Properties

Label 2-363-1.1-c7-0-56
Degree $2$
Conductor $363$
Sign $1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9.67·2-s + 27·3-s − 34.3·4-s + 124.·5-s + 261.·6-s + 573.·7-s − 1.57e3·8-s + 729·9-s + 1.20e3·10-s − 928.·12-s − 3.16e3·13-s + 5.54e3·14-s + 3.36e3·15-s − 1.07e4·16-s + 1.85e4·17-s + 7.05e3·18-s − 2.44e3·19-s − 4.29e3·20-s + 1.54e4·21-s + 5.35e4·23-s − 4.24e4·24-s − 6.25e4·25-s − 3.06e4·26-s + 1.96e4·27-s − 1.97e4·28-s + 4.99e4·29-s + 3.25e4·30-s + ⋯
L(s)  = 1  + 0.855·2-s + 0.577·3-s − 0.268·4-s + 0.446·5-s + 0.493·6-s + 0.631·7-s − 1.08·8-s + 0.333·9-s + 0.381·10-s − 0.155·12-s − 0.399·13-s + 0.540·14-s + 0.257·15-s − 0.659·16-s + 0.916·17-s + 0.285·18-s − 0.0818·19-s − 0.119·20-s + 0.364·21-s + 0.918·23-s − 0.626·24-s − 0.800·25-s − 0.341·26-s + 0.192·27-s − 0.169·28-s + 0.380·29-s + 0.220·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(4.462013586\)
\(L(\frac12)\) \(\approx\) \(4.462013586\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 - 9.67T + 128T^{2} \)
5 \( 1 - 124.T + 7.81e4T^{2} \)
7 \( 1 - 573.T + 8.23e5T^{2} \)
13 \( 1 + 3.16e3T + 6.27e7T^{2} \)
17 \( 1 - 1.85e4T + 4.10e8T^{2} \)
19 \( 1 + 2.44e3T + 8.93e8T^{2} \)
23 \( 1 - 5.35e4T + 3.40e9T^{2} \)
29 \( 1 - 4.99e4T + 1.72e10T^{2} \)
31 \( 1 - 4.08e3T + 2.75e10T^{2} \)
37 \( 1 - 4.10e5T + 9.49e10T^{2} \)
41 \( 1 - 4.76e5T + 1.94e11T^{2} \)
43 \( 1 + 3.84e5T + 2.71e11T^{2} \)
47 \( 1 - 2.75e5T + 5.06e11T^{2} \)
53 \( 1 - 1.25e6T + 1.17e12T^{2} \)
59 \( 1 + 2.25e6T + 2.48e12T^{2} \)
61 \( 1 - 2.95e6T + 3.14e12T^{2} \)
67 \( 1 - 3.06e6T + 6.06e12T^{2} \)
71 \( 1 + 8.88e5T + 9.09e12T^{2} \)
73 \( 1 + 4.33e6T + 1.10e13T^{2} \)
79 \( 1 + 1.05e6T + 1.92e13T^{2} \)
83 \( 1 - 7.07e6T + 2.71e13T^{2} \)
89 \( 1 - 5.68e6T + 4.42e13T^{2} \)
97 \( 1 - 9.89e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.06050827934634911068130005339, −9.342180044702935425338123127186, −8.397195787267468582898288844685, −7.46599987746958997610018703716, −6.14323189190207302311939972209, −5.21593313594184899251210699676, −4.36691705813158451048485005557, −3.28531037594794619580817099680, −2.25626974846670760185498950891, −0.871463512241752184363706745975, 0.871463512241752184363706745975, 2.25626974846670760185498950891, 3.28531037594794619580817099680, 4.36691705813158451048485005557, 5.21593313594184899251210699676, 6.14323189190207302311939972209, 7.46599987746958997610018703716, 8.397195787267468582898288844685, 9.342180044702935425338123127186, 10.06050827934634911068130005339

Graph of the $Z$-function along the critical line