.0969879i \(-0.0309208\pi\)
0.413649 + 0.910437i \(0.364254\pi\)
\(692\) 23.6829i 0.900289i
\(693\) −12.7650 12.9904i −0.484902 0.493464i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −25.6149 + 6.62382i −0.968154 + 0.250357i
\(701\) 16.0000 0.604312 0.302156 0.953259i \(-0.402294\pi\)
0.302156 + 0.953259i \(0.402294\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 9.17824 + 15.8972i 0.345918 + 0.599147i
\(705\) 0 0
\(706\) 0 0
\(707\) 36.7696 + 10.1980i 1.38286 + 0.383537i
\(708\) 0 0
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) −9.00000 15.5885i −0.335877 0.581756i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 79.5141 2.95921
\(723\) 0 0
\(724\) 42.7350 24.6731i 1.58823 0.916967i
\(725\) 25.6125 + 44.3621i 0.951224 + 1.64757i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 19.2450 18.9111i 0.713267 0.700892i
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13.9900 + 24.2314i −0.515328 + 0.892574i
\(738\) 0 0
\(739\) 20.5061 + 35.5176i 0.754329 + 1.30654i 0.945707 + 0.325020i \(0.105371\pi\)
−0.191378 + 0.981516i \(0.561296\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 35.3775 + 36.0021i 1.29875 + 1.32168i
\(743\) −12.9153 −0.473817 −0.236908 0.971532i \(-0.576134\pi\)
−0.236908 + 0.971532i \(0.576134\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −1.93393 3.34967i −0.0708063 0.122640i
\(747\) −39.7429 22.9456i −1.45412 0.839535i
\(748\) 0.649129i 0.0237345i
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) −29.3520 + 16.9464i −1.07036 + 0.617971i
\(753\) 0 0
\(754\) −45.2407 26.1197i −1.64757 0.951224i
\(755\) 0 0
\(756\) 0 0
\(757\) −54.4700 −1.97975 −0.989873 0.141958i \(-0.954660\pi\)
−0.989873 + 0.141958i \(0.954660\pi\)
\(758\) −11.0000 + 19.0526i −0.399538 + 0.692020i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 31.2250 18.0278i 1.12820 0.651369i
\(767\) 15.9965 + 27.7068i 0.577601 + 1.00043i
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(774\) 0 0
\(775\) 22.0794 + 12.7475i 0.793116 + 0.457905i
\(776\) 0 0
\(777\) 0 0
\(778\) 32.8451 1.17755
\(779\) 0 0
\(780\) 0 0
\(781\) 19.2550 + 33.3506i 0.688998 + 1.19338i
\(782\) 0 0
\(783\) 0 0
\(784\) −24.0000 14.4222i −0.857143 0.515079i
\(785\) 0 0
\(786\) 0 0
\(787\) 23.2267 13.4099i 0.827942 0.478012i −0.0252056 0.999682i \(-0.508024\pi\)
0.853147 + 0.521670i \(0.174691\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 6.96323 + 7.08617i 0.247584 + 0.251955i
\(792\) −19.4700 −0.691836
\(793\) 22.3675 38.7416i 0.794293 1.37576i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 7.21110i 0.255430i −0.991811 0.127715i \(-0.959236\pi\)
0.991811 0.127715i \(-0.0407643\pi\)
\(798\) 0 0
\(799\) −1.19853 −0.0424010
\(800\) −14.1421 + 24.4949i −0.500000 + 0.866025i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −26.0000 −0.915811
\(807\) 0 0
\(808\) 35.3270 20.3961i 1.24280 0.717532i
\(809\) 4.61249 + 7.98908i 0.162167 + 0.280881i 0.935645 0.352941i \(-0.114818\pi\)
−0.773479 + 0.633822i \(0.781485\pi\)
\(810\) 0 0
\(811\) 56.0892i 1.96956i 0.173809 + 0.984779i \(0.444392\pi\)
−0.173809 + 0.984779i \(0.555608\pi\)
\(812\) −14.4886 + 52.2394i −0.508451 + 1.83325i
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 7.16476 + 27.7068i 0.250357 + 0.968154i
\(820\) 0 0
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 0 0
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 23.6810 23.2702i 0.823967 0.809672i
\(827\) −54.9386 −1.91040 −0.955202 0.295955i \(-0.904362\pi\)
−0.955202 + 0.295955i \(0.904362\pi\)
\(828\) 0 0
\(829\) −9.76501 + 5.63783i −0.339153 + 0.195810i −0.659897 0.751356i \(-0.729400\pi\)
0.320745 + 0.947166i \(0.396067\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 28.8444i 1.00000i
\(833\) −0.479992 0.866025i −0.0166307 0.0300060i
\(834\) 0 0
\(835\) 0 0
\(836\) −34.4700 + 19.9013i −1.19217 + 0.688299i
\(837\) 0 0
\(838\) 0 0
\(839\) 7.67303i 0.264903i −0.991190 0.132451i \(-0.957715\pi\)
0.991190 0.132451i \(-0.0422848\pi\)
\(840\) 0 0
\(841\) 75.9600 2.61931
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 35.9487i 1.23594i
\(847\) −14.6902 + 3.79876i −0.504760 + 0.130527i
\(848\) 53.9600 1.85299
\(849\) 0 0
\(850\) −0.866199 + 0.500100i −0.0297104 + 0.0171533i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) −44.7350 12.4073i −1.53080 0.424568i
\(855\) 0 0
\(856\) 0 0
\(857\) −32.4800 + 18.7523i −1.10950 + 0.640567i −0.938699 0.344739i \(-0.887967\pi\)
−0.170797 + 0.985306i \(0.554634\pi\)
\(858\) 0 0
\(859\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 30.0000 1.02180
\(863\) −23.3345 + 40.4166i −0.794316 + 1.37580i 0.128956 + 0.991650i \(0.458837\pi\)
−0.923272 + 0.384146i \(0.874496\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 14.1563 + 8.17313i 0.481050 + 0.277734i
\(867\) 0 0
\(868\) 6.75500 + 26.1222i 0.229280 + 0.886646i
\(869\) 0 0
\(870\) 0 0
\(871\) 38.0759 21.9831i 1.29015 0.744870i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 57.6888i 1.94359i −0.235836 0.971793i \(-0.575783\pi\)
0.235836 0.971793i \(-0.424217\pi\)
\(882\) 25.9756 14.3969i 0.874643 0.484768i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0.510004 0.883353i 0.0171533 0.0297104i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 10.3255 17.8843i 0.345918 0.599147i
\(892\) −45.4139 + 26.2197i −1.52057 + 0.877902i
\(893\) −36.7450 63.6442i −1.22962 2.12977i
\(894\) 0 0
\(895\) 0 0
\(896\) −28.9800 + 7.49400i −0.968154 + 0.250357i
\(897\) 0 0
\(898\) 0 0
\(899\) 45.2407 26.1197i 1.50886 0.871142i
\(900\) −15.0000 25.9808i −0.500000 0.866025i
\(901\) 1.65251 + 0.954078i 0.0550531 + 0.0317849i
\(902\) 0 0
\(903\) 0 0
\(904\) 10.6207 0.353241
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) −8.83176 5.09902i −0.293092 0.169217i
\(909\) 43.2666i 1.43506i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 30.3975 17.5500i 1.00601 0.580821i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 60.5126i 1.99180i
\(924\) 0 0
\(925\) 0 0
\(926\) 17.0000 29.4449i 0.558655 0.967618i
\(927\) 0 0
\(928\) 28.9772 + 50.1900i 0.951224 + 1.64757i
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) 31.2718 52.0394i 1.02489 1.70552i
\(932\) 39.9600 1.30893
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 26.4953 + 15.2971i 0.866025 + 0.500000i
\(937\) 61.1876i 1.99891i −0.0329954 0.999456i \(-0.510505\pi\)
0.0329954 0.999456i \(-0.489495\pi\)
\(938\) −31.9789 32.5435i −1.04415 1.06258i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 35.4931i 1.15520i
\(945\) 0 0
\(946\) 0 0
\(947\) 30.1245 52.1772i 0.978915 1.69553i 0.312556 0.949899i \(-0.398815\pi\)
0.666359 0.745631i \(-0.267852\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) −53.1125 30.6645i −1.72320 0.994888i
\(951\) 0 0
\(952\) −1.02001 0.282899i −0.0330586 0.00916882i
\(953\) 60.9600 1.97469 0.987344 0.158595i \(-0.0506963\pi\)
0.987344 + 0.158595i \(0.0506963\pi\)
\(954\) −28.6166 + 49.5654i −0.926497 + 1.60474i
\(955\) 0 0
\(956\) −26.6827 46.2157i −0.862979 1.49472i
\(957\) 0 0
\(958\) 61.0461i 1.97231i
\(959\) 0 0
\(960\) 0 0
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −35.1397 −1.13002 −0.565008 0.825086i \(-0.691127\pi\)
−0.565008 + 0.825086i \(0.691127\pi\)
\(968\) −8.11051 + 14.0478i −0.260682 + 0.451514i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −24.7550 −0.793201
\(975\) 0 0
\(976\) −42.9800 + 24.8145i −1.37576 + 0.794293i
\(977\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −52.2322 + 30.1563i −1.66595 + 0.961836i −0.696161 + 0.717886i \(0.745110\pi\)
−0.969788 + 0.243950i \(0.921557\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 2.04941i 0.0652665i
\(987\) 0 0
\(988\) 62.5436 1.98978
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(992\) 24.9800 + 14.4222i 0.793116 + 0.457905i
\(993\) 0 0
\(994\) −60.7970 + 15.7216i −1.92836 + 0.498660i
\(995\) 0 0
\(996\) 0 0
\(997\) 53.2350 30.7352i 1.68597 0.973395i 0.728417 0.685134i \(-0.240256\pi\)
0.957552 0.288261i \(-0.0930771\pi\)
\(998\) 19.0000 + 32.9090i 0.601434 + 1.04172i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 364.2.x.a.103.3 yes 8
4.3 odd 2 inner 364.2.x.a.103.2 8
7.3 odd 6 inner 364.2.x.a.311.3 yes 8
13.12 even 2 inner 364.2.x.a.103.2 8
28.3 even 6 inner 364.2.x.a.311.2 yes 8
52.51 odd 2 CM 364.2.x.a.103.3 yes 8
91.38 odd 6 inner 364.2.x.a.311.2 yes 8
364.311 even 6 inner 364.2.x.a.311.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.x.a.103.2 8 4.3 odd 2 inner
364.2.x.a.103.2 8 13.12 even 2 inner
364.2.x.a.103.3 yes 8 1.1 even 1 trivial
364.2.x.a.103.3 yes 8 52.51 odd 2 CM
364.2.x.a.311.2 yes 8 28.3 even 6 inner
364.2.x.a.311.2 yes 8 91.38 odd 6 inner
364.2.x.a.311.3 yes 8 7.3 odd 6 inner
364.2.x.a.311.3 yes 8 364.311 even 6 inner