Properties

Label 363.8.a.r.1.9
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $0$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 1289 x^{12} + 2366 x^{11} + 623758 x^{10} - 908404 x^{9} - 141535137 x^{8} + \cdots - 20874968128476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(9.29307\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+9.67503 q^{2} +27.0000 q^{3} -34.3938 q^{4} +124.761 q^{5} +261.226 q^{6} +573.194 q^{7} -1571.16 q^{8} +729.000 q^{9} +1207.07 q^{10} -928.631 q^{12} -3163.99 q^{13} +5545.67 q^{14} +3368.55 q^{15} -10798.7 q^{16} +18563.9 q^{17} +7053.10 q^{18} -2446.74 q^{19} -4291.00 q^{20} +15476.2 q^{21} +53581.5 q^{23} -42421.4 q^{24} -62559.7 q^{25} -30611.7 q^{26} +19683.0 q^{27} -19714.3 q^{28} +49944.1 q^{29} +32590.8 q^{30} +4084.45 q^{31} +96631.6 q^{32} +179606. q^{34} +71512.3 q^{35} -25073.0 q^{36} +410718. q^{37} -23672.3 q^{38} -85427.8 q^{39} -196020. q^{40} +476351. q^{41} +149733. q^{42} -384285. q^{43} +90950.8 q^{45} +518403. q^{46} +275873. q^{47} -291564. q^{48} -494991. q^{49} -605267. q^{50} +501224. q^{51} +108822. q^{52} +1.25843e6 q^{53} +190434. q^{54} -900583. q^{56} -66062.0 q^{57} +483211. q^{58} -2.25283e6 q^{59} -115857. q^{60} +2.95340e6 q^{61} +39517.2 q^{62} +417859. q^{63} +2.31714e6 q^{64} -394743. q^{65} +3.06864e6 q^{67} -638481. q^{68} +1.44670e6 q^{69} +691884. q^{70} -888980. q^{71} -1.14538e6 q^{72} -4.33847e6 q^{73} +3.97371e6 q^{74} -1.68911e6 q^{75} +84152.6 q^{76} -826516. q^{78} -1.05430e6 q^{79} -1.34725e6 q^{80} +531441. q^{81} +4.60871e6 q^{82} +7.07334e6 q^{83} -532286. q^{84} +2.31605e6 q^{85} -3.71797e6 q^{86} +1.34849e6 q^{87} +5.68686e6 q^{89} +879952. q^{90} -1.81358e6 q^{91} -1.84287e6 q^{92} +110280. q^{93} +2.66908e6 q^{94} -305258. q^{95} +2.60905e6 q^{96} +9.89847e6 q^{97} -4.78906e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 23 q^{2} + 378 q^{3} + 845 q^{4} + 69 q^{5} + 621 q^{6} + 3278 q^{7} + 4602 q^{8} + 10206 q^{9} + 5320 q^{10} + 22815 q^{12} + 32188 q^{13} - 7794 q^{14} + 1863 q^{15} + 86137 q^{16} + 42917 q^{17}+ \cdots - 70266089 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 9.67503 0.855160 0.427580 0.903977i \(-0.359366\pi\)
0.427580 + 0.903977i \(0.359366\pi\)
\(3\) 27.0000 0.577350
\(4\) −34.3938 −0.268701
\(5\) 124.761 0.446359 0.223179 0.974777i \(-0.428356\pi\)
0.223179 + 0.974777i \(0.428356\pi\)
\(6\) 261.226 0.493727
\(7\) 573.194 0.631624 0.315812 0.948822i \(-0.397723\pi\)
0.315812 + 0.948822i \(0.397723\pi\)
\(8\) −1571.16 −1.08494
\(9\) 729.000 0.333333
\(10\) 1207.07 0.381708
\(11\) 0 0
\(12\) −928.631 −0.155135
\(13\) −3163.99 −0.399423 −0.199712 0.979855i \(-0.564001\pi\)
−0.199712 + 0.979855i \(0.564001\pi\)
\(14\) 5545.67 0.540140
\(15\) 3368.55 0.257705
\(16\) −10798.7 −0.659098
\(17\) 18563.9 0.916426 0.458213 0.888843i \(-0.348490\pi\)
0.458213 + 0.888843i \(0.348490\pi\)
\(18\) 7053.10 0.285053
\(19\) −2446.74 −0.0818371 −0.0409186 0.999162i \(-0.513028\pi\)
−0.0409186 + 0.999162i \(0.513028\pi\)
\(20\) −4291.00 −0.119937
\(21\) 15476.2 0.364668
\(22\) 0 0
\(23\) 53581.5 0.918264 0.459132 0.888368i \(-0.348160\pi\)
0.459132 + 0.888368i \(0.348160\pi\)
\(24\) −42421.4 −0.626392
\(25\) −62559.7 −0.800764
\(26\) −30611.7 −0.341571
\(27\) 19683.0 0.192450
\(28\) −19714.3 −0.169718
\(29\) 49944.1 0.380269 0.190135 0.981758i \(-0.439108\pi\)
0.190135 + 0.981758i \(0.439108\pi\)
\(30\) 32590.8 0.220379
\(31\) 4084.45 0.0246245 0.0123123 0.999924i \(-0.496081\pi\)
0.0123123 + 0.999924i \(0.496081\pi\)
\(32\) 96631.6 0.521308
\(33\) 0 0
\(34\) 179606. 0.783691
\(35\) 71512.3 0.281931
\(36\) −25073.0 −0.0895671
\(37\) 410718. 1.33302 0.666511 0.745495i \(-0.267787\pi\)
0.666511 + 0.745495i \(0.267787\pi\)
\(38\) −23672.3 −0.0699839
\(39\) −85427.8 −0.230607
\(40\) −196020. −0.484273
\(41\) 476351. 1.07940 0.539702 0.841856i \(-0.318537\pi\)
0.539702 + 0.841856i \(0.318537\pi\)
\(42\) 149733. 0.311850
\(43\) −384285. −0.737078 −0.368539 0.929612i \(-0.620142\pi\)
−0.368539 + 0.929612i \(0.620142\pi\)
\(44\) 0 0
\(45\) 90950.8 0.148786
\(46\) 518403. 0.785263
\(47\) 275873. 0.387585 0.193793 0.981043i \(-0.437921\pi\)
0.193793 + 0.981043i \(0.437921\pi\)
\(48\) −291564. −0.380531
\(49\) −494991. −0.601051
\(50\) −605267. −0.684781
\(51\) 501224. 0.529099
\(52\) 108822. 0.107326
\(53\) 1.25843e6 1.16109 0.580543 0.814230i \(-0.302840\pi\)
0.580543 + 0.814230i \(0.302840\pi\)
\(54\) 190434. 0.164576
\(55\) 0 0
\(56\) −900583. −0.685276
\(57\) −66062.0 −0.0472487
\(58\) 483211. 0.325191
\(59\) −2.25283e6 −1.42806 −0.714031 0.700114i \(-0.753133\pi\)
−0.714031 + 0.700114i \(0.753133\pi\)
\(60\) −115857. −0.0692457
\(61\) 2.95340e6 1.66597 0.832987 0.553292i \(-0.186629\pi\)
0.832987 + 0.553292i \(0.186629\pi\)
\(62\) 39517.2 0.0210579
\(63\) 417859. 0.210541
\(64\) 2.31714e6 1.10490
\(65\) −394743. −0.178286
\(66\) 0 0
\(67\) 3.06864e6 1.24647 0.623237 0.782033i \(-0.285817\pi\)
0.623237 + 0.782033i \(0.285817\pi\)
\(68\) −638481. −0.246245
\(69\) 1.44670e6 0.530160
\(70\) 691884. 0.241096
\(71\) −888980. −0.294773 −0.147387 0.989079i \(-0.547086\pi\)
−0.147387 + 0.989079i \(0.547086\pi\)
\(72\) −1.14538e6 −0.361648
\(73\) −4.33847e6 −1.30529 −0.652645 0.757664i \(-0.726340\pi\)
−0.652645 + 0.757664i \(0.726340\pi\)
\(74\) 3.97371e6 1.13995
\(75\) −1.68911e6 −0.462321
\(76\) 84152.6 0.0219897
\(77\) 0 0
\(78\) −826516. −0.197206
\(79\) −1.05430e6 −0.240586 −0.120293 0.992738i \(-0.538383\pi\)
−0.120293 + 0.992738i \(0.538383\pi\)
\(80\) −1.34725e6 −0.294194
\(81\) 531441. 0.111111
\(82\) 4.60871e6 0.923063
\(83\) 7.07334e6 1.35785 0.678925 0.734208i \(-0.262446\pi\)
0.678925 + 0.734208i \(0.262446\pi\)
\(84\) −532286. −0.0979868
\(85\) 2.31605e6 0.409054
\(86\) −3.71797e6 −0.630320
\(87\) 1.34849e6 0.219549
\(88\) 0 0
\(89\) 5.68686e6 0.855081 0.427541 0.903996i \(-0.359380\pi\)
0.427541 + 0.903996i \(0.359380\pi\)
\(90\) 879952. 0.127236
\(91\) −1.81358e6 −0.252286
\(92\) −1.84287e6 −0.246739
\(93\) 110280. 0.0142170
\(94\) 2.66908e6 0.331448
\(95\) −305258. −0.0365287
\(96\) 2.60905e6 0.300977
\(97\) 9.89847e6 1.10120 0.550601 0.834769i \(-0.314399\pi\)
0.550601 + 0.834769i \(0.314399\pi\)
\(98\) −4.78906e6 −0.513995
\(99\) 0 0
\(100\) 2.15166e6 0.215166
\(101\) −565721. −0.0546358 −0.0273179 0.999627i \(-0.508697\pi\)
−0.0273179 + 0.999627i \(0.508697\pi\)
\(102\) 4.84936e6 0.452464
\(103\) −2.32693e6 −0.209823 −0.104911 0.994482i \(-0.533456\pi\)
−0.104911 + 0.994482i \(0.533456\pi\)
\(104\) 4.97115e6 0.433352
\(105\) 1.93083e6 0.162773
\(106\) 1.21754e7 0.992914
\(107\) 5.37424e6 0.424105 0.212053 0.977258i \(-0.431985\pi\)
0.212053 + 0.977258i \(0.431985\pi\)
\(108\) −676972. −0.0517116
\(109\) 7.78058e6 0.575466 0.287733 0.957711i \(-0.407099\pi\)
0.287733 + 0.957711i \(0.407099\pi\)
\(110\) 0 0
\(111\) 1.10894e7 0.769621
\(112\) −6.18974e6 −0.416302
\(113\) 1.18509e7 0.772642 0.386321 0.922364i \(-0.373746\pi\)
0.386321 + 0.922364i \(0.373746\pi\)
\(114\) −639152. −0.0404052
\(115\) 6.68489e6 0.409875
\(116\) −1.71777e6 −0.102179
\(117\) −2.30655e6 −0.133141
\(118\) −2.17962e7 −1.22122
\(119\) 1.06407e7 0.578837
\(120\) −5.29254e6 −0.279595
\(121\) 0 0
\(122\) 2.85743e7 1.42468
\(123\) 1.28615e7 0.623194
\(124\) −140480. −0.00661663
\(125\) −1.75520e7 −0.803786
\(126\) 4.04280e6 0.180047
\(127\) 5.81235e6 0.251790 0.125895 0.992044i \(-0.459820\pi\)
0.125895 + 0.992044i \(0.459820\pi\)
\(128\) 1.00496e7 0.423559
\(129\) −1.03757e7 −0.425552
\(130\) −3.81915e6 −0.152463
\(131\) 3.03352e7 1.17896 0.589478 0.807784i \(-0.299333\pi\)
0.589478 + 0.807784i \(0.299333\pi\)
\(132\) 0 0
\(133\) −1.40246e6 −0.0516903
\(134\) 2.96891e7 1.06594
\(135\) 2.45567e6 0.0859018
\(136\) −2.91669e7 −0.994269
\(137\) 4.03402e7 1.34034 0.670172 0.742205i \(-0.266220\pi\)
0.670172 + 0.742205i \(0.266220\pi\)
\(138\) 1.39969e7 0.453372
\(139\) 2.96923e6 0.0937761 0.0468881 0.998900i \(-0.485070\pi\)
0.0468881 + 0.998900i \(0.485070\pi\)
\(140\) −2.45958e6 −0.0757552
\(141\) 7.44858e6 0.223773
\(142\) −8.60091e6 −0.252078
\(143\) 0 0
\(144\) −7.87223e6 −0.219699
\(145\) 6.23108e6 0.169736
\(146\) −4.19748e7 −1.11623
\(147\) −1.33648e7 −0.347017
\(148\) −1.41261e7 −0.358185
\(149\) 1.68066e7 0.416225 0.208112 0.978105i \(-0.433268\pi\)
0.208112 + 0.978105i \(0.433268\pi\)
\(150\) −1.63422e7 −0.395359
\(151\) 3.24440e7 0.766858 0.383429 0.923570i \(-0.374743\pi\)
0.383429 + 0.923570i \(0.374743\pi\)
\(152\) 3.84423e6 0.0887886
\(153\) 1.35331e7 0.305475
\(154\) 0 0
\(155\) 509580. 0.0109914
\(156\) 2.93818e6 0.0619645
\(157\) −8.61870e7 −1.77743 −0.888716 0.458458i \(-0.848402\pi\)
−0.888716 + 0.458458i \(0.848402\pi\)
\(158\) −1.02004e7 −0.205740
\(159\) 3.39777e7 0.670353
\(160\) 1.20559e7 0.232690
\(161\) 3.07126e7 0.579998
\(162\) 5.14171e6 0.0950178
\(163\) −9.85445e7 −1.78228 −0.891139 0.453729i \(-0.850093\pi\)
−0.891139 + 0.453729i \(0.850093\pi\)
\(164\) −1.63835e7 −0.290037
\(165\) 0 0
\(166\) 6.84348e7 1.16118
\(167\) 7.93480e7 1.31834 0.659172 0.751992i \(-0.270907\pi\)
0.659172 + 0.751992i \(0.270907\pi\)
\(168\) −2.43157e7 −0.395644
\(169\) −5.27377e7 −0.840461
\(170\) 2.24078e7 0.349807
\(171\) −1.78367e6 −0.0272790
\(172\) 1.32170e7 0.198054
\(173\) −9.93434e7 −1.45874 −0.729369 0.684120i \(-0.760186\pi\)
−0.729369 + 0.684120i \(0.760186\pi\)
\(174\) 1.30467e7 0.187749
\(175\) −3.58589e7 −0.505782
\(176\) 0 0
\(177\) −6.08265e7 −0.824492
\(178\) 5.50205e7 0.731231
\(179\) −4.54952e6 −0.0592898 −0.0296449 0.999560i \(-0.509438\pi\)
−0.0296449 + 0.999560i \(0.509438\pi\)
\(180\) −3.12814e6 −0.0399790
\(181\) 5.07274e7 0.635869 0.317934 0.948113i \(-0.397011\pi\)
0.317934 + 0.948113i \(0.397011\pi\)
\(182\) −1.75465e7 −0.215744
\(183\) 7.97419e7 0.961851
\(184\) −8.41854e7 −0.996264
\(185\) 5.12416e7 0.595006
\(186\) 1.06696e6 0.0121578
\(187\) 0 0
\(188\) −9.48832e6 −0.104145
\(189\) 1.12822e7 0.121556
\(190\) −2.95338e6 −0.0312379
\(191\) −4.83473e7 −0.502060 −0.251030 0.967979i \(-0.580769\pi\)
−0.251030 + 0.967979i \(0.580769\pi\)
\(192\) 6.25629e7 0.637914
\(193\) 1.74942e8 1.75163 0.875817 0.482643i \(-0.160323\pi\)
0.875817 + 0.482643i \(0.160323\pi\)
\(194\) 9.57680e7 0.941704
\(195\) −1.06581e7 −0.102934
\(196\) 1.70246e7 0.161503
\(197\) −2.11899e7 −0.197468 −0.0987341 0.995114i \(-0.531479\pi\)
−0.0987341 + 0.995114i \(0.531479\pi\)
\(198\) 0 0
\(199\) −7.73307e7 −0.695611 −0.347805 0.937567i \(-0.613073\pi\)
−0.347805 + 0.937567i \(0.613073\pi\)
\(200\) 9.82916e7 0.868783
\(201\) 8.28531e7 0.719652
\(202\) −5.47337e6 −0.0467223
\(203\) 2.86277e7 0.240187
\(204\) −1.72390e7 −0.142169
\(205\) 5.94301e7 0.481801
\(206\) −2.25131e7 −0.179432
\(207\) 3.90609e7 0.306088
\(208\) 3.41669e7 0.263259
\(209\) 0 0
\(210\) 1.86809e7 0.139197
\(211\) 2.63850e8 1.93361 0.966803 0.255522i \(-0.0822474\pi\)
0.966803 + 0.255522i \(0.0822474\pi\)
\(212\) −4.32822e7 −0.311985
\(213\) −2.40025e7 −0.170187
\(214\) 5.19959e7 0.362678
\(215\) −4.79437e7 −0.329001
\(216\) −3.09252e7 −0.208797
\(217\) 2.34118e6 0.0155534
\(218\) 7.52774e7 0.492115
\(219\) −1.17139e8 −0.753609
\(220\) 0 0
\(221\) −5.87359e7 −0.366042
\(222\) 1.07290e8 0.658149
\(223\) −2.57211e8 −1.55318 −0.776591 0.630005i \(-0.783053\pi\)
−0.776591 + 0.630005i \(0.783053\pi\)
\(224\) 5.53887e7 0.329271
\(225\) −4.56060e7 −0.266921
\(226\) 1.14658e8 0.660733
\(227\) 8.87259e6 0.0503454 0.0251727 0.999683i \(-0.491986\pi\)
0.0251727 + 0.999683i \(0.491986\pi\)
\(228\) 2.27212e6 0.0126958
\(229\) −1.46442e8 −0.805825 −0.402912 0.915239i \(-0.632002\pi\)
−0.402912 + 0.915239i \(0.632002\pi\)
\(230\) 6.46765e7 0.350509
\(231\) 0 0
\(232\) −7.84704e7 −0.412570
\(233\) 3.33331e8 1.72635 0.863176 0.504903i \(-0.168472\pi\)
0.863176 + 0.504903i \(0.168472\pi\)
\(234\) −2.23159e7 −0.113857
\(235\) 3.44183e7 0.173002
\(236\) 7.74835e7 0.383722
\(237\) −2.84662e7 −0.138903
\(238\) 1.02949e8 0.494998
\(239\) 1.44380e8 0.684090 0.342045 0.939684i \(-0.388881\pi\)
0.342045 + 0.939684i \(0.388881\pi\)
\(240\) −3.63758e7 −0.169853
\(241\) 3.50011e8 1.61073 0.805363 0.592782i \(-0.201970\pi\)
0.805363 + 0.592782i \(0.201970\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) −1.01579e8 −0.447649
\(245\) −6.17556e7 −0.268284
\(246\) 1.24435e8 0.532930
\(247\) 7.74147e6 0.0326877
\(248\) −6.41734e6 −0.0267162
\(249\) 1.90980e8 0.783954
\(250\) −1.69816e8 −0.687366
\(251\) −1.51800e8 −0.605917 −0.302959 0.953004i \(-0.597974\pi\)
−0.302959 + 0.953004i \(0.597974\pi\)
\(252\) −1.43717e7 −0.0565727
\(253\) 0 0
\(254\) 5.62347e7 0.215321
\(255\) 6.25333e7 0.236168
\(256\) −1.99364e8 −0.742690
\(257\) −4.66807e8 −1.71542 −0.857712 0.514130i \(-0.828115\pi\)
−0.857712 + 0.514130i \(0.828115\pi\)
\(258\) −1.00385e8 −0.363915
\(259\) 2.35421e8 0.841969
\(260\) 1.35767e7 0.0479057
\(261\) 3.64093e7 0.126756
\(262\) 2.93494e8 1.00820
\(263\) −3.64927e8 −1.23698 −0.618488 0.785794i \(-0.712254\pi\)
−0.618488 + 0.785794i \(0.712254\pi\)
\(264\) 0 0
\(265\) 1.57003e8 0.518261
\(266\) −1.35688e7 −0.0442035
\(267\) 1.53545e8 0.493681
\(268\) −1.05542e8 −0.334929
\(269\) −5.74730e6 −0.0180024 −0.00900121 0.999959i \(-0.502865\pi\)
−0.00900121 + 0.999959i \(0.502865\pi\)
\(270\) 2.37587e7 0.0734597
\(271\) −2.57543e8 −0.786062 −0.393031 0.919525i \(-0.628574\pi\)
−0.393031 + 0.919525i \(0.628574\pi\)
\(272\) −2.00465e8 −0.604015
\(273\) −4.89667e7 −0.145657
\(274\) 3.90293e8 1.14621
\(275\) 0 0
\(276\) −4.97575e7 −0.142455
\(277\) −6.73103e8 −1.90284 −0.951420 0.307895i \(-0.900375\pi\)
−0.951420 + 0.307895i \(0.900375\pi\)
\(278\) 2.87274e7 0.0801936
\(279\) 2.97756e6 0.00820817
\(280\) −1.12358e8 −0.305879
\(281\) 1.34371e8 0.361271 0.180636 0.983550i \(-0.442185\pi\)
0.180636 + 0.983550i \(0.442185\pi\)
\(282\) 7.20653e7 0.191361
\(283\) 2.37735e8 0.623507 0.311754 0.950163i \(-0.399084\pi\)
0.311754 + 0.950163i \(0.399084\pi\)
\(284\) 3.05754e7 0.0792059
\(285\) −8.24197e6 −0.0210899
\(286\) 0 0
\(287\) 2.73042e8 0.681777
\(288\) 7.04445e7 0.173769
\(289\) −6.57215e7 −0.160164
\(290\) 6.02859e7 0.145152
\(291\) 2.67259e8 0.635779
\(292\) 1.49216e8 0.350733
\(293\) 1.79274e8 0.416370 0.208185 0.978089i \(-0.433244\pi\)
0.208185 + 0.978089i \(0.433244\pi\)
\(294\) −1.29305e8 −0.296755
\(295\) −2.81066e8 −0.637428
\(296\) −6.45305e8 −1.44625
\(297\) 0 0
\(298\) 1.62604e8 0.355939
\(299\) −1.69532e8 −0.366776
\(300\) 5.80949e7 0.124226
\(301\) −2.20270e8 −0.465556
\(302\) 3.13897e8 0.655786
\(303\) −1.52745e7 −0.0315440
\(304\) 2.64216e7 0.0539387
\(305\) 3.68470e8 0.743622
\(306\) 1.30933e8 0.261230
\(307\) −5.67323e7 −0.111904 −0.0559521 0.998433i \(-0.517819\pi\)
−0.0559521 + 0.998433i \(0.517819\pi\)
\(308\) 0 0
\(309\) −6.28270e7 −0.121141
\(310\) 4.93020e6 0.00939937
\(311\) 3.92348e8 0.739622 0.369811 0.929107i \(-0.379422\pi\)
0.369811 + 0.929107i \(0.379422\pi\)
\(312\) 1.34221e8 0.250196
\(313\) 1.21098e8 0.223220 0.111610 0.993752i \(-0.464399\pi\)
0.111610 + 0.993752i \(0.464399\pi\)
\(314\) −8.33862e8 −1.51999
\(315\) 5.21325e7 0.0939770
\(316\) 3.62615e7 0.0646458
\(317\) 1.00505e9 1.77206 0.886030 0.463628i \(-0.153453\pi\)
0.886030 + 0.463628i \(0.153453\pi\)
\(318\) 3.28735e8 0.573259
\(319\) 0 0
\(320\) 2.89089e8 0.493182
\(321\) 1.45104e8 0.244857
\(322\) 2.97146e8 0.495991
\(323\) −4.54210e7 −0.0749977
\(324\) −1.82783e7 −0.0298557
\(325\) 1.97938e8 0.319844
\(326\) −9.53421e8 −1.52413
\(327\) 2.10076e8 0.332245
\(328\) −7.48426e8 −1.17109
\(329\) 1.58129e8 0.244808
\(330\) 0 0
\(331\) 5.92014e8 0.897292 0.448646 0.893710i \(-0.351906\pi\)
0.448646 + 0.893710i \(0.351906\pi\)
\(332\) −2.43279e8 −0.364856
\(333\) 2.99413e8 0.444341
\(334\) 7.67695e8 1.12739
\(335\) 3.82846e8 0.556375
\(336\) −1.67123e8 −0.240352
\(337\) −5.64648e8 −0.803662 −0.401831 0.915714i \(-0.631626\pi\)
−0.401831 + 0.915714i \(0.631626\pi\)
\(338\) −5.10239e8 −0.718729
\(339\) 3.19976e8 0.446085
\(340\) −7.96576e7 −0.109913
\(341\) 0 0
\(342\) −1.72571e7 −0.0233280
\(343\) −7.55776e8 −1.01126
\(344\) 6.03774e8 0.799687
\(345\) 1.80492e8 0.236642
\(346\) −9.61150e8 −1.24746
\(347\) −1.09791e9 −1.41063 −0.705316 0.708893i \(-0.749195\pi\)
−0.705316 + 0.708893i \(0.749195\pi\)
\(348\) −4.63797e7 −0.0589930
\(349\) 3.96232e8 0.498954 0.249477 0.968381i \(-0.419741\pi\)
0.249477 + 0.968381i \(0.419741\pi\)
\(350\) −3.46936e8 −0.432524
\(351\) −6.22768e7 −0.0768691
\(352\) 0 0
\(353\) −5.76998e8 −0.698173 −0.349087 0.937091i \(-0.613508\pi\)
−0.349087 + 0.937091i \(0.613508\pi\)
\(354\) −5.88499e8 −0.705073
\(355\) −1.10910e8 −0.131575
\(356\) −1.95592e8 −0.229761
\(357\) 2.87299e8 0.334191
\(358\) −4.40167e7 −0.0507022
\(359\) −1.52749e9 −1.74240 −0.871198 0.490931i \(-0.836657\pi\)
−0.871198 + 0.490931i \(0.836657\pi\)
\(360\) −1.42899e8 −0.161424
\(361\) −8.87885e8 −0.993303
\(362\) 4.90789e8 0.543770
\(363\) 0 0
\(364\) 6.23759e7 0.0677894
\(365\) −5.41272e8 −0.582627
\(366\) 7.71505e8 0.822537
\(367\) 2.00435e8 0.211662 0.105831 0.994384i \(-0.466250\pi\)
0.105831 + 0.994384i \(0.466250\pi\)
\(368\) −5.78609e8 −0.605226
\(369\) 3.47260e8 0.359801
\(370\) 4.95764e8 0.508825
\(371\) 7.21326e8 0.733370
\(372\) −3.79295e6 −0.00382012
\(373\) −3.56277e8 −0.355473 −0.177736 0.984078i \(-0.556877\pi\)
−0.177736 + 0.984078i \(0.556877\pi\)
\(374\) 0 0
\(375\) −4.73903e8 −0.464066
\(376\) −4.33443e8 −0.420508
\(377\) −1.58023e8 −0.151888
\(378\) 1.09155e8 0.103950
\(379\) −1.59685e9 −1.50670 −0.753350 0.657620i \(-0.771563\pi\)
−0.753350 + 0.657620i \(0.771563\pi\)
\(380\) 1.04990e7 0.00981531
\(381\) 1.56933e8 0.145371
\(382\) −4.67762e8 −0.429342
\(383\) 1.48648e9 1.35196 0.675978 0.736922i \(-0.263721\pi\)
0.675978 + 0.736922i \(0.263721\pi\)
\(384\) 2.71339e8 0.244542
\(385\) 0 0
\(386\) 1.69257e9 1.49793
\(387\) −2.80143e8 −0.245693
\(388\) −3.40446e8 −0.295894
\(389\) −9.27712e8 −0.799078 −0.399539 0.916716i \(-0.630830\pi\)
−0.399539 + 0.916716i \(0.630830\pi\)
\(390\) −1.03117e8 −0.0880246
\(391\) 9.94680e8 0.841521
\(392\) 7.77713e8 0.652106
\(393\) 8.19051e8 0.680671
\(394\) −2.05013e8 −0.168867
\(395\) −1.31536e8 −0.107388
\(396\) 0 0
\(397\) −1.77582e9 −1.42440 −0.712199 0.701977i \(-0.752301\pi\)
−0.712199 + 0.701977i \(0.752301\pi\)
\(398\) −7.48177e8 −0.594859
\(399\) −3.78664e7 −0.0298434
\(400\) 6.75561e8 0.527782
\(401\) −2.05053e9 −1.58804 −0.794019 0.607893i \(-0.792015\pi\)
−0.794019 + 0.607893i \(0.792015\pi\)
\(402\) 8.01607e8 0.615418
\(403\) −1.29232e7 −0.00983560
\(404\) 1.94573e7 0.0146807
\(405\) 6.63031e7 0.0495954
\(406\) 2.76974e8 0.205399
\(407\) 0 0
\(408\) −7.87506e8 −0.574042
\(409\) −2.08910e9 −1.50983 −0.754915 0.655823i \(-0.772322\pi\)
−0.754915 + 0.655823i \(0.772322\pi\)
\(410\) 5.74988e8 0.412017
\(411\) 1.08919e9 0.773849
\(412\) 8.00318e7 0.0563796
\(413\) −1.29131e9 −0.901999
\(414\) 3.77916e8 0.261754
\(415\) 8.82478e8 0.606088
\(416\) −3.05742e8 −0.208223
\(417\) 8.01693e7 0.0541417
\(418\) 0 0
\(419\) −4.22741e8 −0.280754 −0.140377 0.990098i \(-0.544831\pi\)
−0.140377 + 0.990098i \(0.544831\pi\)
\(420\) −6.64086e7 −0.0437373
\(421\) 2.06494e8 0.134872 0.0674358 0.997724i \(-0.478518\pi\)
0.0674358 + 0.997724i \(0.478518\pi\)
\(422\) 2.55275e9 1.65354
\(423\) 2.01112e8 0.129195
\(424\) −1.97720e9 −1.25971
\(425\) −1.16135e9 −0.733841
\(426\) −2.32225e8 −0.145537
\(427\) 1.69287e9 1.05227
\(428\) −1.84840e8 −0.113958
\(429\) 0 0
\(430\) −4.63857e8 −0.281349
\(431\) 2.43670e9 1.46599 0.732997 0.680232i \(-0.238121\pi\)
0.732997 + 0.680232i \(0.238121\pi\)
\(432\) −2.12550e8 −0.126844
\(433\) 8.58378e8 0.508126 0.254063 0.967188i \(-0.418233\pi\)
0.254063 + 0.967188i \(0.418233\pi\)
\(434\) 2.26510e7 0.0133007
\(435\) 1.68239e8 0.0979974
\(436\) −2.67603e8 −0.154628
\(437\) −1.31100e8 −0.0751481
\(438\) −1.13332e9 −0.644456
\(439\) −1.06533e9 −0.600977 −0.300488 0.953785i \(-0.597150\pi\)
−0.300488 + 0.953785i \(0.597150\pi\)
\(440\) 0 0
\(441\) −3.60849e8 −0.200350
\(442\) −5.68272e8 −0.313024
\(443\) −8.62280e8 −0.471233 −0.235616 0.971846i \(-0.575711\pi\)
−0.235616 + 0.971846i \(0.575711\pi\)
\(444\) −3.81405e8 −0.206798
\(445\) 7.09498e8 0.381673
\(446\) −2.48852e9 −1.32822
\(447\) 4.53778e8 0.240307
\(448\) 1.32817e9 0.697882
\(449\) −1.99009e9 −1.03755 −0.518776 0.854910i \(-0.673612\pi\)
−0.518776 + 0.854910i \(0.673612\pi\)
\(450\) −4.41240e8 −0.228260
\(451\) 0 0
\(452\) −4.07599e8 −0.207610
\(453\) 8.75988e8 0.442746
\(454\) 8.58426e7 0.0430534
\(455\) −2.26264e8 −0.112610
\(456\) 1.03794e8 0.0512621
\(457\) 2.35723e9 1.15530 0.577651 0.816284i \(-0.303969\pi\)
0.577651 + 0.816284i \(0.303969\pi\)
\(458\) −1.41683e9 −0.689109
\(459\) 3.65393e8 0.176366
\(460\) −2.29918e8 −0.110134
\(461\) −3.94154e9 −1.87375 −0.936877 0.349659i \(-0.886298\pi\)
−0.936877 + 0.349659i \(0.886298\pi\)
\(462\) 0 0
\(463\) −4.20652e9 −1.96965 −0.984827 0.173540i \(-0.944480\pi\)
−0.984827 + 0.173540i \(0.944480\pi\)
\(464\) −5.39330e8 −0.250635
\(465\) 1.37587e7 0.00634586
\(466\) 3.22498e9 1.47631
\(467\) −1.39296e9 −0.632891 −0.316446 0.948611i \(-0.602490\pi\)
−0.316446 + 0.948611i \(0.602490\pi\)
\(468\) 7.93309e7 0.0357752
\(469\) 1.75892e9 0.787303
\(470\) 3.32998e8 0.147944
\(471\) −2.32705e9 −1.02620
\(472\) 3.53957e9 1.54937
\(473\) 0 0
\(474\) −2.75411e8 −0.118784
\(475\) 1.53067e8 0.0655322
\(476\) −3.65974e8 −0.155534
\(477\) 9.17397e8 0.387029
\(478\) 1.39688e9 0.585006
\(479\) −3.17355e9 −1.31938 −0.659692 0.751536i \(-0.729313\pi\)
−0.659692 + 0.751536i \(0.729313\pi\)
\(480\) 3.25508e8 0.134344
\(481\) −1.29951e9 −0.532440
\(482\) 3.38636e9 1.37743
\(483\) 8.29241e8 0.334862
\(484\) 0 0
\(485\) 1.23494e9 0.491531
\(486\) 1.38826e8 0.0548585
\(487\) 3.12380e9 1.22555 0.612777 0.790256i \(-0.290052\pi\)
0.612777 + 0.790256i \(0.290052\pi\)
\(488\) −4.64028e9 −1.80749
\(489\) −2.66070e9 −1.02900
\(490\) −5.97488e8 −0.229426
\(491\) 1.40305e9 0.534919 0.267460 0.963569i \(-0.413816\pi\)
0.267460 + 0.963569i \(0.413816\pi\)
\(492\) −4.42355e8 −0.167453
\(493\) 9.27156e8 0.348488
\(494\) 7.48990e7 0.0279532
\(495\) 0 0
\(496\) −4.41066e7 −0.0162300
\(497\) −5.09558e8 −0.186186
\(498\) 1.84774e9 0.670407
\(499\) −5.13505e8 −0.185009 −0.0925045 0.995712i \(-0.529487\pi\)
−0.0925045 + 0.995712i \(0.529487\pi\)
\(500\) 6.03678e8 0.215978
\(501\) 2.14240e9 0.761146
\(502\) −1.46867e9 −0.518156
\(503\) −1.89517e8 −0.0663988 −0.0331994 0.999449i \(-0.510570\pi\)
−0.0331994 + 0.999449i \(0.510570\pi\)
\(504\) −6.56525e8 −0.228425
\(505\) −7.05799e7 −0.0243872
\(506\) 0 0
\(507\) −1.42392e9 −0.485240
\(508\) −1.99909e8 −0.0676563
\(509\) −3.61263e9 −1.21426 −0.607129 0.794603i \(-0.707679\pi\)
−0.607129 + 0.794603i \(0.707679\pi\)
\(510\) 6.05011e8 0.201961
\(511\) −2.48679e9 −0.824452
\(512\) −3.21520e9 −1.05868
\(513\) −4.81592e7 −0.0157496
\(514\) −4.51638e9 −1.46696
\(515\) −2.90310e8 −0.0936562
\(516\) 3.56859e8 0.114346
\(517\) 0 0
\(518\) 2.27771e9 0.720018
\(519\) −2.68227e9 −0.842203
\(520\) 6.20206e8 0.193430
\(521\) 1.47376e9 0.456556 0.228278 0.973596i \(-0.426690\pi\)
0.228278 + 0.973596i \(0.426690\pi\)
\(522\) 3.52261e8 0.108397
\(523\) 1.08792e9 0.332539 0.166269 0.986080i \(-0.446828\pi\)
0.166269 + 0.986080i \(0.446828\pi\)
\(524\) −1.04334e9 −0.316787
\(525\) −9.68189e8 −0.292013
\(526\) −3.53068e9 −1.05781
\(527\) 7.58232e7 0.0225665
\(528\) 0 0
\(529\) −5.33845e8 −0.156791
\(530\) 1.51901e9 0.443196
\(531\) −1.64232e9 −0.476021
\(532\) 4.82358e7 0.0138893
\(533\) −1.50717e9 −0.431139
\(534\) 1.48555e9 0.422177
\(535\) 6.70495e8 0.189303
\(536\) −4.82133e9 −1.35235
\(537\) −1.22837e8 −0.0342310
\(538\) −5.56053e7 −0.0153949
\(539\) 0 0
\(540\) −8.44598e7 −0.0230819
\(541\) 6.53456e9 1.77429 0.887147 0.461487i \(-0.152684\pi\)
0.887147 + 0.461487i \(0.152684\pi\)
\(542\) −2.49174e9 −0.672209
\(543\) 1.36964e9 0.367119
\(544\) 1.79386e9 0.477740
\(545\) 9.70713e8 0.256864
\(546\) −4.73754e8 −0.124560
\(547\) 4.90695e8 0.128191 0.0640953 0.997944i \(-0.479584\pi\)
0.0640953 + 0.997944i \(0.479584\pi\)
\(548\) −1.38745e9 −0.360152
\(549\) 2.15303e9 0.555325
\(550\) 0 0
\(551\) −1.22200e8 −0.0311202
\(552\) −2.27301e9 −0.575193
\(553\) −6.04321e8 −0.151960
\(554\) −6.51229e9 −1.62723
\(555\) 1.38352e9 0.343527
\(556\) −1.02123e8 −0.0251978
\(557\) −4.90546e9 −1.20278 −0.601390 0.798955i \(-0.705386\pi\)
−0.601390 + 0.798955i \(0.705386\pi\)
\(558\) 2.88080e7 0.00701930
\(559\) 1.21587e9 0.294406
\(560\) −7.72238e8 −0.185820
\(561\) 0 0
\(562\) 1.30004e9 0.308945
\(563\) −3.18017e9 −0.751054 −0.375527 0.926811i \(-0.622538\pi\)
−0.375527 + 0.926811i \(0.622538\pi\)
\(564\) −2.56185e8 −0.0601280
\(565\) 1.47854e9 0.344876
\(566\) 2.30010e9 0.533198
\(567\) 3.04619e8 0.0701805
\(568\) 1.39673e9 0.319812
\(569\) 5.05558e9 1.15048 0.575239 0.817986i \(-0.304909\pi\)
0.575239 + 0.817986i \(0.304909\pi\)
\(570\) −7.97413e7 −0.0180352
\(571\) −2.03114e9 −0.456577 −0.228288 0.973594i \(-0.573313\pi\)
−0.228288 + 0.973594i \(0.573313\pi\)
\(572\) 0 0
\(573\) −1.30538e9 −0.289865
\(574\) 2.64169e9 0.583029
\(575\) −3.35204e9 −0.735313
\(576\) 1.68920e9 0.368300
\(577\) 7.40240e9 1.60420 0.802098 0.597193i \(-0.203717\pi\)
0.802098 + 0.597193i \(0.203717\pi\)
\(578\) −6.35858e8 −0.136966
\(579\) 4.72343e9 1.01131
\(580\) −2.14310e8 −0.0456084
\(581\) 4.05440e9 0.857650
\(582\) 2.58574e9 0.543693
\(583\) 0 0
\(584\) 6.81645e9 1.41616
\(585\) −2.87768e8 −0.0594287
\(586\) 1.73448e9 0.356063
\(587\) −6.41318e9 −1.30870 −0.654350 0.756192i \(-0.727058\pi\)
−0.654350 + 0.756192i \(0.727058\pi\)
\(588\) 4.59664e8 0.0932439
\(589\) −9.99359e6 −0.00201520
\(590\) −2.71932e9 −0.545103
\(591\) −5.72127e8 −0.114008
\(592\) −4.43520e9 −0.878593
\(593\) −2.56715e9 −0.505546 −0.252773 0.967526i \(-0.581343\pi\)
−0.252773 + 0.967526i \(0.581343\pi\)
\(594\) 0 0
\(595\) 1.32754e9 0.258369
\(596\) −5.78042e8 −0.111840
\(597\) −2.08793e9 −0.401611
\(598\) −1.64022e9 −0.313652
\(599\) 1.80533e9 0.343213 0.171606 0.985166i \(-0.445104\pi\)
0.171606 + 0.985166i \(0.445104\pi\)
\(600\) 2.65387e9 0.501592
\(601\) 4.73077e9 0.888937 0.444469 0.895794i \(-0.353393\pi\)
0.444469 + 0.895794i \(0.353393\pi\)
\(602\) −2.13112e9 −0.398125
\(603\) 2.23704e9 0.415492
\(604\) −1.11587e9 −0.206056
\(605\) 0 0
\(606\) −1.47781e8 −0.0269752
\(607\) 1.82088e9 0.330462 0.165231 0.986255i \(-0.447163\pi\)
0.165231 + 0.986255i \(0.447163\pi\)
\(608\) −2.36433e8 −0.0426624
\(609\) 7.72947e8 0.138672
\(610\) 3.56496e9 0.635916
\(611\) −8.72861e8 −0.154811
\(612\) −4.65453e8 −0.0820816
\(613\) 9.87628e9 1.73174 0.865868 0.500272i \(-0.166767\pi\)
0.865868 + 0.500272i \(0.166767\pi\)
\(614\) −5.48887e8 −0.0956960
\(615\) 1.60461e9 0.278168
\(616\) 0 0
\(617\) 5.97195e9 1.02357 0.511785 0.859113i \(-0.328984\pi\)
0.511785 + 0.859113i \(0.328984\pi\)
\(618\) −6.07854e8 −0.103595
\(619\) 1.03283e10 1.75030 0.875148 0.483855i \(-0.160764\pi\)
0.875148 + 0.483855i \(0.160764\pi\)
\(620\) −1.75264e7 −0.00295339
\(621\) 1.05465e9 0.176720
\(622\) 3.79598e9 0.632495
\(623\) 3.25967e9 0.540090
\(624\) 9.22506e8 0.151993
\(625\) 2.69767e9 0.441987
\(626\) 1.17163e9 0.190889
\(627\) 0 0
\(628\) 2.96430e9 0.477598
\(629\) 7.62451e9 1.22162
\(630\) 5.04383e8 0.0803653
\(631\) 1.06783e9 0.169200 0.0846001 0.996415i \(-0.473039\pi\)
0.0846001 + 0.996415i \(0.473039\pi\)
\(632\) 1.65649e9 0.261022
\(633\) 7.12394e9 1.11637
\(634\) 9.72385e9 1.51539
\(635\) 7.25155e8 0.112389
\(636\) −1.16862e9 −0.180125
\(637\) 1.56615e9 0.240074
\(638\) 0 0
\(639\) −6.48067e8 −0.0982577
\(640\) 1.25380e9 0.189059
\(641\) −4.99491e9 −0.749073 −0.374537 0.927212i \(-0.622198\pi\)
−0.374537 + 0.927212i \(0.622198\pi\)
\(642\) 1.40389e9 0.209392
\(643\) −3.95028e9 −0.585988 −0.292994 0.956114i \(-0.594652\pi\)
−0.292994 + 0.956114i \(0.594652\pi\)
\(644\) −1.05632e9 −0.155846
\(645\) −1.29448e9 −0.189949
\(646\) −4.39449e8 −0.0641350
\(647\) 1.36380e10 1.97964 0.989818 0.142342i \(-0.0454632\pi\)
0.989818 + 0.142342i \(0.0454632\pi\)
\(648\) −8.34981e8 −0.120549
\(649\) 0 0
\(650\) 1.91506e9 0.273518
\(651\) 6.32119e7 0.00897978
\(652\) 3.38931e9 0.478901
\(653\) −9.41459e9 −1.32314 −0.661569 0.749884i \(-0.730109\pi\)
−0.661569 + 0.749884i \(0.730109\pi\)
\(654\) 2.03249e9 0.284123
\(655\) 3.78466e9 0.526237
\(656\) −5.14396e9 −0.711433
\(657\) −3.16275e9 −0.435096
\(658\) 1.52990e9 0.209350
\(659\) −2.82516e9 −0.384542 −0.192271 0.981342i \(-0.561585\pi\)
−0.192271 + 0.981342i \(0.561585\pi\)
\(660\) 0 0
\(661\) 3.49818e8 0.0471125 0.0235563 0.999723i \(-0.492501\pi\)
0.0235563 + 0.999723i \(0.492501\pi\)
\(662\) 5.72775e9 0.767328
\(663\) −1.58587e9 −0.211334
\(664\) −1.11134e10 −1.47319
\(665\) −1.74972e8 −0.0230724
\(666\) 2.89683e9 0.379982
\(667\) 2.67608e9 0.349188
\(668\) −2.72908e9 −0.354241
\(669\) −6.94470e9 −0.896730
\(670\) 3.70405e9 0.475789
\(671\) 0 0
\(672\) 1.49549e9 0.190105
\(673\) 5.38548e8 0.0681038 0.0340519 0.999420i \(-0.489159\pi\)
0.0340519 + 0.999420i \(0.489159\pi\)
\(674\) −5.46299e9 −0.687260
\(675\) −1.23136e9 −0.154107
\(676\) 1.81385e9 0.225833
\(677\) 3.90200e9 0.483311 0.241656 0.970362i \(-0.422310\pi\)
0.241656 + 0.970362i \(0.422310\pi\)
\(678\) 3.09577e9 0.381474
\(679\) 5.67375e9 0.695546
\(680\) −3.63889e9 −0.443801
\(681\) 2.39560e8 0.0290669
\(682\) 0 0
\(683\) 9.62524e9 1.15595 0.577975 0.816055i \(-0.303843\pi\)
0.577975 + 0.816055i \(0.303843\pi\)
\(684\) 6.13473e7 0.00732991
\(685\) 5.03289e9 0.598275
\(686\) −7.31216e9 −0.864791
\(687\) −3.95393e9 −0.465243
\(688\) 4.14976e9 0.485807
\(689\) −3.98167e9 −0.463765
\(690\) 1.74627e9 0.202366
\(691\) 7.86926e9 0.907321 0.453661 0.891175i \(-0.350118\pi\)
0.453661 + 0.891175i \(0.350118\pi\)
\(692\) 3.41679e9 0.391965
\(693\) 0 0
\(694\) −1.06223e10 −1.20632
\(695\) 3.70444e8 0.0418578
\(696\) −2.11870e9 −0.238198
\(697\) 8.84292e9 0.989193
\(698\) 3.83356e9 0.426686
\(699\) 8.99993e9 0.996710
\(700\) 1.23332e9 0.135904
\(701\) −5.25279e9 −0.575940 −0.287970 0.957639i \(-0.592980\pi\)
−0.287970 + 0.957639i \(0.592980\pi\)
\(702\) −6.02530e8 −0.0657354
\(703\) −1.00492e9 −0.109091
\(704\) 0 0
\(705\) 9.29293e8 0.0998828
\(706\) −5.58248e9 −0.597050
\(707\) −3.24268e8 −0.0345093
\(708\) 2.09205e9 0.221542
\(709\) 6.44495e9 0.679138 0.339569 0.940581i \(-0.389719\pi\)
0.339569 + 0.940581i \(0.389719\pi\)
\(710\) −1.07306e9 −0.112517
\(711\) −7.68587e8 −0.0801954
\(712\) −8.93499e9 −0.927714
\(713\) 2.18851e8 0.0226118
\(714\) 2.77963e9 0.285787
\(715\) 0 0
\(716\) 1.56475e8 0.0159312
\(717\) 3.89825e9 0.394959
\(718\) −1.47785e10 −1.49003
\(719\) 1.32048e10 1.32490 0.662448 0.749108i \(-0.269518\pi\)
0.662448 + 0.749108i \(0.269518\pi\)
\(720\) −9.82147e8 −0.0980648
\(721\) −1.33378e9 −0.132529
\(722\) −8.59032e9 −0.849433
\(723\) 9.45029e9 0.929953
\(724\) −1.74471e9 −0.170859
\(725\) −3.12449e9 −0.304506
\(726\) 0 0
\(727\) 4.12522e8 0.0398177 0.0199089 0.999802i \(-0.493662\pi\)
0.0199089 + 0.999802i \(0.493662\pi\)
\(728\) 2.84944e9 0.273715
\(729\) 3.87420e8 0.0370370
\(730\) −5.23682e9 −0.498239
\(731\) −7.13381e9 −0.675477
\(732\) −2.74262e9 −0.258451
\(733\) −9.85636e9 −0.924384 −0.462192 0.886780i \(-0.652937\pi\)
−0.462192 + 0.886780i \(0.652937\pi\)
\(734\) 1.93922e9 0.181005
\(735\) −1.66740e9 −0.154894
\(736\) 5.17767e9 0.478698
\(737\) 0 0
\(738\) 3.35975e9 0.307688
\(739\) 1.87922e10 1.71287 0.856433 0.516259i \(-0.172676\pi\)
0.856433 + 0.516259i \(0.172676\pi\)
\(740\) −1.76239e9 −0.159879
\(741\) 2.09020e8 0.0188722
\(742\) 6.97885e9 0.627149
\(743\) −1.03291e9 −0.0923849 −0.0461925 0.998933i \(-0.514709\pi\)
−0.0461925 + 0.998933i \(0.514709\pi\)
\(744\) −1.73268e8 −0.0154246
\(745\) 2.09681e9 0.185786
\(746\) −3.44699e9 −0.303986
\(747\) 5.15647e9 0.452616
\(748\) 0 0
\(749\) 3.08048e9 0.267875
\(750\) −4.58503e9 −0.396851
\(751\) −7.76631e9 −0.669075 −0.334538 0.942382i \(-0.608580\pi\)
−0.334538 + 0.942382i \(0.608580\pi\)
\(752\) −2.97907e9 −0.255457
\(753\) −4.09860e9 −0.349827
\(754\) −1.52887e9 −0.129889
\(755\) 4.04774e9 0.342294
\(756\) −3.88037e8 −0.0326623
\(757\) 1.28550e10 1.07705 0.538527 0.842608i \(-0.318981\pi\)
0.538527 + 0.842608i \(0.318981\pi\)
\(758\) −1.54496e10 −1.28847
\(759\) 0 0
\(760\) 4.79611e8 0.0396316
\(761\) 2.01529e10 1.65764 0.828822 0.559512i \(-0.189012\pi\)
0.828822 + 0.559512i \(0.189012\pi\)
\(762\) 1.51834e9 0.124316
\(763\) 4.45979e9 0.363478
\(764\) 1.66285e9 0.134904
\(765\) 1.68840e9 0.136351
\(766\) 1.43817e10 1.15614
\(767\) 7.12795e9 0.570402
\(768\) −5.38284e9 −0.428792
\(769\) −8.91607e8 −0.0707020 −0.0353510 0.999375i \(-0.511255\pi\)
−0.0353510 + 0.999375i \(0.511255\pi\)
\(770\) 0 0
\(771\) −1.26038e10 −0.990401
\(772\) −6.01691e9 −0.470666
\(773\) 1.76079e10 1.37113 0.685567 0.728009i \(-0.259554\pi\)
0.685567 + 0.728009i \(0.259554\pi\)
\(774\) −2.71040e9 −0.210107
\(775\) −2.55522e8 −0.0197184
\(776\) −1.55521e10 −1.19474
\(777\) 6.35637e9 0.486111
\(778\) −8.97564e9 −0.683340
\(779\) −1.16551e9 −0.0883353
\(780\) 3.66571e8 0.0276584
\(781\) 0 0
\(782\) 9.62356e9 0.719635
\(783\) 9.83050e8 0.0731829
\(784\) 5.34525e9 0.396152
\(785\) −1.07528e10 −0.793372
\(786\) 7.92435e9 0.582083
\(787\) 1.31004e10 0.958020 0.479010 0.877810i \(-0.340996\pi\)
0.479010 + 0.877810i \(0.340996\pi\)
\(788\) 7.28800e8 0.0530599
\(789\) −9.85303e9 −0.714168
\(790\) −1.27262e9 −0.0918337
\(791\) 6.79290e9 0.488020
\(792\) 0 0
\(793\) −9.34455e9 −0.665429
\(794\) −1.71811e10 −1.21809
\(795\) 4.23909e9 0.299218
\(796\) 2.65969e9 0.186911
\(797\) 1.29295e9 0.0904645 0.0452322 0.998976i \(-0.485597\pi\)
0.0452322 + 0.998976i \(0.485597\pi\)
\(798\) −3.66358e8 −0.0255209
\(799\) 5.12128e9 0.355193
\(800\) −6.04524e9 −0.417445
\(801\) 4.14572e9 0.285027
\(802\) −1.98390e10 −1.35803
\(803\) 0 0
\(804\) −2.84963e9 −0.193371
\(805\) 3.83174e9 0.258887
\(806\) −1.25032e8 −0.00841102
\(807\) −1.55177e8 −0.0103937
\(808\) 8.88840e8 0.0592767
\(809\) −1.26438e10 −0.839575 −0.419788 0.907622i \(-0.637895\pi\)
−0.419788 + 0.907622i \(0.637895\pi\)
\(810\) 6.41485e8 0.0424120
\(811\) −8.39807e9 −0.552849 −0.276424 0.961036i \(-0.589150\pi\)
−0.276424 + 0.961036i \(0.589150\pi\)
\(812\) −9.84613e8 −0.0645386
\(813\) −6.95366e9 −0.453833
\(814\) 0 0
\(815\) −1.22945e10 −0.795536
\(816\) −5.41256e9 −0.348728
\(817\) 9.40245e8 0.0603203
\(818\) −2.02121e10 −1.29115
\(819\) −1.32210e9 −0.0840952
\(820\) −2.04402e9 −0.129461
\(821\) 6.50997e9 0.410561 0.205280 0.978703i \(-0.434189\pi\)
0.205280 + 0.978703i \(0.434189\pi\)
\(822\) 1.05379e10 0.661764
\(823\) −1.84146e10 −1.15150 −0.575749 0.817626i \(-0.695290\pi\)
−0.575749 + 0.817626i \(0.695290\pi\)
\(824\) 3.65599e9 0.227646
\(825\) 0 0
\(826\) −1.24935e10 −0.771353
\(827\) −6.19442e9 −0.380830 −0.190415 0.981704i \(-0.560983\pi\)
−0.190415 + 0.981704i \(0.560983\pi\)
\(828\) −1.34345e9 −0.0822462
\(829\) 7.07900e9 0.431550 0.215775 0.976443i \(-0.430772\pi\)
0.215775 + 0.976443i \(0.430772\pi\)
\(830\) 8.53800e9 0.518302
\(831\) −1.81738e10 −1.09861
\(832\) −7.33142e9 −0.441323
\(833\) −9.18895e9 −0.550818
\(834\) 7.75640e8 0.0462998
\(835\) 9.89954e9 0.588454
\(836\) 0 0
\(837\) 8.03942e7 0.00473899
\(838\) −4.09003e9 −0.240089
\(839\) −2.03331e10 −1.18860 −0.594301 0.804243i \(-0.702571\pi\)
−0.594301 + 0.804243i \(0.702571\pi\)
\(840\) −3.03366e9 −0.176599
\(841\) −1.47555e10 −0.855395
\(842\) 1.99784e9 0.115337
\(843\) 3.62801e9 0.208580
\(844\) −9.07478e9 −0.519562
\(845\) −6.57961e9 −0.375147
\(846\) 1.94576e9 0.110483
\(847\) 0 0
\(848\) −1.35894e10 −0.765270
\(849\) 6.41886e9 0.359982
\(850\) −1.12361e10 −0.627551
\(851\) 2.20069e10 1.22407
\(852\) 8.25535e8 0.0457296
\(853\) 3.15354e9 0.173971 0.0869855 0.996210i \(-0.472277\pi\)
0.0869855 + 0.996210i \(0.472277\pi\)
\(854\) 1.63786e10 0.899859
\(855\) −2.22533e8 −0.0121762
\(856\) −8.44381e9 −0.460130
\(857\) −2.67053e9 −0.144932 −0.0724660 0.997371i \(-0.523087\pi\)
−0.0724660 + 0.997371i \(0.523087\pi\)
\(858\) 0 0
\(859\) 3.38071e10 1.81984 0.909918 0.414787i \(-0.136144\pi\)
0.909918 + 0.414787i \(0.136144\pi\)
\(860\) 1.64897e9 0.0884030
\(861\) 7.37213e9 0.393624
\(862\) 2.35752e10 1.25366
\(863\) −7.11596e9 −0.376873 −0.188437 0.982085i \(-0.560342\pi\)
−0.188437 + 0.982085i \(0.560342\pi\)
\(864\) 1.90200e9 0.100326
\(865\) −1.23942e10 −0.651121
\(866\) 8.30484e9 0.434529
\(867\) −1.77448e9 −0.0924708
\(868\) −8.05221e7 −0.00417923
\(869\) 0 0
\(870\) 1.62772e9 0.0838035
\(871\) −9.70914e9 −0.497871
\(872\) −1.22246e10 −0.624347
\(873\) 7.21598e9 0.367067
\(874\) −1.26840e9 −0.0642637
\(875\) −1.00607e10 −0.507691
\(876\) 4.02884e9 0.202496
\(877\) 1.06498e10 0.533143 0.266571 0.963815i \(-0.414109\pi\)
0.266571 + 0.963815i \(0.414109\pi\)
\(878\) −1.03071e10 −0.513931
\(879\) 4.84039e9 0.240391
\(880\) 0 0
\(881\) −3.41012e10 −1.68017 −0.840087 0.542452i \(-0.817496\pi\)
−0.840087 + 0.542452i \(0.817496\pi\)
\(882\) −3.49122e9 −0.171332
\(883\) −1.05079e10 −0.513636 −0.256818 0.966460i \(-0.582674\pi\)
−0.256818 + 0.966460i \(0.582674\pi\)
\(884\) 2.02015e9 0.0983559
\(885\) −7.58878e9 −0.368019
\(886\) −8.34259e9 −0.402979
\(887\) −2.28910e10 −1.10137 −0.550683 0.834714i \(-0.685633\pi\)
−0.550683 + 0.834714i \(0.685633\pi\)
\(888\) −1.74232e10 −0.834994
\(889\) 3.33161e9 0.159037
\(890\) 6.86442e9 0.326391
\(891\) 0 0
\(892\) 8.84645e9 0.417342
\(893\) −6.74991e8 −0.0317189
\(894\) 4.39032e9 0.205501
\(895\) −5.67602e8 −0.0264645
\(896\) 5.76037e9 0.267530
\(897\) −4.57735e9 −0.211758
\(898\) −1.92541e10 −0.887273
\(899\) 2.03994e8 0.00936394
\(900\) 1.56856e9 0.0717221
\(901\) 2.33614e10 1.06405
\(902\) 0 0
\(903\) −5.94728e9 −0.268789
\(904\) −1.86198e10 −0.838273
\(905\) 6.32880e9 0.283826
\(906\) 8.47521e9 0.378618
\(907\) −4.23584e10 −1.88501 −0.942507 0.334187i \(-0.891538\pi\)
−0.942507 + 0.334187i \(0.891538\pi\)
\(908\) −3.05162e8 −0.0135279
\(909\) −4.12410e8 −0.0182119
\(910\) −2.18911e9 −0.0962994
\(911\) 1.51565e10 0.664179 0.332090 0.943248i \(-0.392246\pi\)
0.332090 + 0.943248i \(0.392246\pi\)
\(912\) 7.13382e8 0.0311415
\(913\) 0 0
\(914\) 2.28063e10 0.987969
\(915\) 9.94868e9 0.429330
\(916\) 5.03668e9 0.216526
\(917\) 1.73880e10 0.744658
\(918\) 3.53518e9 0.150821
\(919\) −9.49608e9 −0.403590 −0.201795 0.979428i \(-0.564677\pi\)
−0.201795 + 0.979428i \(0.564677\pi\)
\(920\) −1.05031e10 −0.444691
\(921\) −1.53177e9 −0.0646079
\(922\) −3.81345e10 −1.60236
\(923\) 2.81273e9 0.117739
\(924\) 0 0
\(925\) −2.56944e10 −1.06744
\(926\) −4.06983e10 −1.68437
\(927\) −1.69633e9 −0.0699409
\(928\) 4.82618e9 0.198237
\(929\) −2.78782e10 −1.14080 −0.570400 0.821367i \(-0.693212\pi\)
−0.570400 + 0.821367i \(0.693212\pi\)
\(930\) 1.33115e8 0.00542673
\(931\) 1.21112e9 0.0491883
\(932\) −1.14645e10 −0.463873
\(933\) 1.05934e10 0.427021
\(934\) −1.34769e10 −0.541223
\(935\) 0 0
\(936\) 3.62397e9 0.144451
\(937\) −4.12788e10 −1.63923 −0.819613 0.572918i \(-0.805811\pi\)
−0.819613 + 0.572918i \(0.805811\pi\)
\(938\) 1.70176e10 0.673270
\(939\) 3.26966e9 0.128876
\(940\) −1.18377e9 −0.0464859
\(941\) −6.09047e9 −0.238280 −0.119140 0.992877i \(-0.538014\pi\)
−0.119140 + 0.992877i \(0.538014\pi\)
\(942\) −2.25143e10 −0.877566
\(943\) 2.55236e10 0.991177
\(944\) 2.43276e10 0.941234
\(945\) 1.40758e9 0.0542576
\(946\) 0 0
\(947\) −1.28487e10 −0.491627 −0.245813 0.969317i \(-0.579055\pi\)
−0.245813 + 0.969317i \(0.579055\pi\)
\(948\) 9.79060e8 0.0373233
\(949\) 1.37269e10 0.521363
\(950\) 1.48093e9 0.0560406
\(951\) 2.71362e10 1.02310
\(952\) −1.67183e10 −0.628004
\(953\) 1.24365e10 0.465451 0.232725 0.972542i \(-0.425236\pi\)
0.232725 + 0.972542i \(0.425236\pi\)
\(954\) 8.87585e9 0.330971
\(955\) −6.03186e9 −0.224099
\(956\) −4.96575e9 −0.183816
\(957\) 0 0
\(958\) −3.07042e10 −1.12828
\(959\) 2.31228e10 0.846594
\(960\) 7.80541e9 0.284739
\(961\) −2.74959e10 −0.999394
\(962\) −1.25728e10 −0.455322
\(963\) 3.91782e9 0.141368
\(964\) −1.20382e10 −0.432804
\(965\) 2.18259e10 0.781857
\(966\) 8.02293e9 0.286361
\(967\) −6.53237e8 −0.0232316 −0.0116158 0.999933i \(-0.503698\pi\)
−0.0116158 + 0.999933i \(0.503698\pi\)
\(968\) 0 0
\(969\) −1.22637e9 −0.0432999
\(970\) 1.19481e10 0.420338
\(971\) 4.53217e10 1.58869 0.794345 0.607467i \(-0.207814\pi\)
0.794345 + 0.607467i \(0.207814\pi\)
\(972\) −4.93513e8 −0.0172372
\(973\) 1.70195e9 0.0592313
\(974\) 3.02229e10 1.04804
\(975\) 5.34433e9 0.184662
\(976\) −3.18928e10 −1.09804
\(977\) −1.24884e10 −0.428427 −0.214213 0.976787i \(-0.568719\pi\)
−0.214213 + 0.976787i \(0.568719\pi\)
\(978\) −2.57424e10 −0.879959
\(979\) 0 0
\(980\) 2.12401e9 0.0720883
\(981\) 5.67204e9 0.191822
\(982\) 1.35746e10 0.457441
\(983\) 4.58286e10 1.53886 0.769430 0.638731i \(-0.220540\pi\)
0.769430 + 0.638731i \(0.220540\pi\)
\(984\) −2.02075e10 −0.676130
\(985\) −2.64367e9 −0.0881416
\(986\) 8.97026e9 0.298013
\(987\) 4.26949e9 0.141340
\(988\) −2.66258e8 −0.00878322
\(989\) −2.05906e10 −0.676832
\(990\) 0 0
\(991\) 2.77986e10 0.907329 0.453665 0.891172i \(-0.350116\pi\)
0.453665 + 0.891172i \(0.350116\pi\)
\(992\) 3.94687e8 0.0128369
\(993\) 1.59844e10 0.518052
\(994\) −4.92999e9 −0.159219
\(995\) −9.64786e9 −0.310492
\(996\) −6.56853e9 −0.210650
\(997\) 1.15787e10 0.370023 0.185011 0.982736i \(-0.440768\pi\)
0.185011 + 0.982736i \(0.440768\pi\)
\(998\) −4.96818e9 −0.158212
\(999\) 8.08416e9 0.256540
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.r.1.9 14
11.2 odd 10 33.8.e.b.4.5 28
11.6 odd 10 33.8.e.b.25.5 yes 28
11.10 odd 2 363.8.a.o.1.6 14
33.2 even 10 99.8.f.b.37.3 28
33.17 even 10 99.8.f.b.91.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.8.e.b.4.5 28 11.2 odd 10
33.8.e.b.25.5 yes 28 11.6 odd 10
99.8.f.b.37.3 28 33.2 even 10
99.8.f.b.91.3 28 33.17 even 10
363.8.a.o.1.6 14 11.10 odd 2
363.8.a.r.1.9 14 1.1 even 1 trivial