Properties

Label 363.8.a.o.1.7
Level $363$
Weight $8$
Character 363.1
Self dual yes
Analytic conductor $113.396$
Analytic rank $1$
Dimension $14$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [363,8,Mod(1,363)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(363, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("363.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 363 = 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 363.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,-23] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(113.395764251\)
Analytic rank: \(1\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 2 x^{13} - 1289 x^{12} + 2366 x^{11} + 623758 x^{10} - 908404 x^{9} - 141535137 x^{8} + \cdots - 20874968128476 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{4}\cdot 11^{8} \)
Twist minimal: no (minimal twist has level 33)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(0.521602\) of defining polynomial
Character \(\chi\) \(=\) 363.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.13964 q^{2} +27.0000 q^{3} -118.143 q^{4} -324.899 q^{5} -84.7702 q^{6} -1656.56 q^{7} +772.799 q^{8} +729.000 q^{9} +1020.07 q^{10} -3189.85 q^{12} -5927.67 q^{13} +5200.99 q^{14} -8772.28 q^{15} +12696.0 q^{16} +29281.2 q^{17} -2288.79 q^{18} +32428.8 q^{19} +38384.5 q^{20} -44727.1 q^{21} +10937.0 q^{23} +20865.6 q^{24} +27434.6 q^{25} +18610.7 q^{26} +19683.0 q^{27} +195710. q^{28} -100071. q^{29} +27541.8 q^{30} +214819. q^{31} -138779. q^{32} -91932.4 q^{34} +538215. q^{35} -86126.0 q^{36} +85292.3 q^{37} -101815. q^{38} -160047. q^{39} -251082. q^{40} +347842. q^{41} +140427. q^{42} +492042. q^{43} -236852. q^{45} -34338.3 q^{46} -953784. q^{47} +342791. q^{48} +1.92064e6 q^{49} -86134.6 q^{50} +790593. q^{51} +700311. q^{52} -633416. q^{53} -61797.5 q^{54} -1.28019e6 q^{56} +875576. q^{57} +314187. q^{58} +56983.5 q^{59} +1.03638e6 q^{60} -1.82908e6 q^{61} -674454. q^{62} -1.20763e6 q^{63} -1.18937e6 q^{64} +1.92590e6 q^{65} -1.57940e6 q^{67} -3.45936e6 q^{68} +295300. q^{69} -1.68980e6 q^{70} -1.98445e6 q^{71} +563370. q^{72} -4.30211e6 q^{73} -267787. q^{74} +740733. q^{75} -3.83122e6 q^{76} +502490. q^{78} +1.14039e6 q^{79} -4.12491e6 q^{80} +531441. q^{81} -1.09210e6 q^{82} -5.57570e6 q^{83} +5.28418e6 q^{84} -9.51345e6 q^{85} -1.54483e6 q^{86} -2.70192e6 q^{87} +1.21091e7 q^{89} +743628. q^{90} +9.81953e6 q^{91} -1.29213e6 q^{92} +5.80012e6 q^{93} +2.99454e6 q^{94} -1.05361e7 q^{95} -3.74703e6 q^{96} +1.72401e7 q^{97} -6.03012e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 23 q^{2} + 378 q^{3} + 845 q^{4} + 69 q^{5} - 621 q^{6} - 3278 q^{7} - 4602 q^{8} + 10206 q^{9} - 5320 q^{10} + 22815 q^{12} - 32188 q^{13} - 7794 q^{14} + 1863 q^{15} + 86137 q^{16} - 42917 q^{17}+ \cdots + 70266089 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.13964 −0.277507 −0.138754 0.990327i \(-0.544310\pi\)
−0.138754 + 0.990327i \(0.544310\pi\)
\(3\) 27.0000 0.577350
\(4\) −118.143 −0.922990
\(5\) −324.899 −1.16240 −0.581198 0.813762i \(-0.697416\pi\)
−0.581198 + 0.813762i \(0.697416\pi\)
\(6\) −84.7702 −0.160219
\(7\) −1656.56 −1.82542 −0.912712 0.408604i \(-0.866016\pi\)
−0.912712 + 0.408604i \(0.866016\pi\)
\(8\) 772.799 0.533644
\(9\) 729.000 0.333333
\(10\) 1020.07 0.322573
\(11\) 0 0
\(12\) −3189.85 −0.532888
\(13\) −5927.67 −0.748311 −0.374156 0.927366i \(-0.622067\pi\)
−0.374156 + 0.927366i \(0.622067\pi\)
\(14\) 5200.99 0.506568
\(15\) −8772.28 −0.671109
\(16\) 12696.0 0.774900
\(17\) 29281.2 1.44550 0.722750 0.691110i \(-0.242878\pi\)
0.722750 + 0.691110i \(0.242878\pi\)
\(18\) −2288.79 −0.0925024
\(19\) 32428.8 1.08466 0.542329 0.840166i \(-0.317543\pi\)
0.542329 + 0.840166i \(0.317543\pi\)
\(20\) 38384.5 1.07288
\(21\) −44727.1 −1.05391
\(22\) 0 0
\(23\) 10937.0 0.187435 0.0937177 0.995599i \(-0.470125\pi\)
0.0937177 + 0.995599i \(0.470125\pi\)
\(24\) 20865.6 0.308099
\(25\) 27434.6 0.351163
\(26\) 18610.7 0.207662
\(27\) 19683.0 0.192450
\(28\) 195710. 1.68485
\(29\) −100071. −0.761932 −0.380966 0.924589i \(-0.624408\pi\)
−0.380966 + 0.924589i \(0.624408\pi\)
\(30\) 27541.8 0.186238
\(31\) 214819. 1.29511 0.647556 0.762018i \(-0.275791\pi\)
0.647556 + 0.762018i \(0.275791\pi\)
\(32\) −138779. −0.748684
\(33\) 0 0
\(34\) −91932.4 −0.401137
\(35\) 538215. 2.12186
\(36\) −86126.0 −0.307663
\(37\) 85292.3 0.276824 0.138412 0.990375i \(-0.455800\pi\)
0.138412 + 0.990375i \(0.455800\pi\)
\(38\) −101815. −0.301000
\(39\) −160047. −0.432038
\(40\) −251082. −0.620305
\(41\) 347842. 0.788203 0.394102 0.919067i \(-0.371056\pi\)
0.394102 + 0.919067i \(0.371056\pi\)
\(42\) 140427. 0.292467
\(43\) 492042. 0.943762 0.471881 0.881662i \(-0.343575\pi\)
0.471881 + 0.881662i \(0.343575\pi\)
\(44\) 0 0
\(45\) −236852. −0.387465
\(46\) −34338.3 −0.0520147
\(47\) −953784. −1.34001 −0.670004 0.742357i \(-0.733708\pi\)
−0.670004 + 0.742357i \(0.733708\pi\)
\(48\) 342791. 0.447389
\(49\) 1.92064e6 2.33217
\(50\) −86134.6 −0.0974502
\(51\) 790593. 0.834560
\(52\) 700311. 0.690683
\(53\) −633416. −0.584418 −0.292209 0.956354i \(-0.594390\pi\)
−0.292209 + 0.956354i \(0.594390\pi\)
\(54\) −61797.5 −0.0534063
\(55\) 0 0
\(56\) −1.28019e6 −0.974126
\(57\) 875576. 0.626227
\(58\) 314187. 0.211442
\(59\) 56983.5 0.0361216 0.0180608 0.999837i \(-0.494251\pi\)
0.0180608 + 0.999837i \(0.494251\pi\)
\(60\) 1.03638e6 0.619427
\(61\) −1.82908e6 −1.03176 −0.515878 0.856662i \(-0.672534\pi\)
−0.515878 + 0.856662i \(0.672534\pi\)
\(62\) −674454. −0.359403
\(63\) −1.20763e6 −0.608475
\(64\) −1.18937e6 −0.567134
\(65\) 1.92590e6 0.869833
\(66\) 0 0
\(67\) −1.57940e6 −0.641550 −0.320775 0.947155i \(-0.603943\pi\)
−0.320775 + 0.947155i \(0.603943\pi\)
\(68\) −3.45936e6 −1.33418
\(69\) 295300. 0.108216
\(70\) −1.68980e6 −0.588833
\(71\) −1.98445e6 −0.658017 −0.329008 0.944327i \(-0.606714\pi\)
−0.329008 + 0.944327i \(0.606714\pi\)
\(72\) 563370. 0.177881
\(73\) −4.30211e6 −1.29435 −0.647175 0.762342i \(-0.724050\pi\)
−0.647175 + 0.762342i \(0.724050\pi\)
\(74\) −267787. −0.0768207
\(75\) 740733. 0.202744
\(76\) −3.83122e6 −1.00113
\(77\) 0 0
\(78\) 502490. 0.119894
\(79\) 1.14039e6 0.260231 0.130115 0.991499i \(-0.458465\pi\)
0.130115 + 0.991499i \(0.458465\pi\)
\(80\) −4.12491e6 −0.900740
\(81\) 531441. 0.111111
\(82\) −1.09210e6 −0.218732
\(83\) −5.57570e6 −1.07035 −0.535175 0.844741i \(-0.679754\pi\)
−0.535175 + 0.844741i \(0.679754\pi\)
\(84\) 5.28418e6 0.972747
\(85\) −9.51345e6 −1.68024
\(86\) −1.54483e6 −0.261901
\(87\) −2.70192e6 −0.439901
\(88\) 0 0
\(89\) 1.21091e7 1.82073 0.910364 0.413808i \(-0.135801\pi\)
0.910364 + 0.413808i \(0.135801\pi\)
\(90\) 743628. 0.107524
\(91\) 9.81953e6 1.36598
\(92\) −1.29213e6 −0.173001
\(93\) 5.80012e6 0.747733
\(94\) 2.99454e6 0.371862
\(95\) −1.05361e7 −1.26080
\(96\) −3.74703e6 −0.432253
\(97\) 1.72401e7 1.91796 0.958978 0.283481i \(-0.0914894\pi\)
0.958978 + 0.283481i \(0.0914894\pi\)
\(98\) −6.03012e6 −0.647195
\(99\) 0 0
\(100\) −3.24119e6 −0.324119
\(101\) −4.19794e6 −0.405426 −0.202713 0.979238i \(-0.564976\pi\)
−0.202713 + 0.979238i \(0.564976\pi\)
\(102\) −2.48217e6 −0.231596
\(103\) 2.13658e7 1.92659 0.963294 0.268448i \(-0.0865106\pi\)
0.963294 + 0.268448i \(0.0865106\pi\)
\(104\) −4.58089e6 −0.399331
\(105\) 1.45318e7 1.22506
\(106\) 1.98870e6 0.162180
\(107\) −2.87275e6 −0.226702 −0.113351 0.993555i \(-0.536158\pi\)
−0.113351 + 0.993555i \(0.536158\pi\)
\(108\) −2.32540e6 −0.177629
\(109\) −2.68209e6 −0.198372 −0.0991862 0.995069i \(-0.531624\pi\)
−0.0991862 + 0.995069i \(0.531624\pi\)
\(110\) 0 0
\(111\) 2.30289e6 0.159824
\(112\) −2.10316e7 −1.41452
\(113\) 4.83750e6 0.315389 0.157695 0.987488i \(-0.449594\pi\)
0.157695 + 0.987488i \(0.449594\pi\)
\(114\) −2.74899e6 −0.173783
\(115\) −3.55343e6 −0.217874
\(116\) 1.18227e7 0.703255
\(117\) −4.32127e6 −0.249437
\(118\) −178908. −0.0100240
\(119\) −4.85061e7 −2.63865
\(120\) −6.77921e6 −0.358133
\(121\) 0 0
\(122\) 5.74263e6 0.286320
\(123\) 9.39173e6 0.455069
\(124\) −2.53793e7 −1.19537
\(125\) 1.64693e7 0.754206
\(126\) 3.79152e6 0.168856
\(127\) −4.52009e6 −0.195809 −0.0979047 0.995196i \(-0.531214\pi\)
−0.0979047 + 0.995196i \(0.531214\pi\)
\(128\) 2.14979e7 0.906068
\(129\) 1.32851e7 0.544881
\(130\) −6.04661e6 −0.241385
\(131\) 2.18807e7 0.850376 0.425188 0.905105i \(-0.360208\pi\)
0.425188 + 0.905105i \(0.360208\pi\)
\(132\) 0 0
\(133\) −5.37201e7 −1.97996
\(134\) 4.95874e6 0.178035
\(135\) −6.39499e6 −0.223703
\(136\) 2.26285e7 0.771382
\(137\) 3.47636e7 1.15505 0.577527 0.816372i \(-0.304018\pi\)
0.577527 + 0.816372i \(0.304018\pi\)
\(138\) −927133. −0.0300307
\(139\) −5.00383e7 −1.58034 −0.790170 0.612887i \(-0.790008\pi\)
−0.790170 + 0.612887i \(0.790008\pi\)
\(140\) −6.35861e7 −1.95846
\(141\) −2.57522e7 −0.773654
\(142\) 6.23046e6 0.182604
\(143\) 0 0
\(144\) 9.25535e6 0.258300
\(145\) 3.25131e7 0.885666
\(146\) 1.35071e7 0.359191
\(147\) 5.18574e7 1.34648
\(148\) −1.00767e7 −0.255506
\(149\) −1.76156e7 −0.436260 −0.218130 0.975920i \(-0.569996\pi\)
−0.218130 + 0.975920i \(0.569996\pi\)
\(150\) −2.32563e6 −0.0562629
\(151\) −2.40503e6 −0.0568462 −0.0284231 0.999596i \(-0.509049\pi\)
−0.0284231 + 0.999596i \(0.509049\pi\)
\(152\) 2.50609e7 0.578821
\(153\) 2.13460e7 0.481833
\(154\) 0 0
\(155\) −6.97946e7 −1.50543
\(156\) 1.89084e7 0.398766
\(157\) −5.56315e6 −0.114729 −0.0573643 0.998353i \(-0.518270\pi\)
−0.0573643 + 0.998353i \(0.518270\pi\)
\(158\) −3.58041e6 −0.0722159
\(159\) −1.71022e7 −0.337414
\(160\) 4.50892e7 0.870267
\(161\) −1.81178e7 −0.342149
\(162\) −1.66853e6 −0.0308341
\(163\) −4.30131e7 −0.777936 −0.388968 0.921251i \(-0.627168\pi\)
−0.388968 + 0.921251i \(0.627168\pi\)
\(164\) −4.10950e7 −0.727503
\(165\) 0 0
\(166\) 1.75057e7 0.297030
\(167\) 4.37764e7 0.727332 0.363666 0.931529i \(-0.381525\pi\)
0.363666 + 0.931529i \(0.381525\pi\)
\(168\) −3.45650e7 −0.562412
\(169\) −2.76113e7 −0.440031
\(170\) 2.98688e7 0.466279
\(171\) 2.36406e7 0.361553
\(172\) −5.81312e7 −0.871083
\(173\) −1.03503e8 −1.51982 −0.759910 0.650028i \(-0.774757\pi\)
−0.759910 + 0.650028i \(0.774757\pi\)
\(174\) 8.48305e6 0.122076
\(175\) −4.54470e7 −0.641020
\(176\) 0 0
\(177\) 1.53856e6 0.0208548
\(178\) −3.80180e7 −0.505265
\(179\) 1.38743e8 1.80812 0.904059 0.427407i \(-0.140573\pi\)
0.904059 + 0.427407i \(0.140573\pi\)
\(180\) 2.79823e7 0.357626
\(181\) 5.31818e7 0.666635 0.333318 0.942815i \(-0.391832\pi\)
0.333318 + 0.942815i \(0.391832\pi\)
\(182\) −3.08298e7 −0.379071
\(183\) −4.93851e7 −0.595685
\(184\) 8.45211e6 0.100024
\(185\) −2.77114e7 −0.321779
\(186\) −1.82103e7 −0.207501
\(187\) 0 0
\(188\) 1.12683e8 1.23681
\(189\) −3.26060e7 −0.351303
\(190\) 3.30795e7 0.349881
\(191\) −4.41707e7 −0.458688 −0.229344 0.973345i \(-0.573658\pi\)
−0.229344 + 0.973345i \(0.573658\pi\)
\(192\) −3.21129e7 −0.327435
\(193\) 7.06171e7 0.707065 0.353533 0.935422i \(-0.384980\pi\)
0.353533 + 0.935422i \(0.384980\pi\)
\(194\) −5.41276e7 −0.532247
\(195\) 5.19992e7 0.502198
\(196\) −2.26910e8 −2.15257
\(197\) −1.37664e8 −1.28289 −0.641444 0.767170i \(-0.721664\pi\)
−0.641444 + 0.767170i \(0.721664\pi\)
\(198\) 0 0
\(199\) 2.12879e7 0.191491 0.0957453 0.995406i \(-0.469477\pi\)
0.0957453 + 0.995406i \(0.469477\pi\)
\(200\) 2.12014e7 0.187396
\(201\) −4.26438e7 −0.370399
\(202\) 1.31800e7 0.112509
\(203\) 1.65774e8 1.39085
\(204\) −9.34028e7 −0.770290
\(205\) −1.13014e8 −0.916204
\(206\) −6.70809e7 −0.534642
\(207\) 7.97309e6 0.0624785
\(208\) −7.52574e7 −0.579866
\(209\) 0 0
\(210\) −4.56246e7 −0.339963
\(211\) 4.06828e7 0.298141 0.149071 0.988827i \(-0.452372\pi\)
0.149071 + 0.988827i \(0.452372\pi\)
\(212\) 7.48335e7 0.539412
\(213\) −5.35803e7 −0.379906
\(214\) 9.01940e6 0.0629114
\(215\) −1.59864e8 −1.09702
\(216\) 1.52110e7 0.102700
\(217\) −3.55861e8 −2.36413
\(218\) 8.42080e6 0.0550498
\(219\) −1.16157e8 −0.747293
\(220\) 0 0
\(221\) −1.73569e8 −1.08168
\(222\) −7.23025e6 −0.0443525
\(223\) −2.50596e8 −1.51324 −0.756618 0.653857i \(-0.773150\pi\)
−0.756618 + 0.653857i \(0.773150\pi\)
\(224\) 2.29895e8 1.36667
\(225\) 1.99998e7 0.117054
\(226\) −1.51880e7 −0.0875228
\(227\) −9.36400e7 −0.531338 −0.265669 0.964064i \(-0.585593\pi\)
−0.265669 + 0.964064i \(0.585593\pi\)
\(228\) −1.03443e8 −0.578001
\(229\) 6.85914e7 0.377438 0.188719 0.982031i \(-0.439566\pi\)
0.188719 + 0.982031i \(0.439566\pi\)
\(230\) 1.11565e7 0.0604616
\(231\) 0 0
\(232\) −7.73349e7 −0.406600
\(233\) −1.30274e8 −0.674702 −0.337351 0.941379i \(-0.609531\pi\)
−0.337351 + 0.941379i \(0.609531\pi\)
\(234\) 1.35672e7 0.0692206
\(235\) 3.09884e8 1.55762
\(236\) −6.73219e6 −0.0333399
\(237\) 3.07905e7 0.150244
\(238\) 1.52291e8 0.732244
\(239\) 8.85655e7 0.419635 0.209818 0.977741i \(-0.432713\pi\)
0.209818 + 0.977741i \(0.432713\pi\)
\(240\) −1.11373e8 −0.520042
\(241\) −1.80384e8 −0.830114 −0.415057 0.909796i \(-0.636238\pi\)
−0.415057 + 0.909796i \(0.636238\pi\)
\(242\) 0 0
\(243\) 1.43489e7 0.0641500
\(244\) 2.16092e8 0.952301
\(245\) −6.24016e8 −2.71091
\(246\) −2.94866e7 −0.126285
\(247\) −1.92227e8 −0.811661
\(248\) 1.66012e8 0.691128
\(249\) −1.50544e8 −0.617967
\(250\) −5.17076e7 −0.209298
\(251\) −4.17529e8 −1.66659 −0.833295 0.552828i \(-0.813549\pi\)
−0.833295 + 0.552828i \(0.813549\pi\)
\(252\) 1.42673e8 0.561616
\(253\) 0 0
\(254\) 1.41914e7 0.0543385
\(255\) −2.56863e8 −0.970088
\(256\) 8.47435e7 0.315694
\(257\) −2.84477e7 −0.104540 −0.0522699 0.998633i \(-0.516646\pi\)
−0.0522699 + 0.998633i \(0.516646\pi\)
\(258\) −4.17105e7 −0.151209
\(259\) −1.41292e8 −0.505321
\(260\) −2.27530e8 −0.802847
\(261\) −7.29519e7 −0.253977
\(262\) −6.86974e7 −0.235986
\(263\) 1.35098e8 0.457935 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(264\) 0 0
\(265\) 2.05797e8 0.679325
\(266\) 1.68662e8 0.549453
\(267\) 3.26944e8 1.05120
\(268\) 1.86595e8 0.592144
\(269\) −2.04317e8 −0.639987 −0.319993 0.947420i \(-0.603681\pi\)
−0.319993 + 0.947420i \(0.603681\pi\)
\(270\) 2.00780e7 0.0620792
\(271\) 1.25605e8 0.383366 0.191683 0.981457i \(-0.438605\pi\)
0.191683 + 0.981457i \(0.438605\pi\)
\(272\) 3.71753e8 1.12012
\(273\) 2.65127e8 0.788652
\(274\) −1.09145e8 −0.320536
\(275\) 0 0
\(276\) −3.48875e7 −0.0998822
\(277\) 1.12648e8 0.318452 0.159226 0.987242i \(-0.449100\pi\)
0.159226 + 0.987242i \(0.449100\pi\)
\(278\) 1.57102e8 0.438556
\(279\) 1.56603e8 0.431704
\(280\) 4.15932e8 1.13232
\(281\) 4.80961e8 1.29312 0.646558 0.762865i \(-0.276208\pi\)
0.646558 + 0.762865i \(0.276208\pi\)
\(282\) 8.08525e7 0.214695
\(283\) −1.53397e8 −0.402313 −0.201157 0.979559i \(-0.564470\pi\)
−0.201157 + 0.979559i \(0.564470\pi\)
\(284\) 2.34449e8 0.607343
\(285\) −2.84474e8 −0.727924
\(286\) 0 0
\(287\) −5.76220e8 −1.43881
\(288\) −1.01170e8 −0.249561
\(289\) 4.47051e8 1.08947
\(290\) −1.02079e8 −0.245779
\(291\) 4.65482e8 1.10733
\(292\) 5.08263e8 1.19467
\(293\) −5.12204e8 −1.18961 −0.594807 0.803869i \(-0.702772\pi\)
−0.594807 + 0.803869i \(0.702772\pi\)
\(294\) −1.62813e8 −0.373658
\(295\) −1.85139e7 −0.0419876
\(296\) 6.59138e7 0.147725
\(297\) 0 0
\(298\) 5.53065e7 0.121065
\(299\) −6.48310e7 −0.140260
\(300\) −8.75122e7 −0.187130
\(301\) −8.15096e8 −1.72277
\(302\) 7.55092e6 0.0157752
\(303\) −1.13344e8 −0.234073
\(304\) 4.11714e8 0.840501
\(305\) 5.94266e8 1.19931
\(306\) −6.70187e7 −0.133712
\(307\) −1.33560e8 −0.263447 −0.131724 0.991286i \(-0.542051\pi\)
−0.131724 + 0.991286i \(0.542051\pi\)
\(308\) 0 0
\(309\) 5.76877e8 1.11232
\(310\) 2.19130e8 0.417768
\(311\) −1.21509e8 −0.229059 −0.114529 0.993420i \(-0.536536\pi\)
−0.114529 + 0.993420i \(0.536536\pi\)
\(312\) −1.23684e8 −0.230554
\(313\) −8.28300e8 −1.52680 −0.763400 0.645925i \(-0.776472\pi\)
−0.763400 + 0.645925i \(0.776472\pi\)
\(314\) 1.74663e7 0.0318380
\(315\) 3.92359e8 0.707288
\(316\) −1.34729e8 −0.240190
\(317\) 5.04412e8 0.889360 0.444680 0.895689i \(-0.353317\pi\)
0.444680 + 0.895689i \(0.353317\pi\)
\(318\) 5.36948e7 0.0936348
\(319\) 0 0
\(320\) 3.86425e8 0.659234
\(321\) −7.75643e7 −0.130886
\(322\) 5.68834e7 0.0949489
\(323\) 9.49554e8 1.56787
\(324\) −6.27859e7 −0.102554
\(325\) −1.62623e8 −0.262779
\(326\) 1.35045e8 0.215883
\(327\) −7.24165e7 −0.114530
\(328\) 2.68812e8 0.420620
\(329\) 1.58000e9 2.44608
\(330\) 0 0
\(331\) 3.62665e8 0.549676 0.274838 0.961490i \(-0.411376\pi\)
0.274838 + 0.961490i \(0.411376\pi\)
\(332\) 6.58728e8 0.987922
\(333\) 6.21781e7 0.0922747
\(334\) −1.37442e8 −0.201840
\(335\) 5.13146e8 0.745735
\(336\) −5.67853e8 −0.816674
\(337\) −2.46084e8 −0.350251 −0.175125 0.984546i \(-0.556033\pi\)
−0.175125 + 0.984546i \(0.556033\pi\)
\(338\) 8.66893e7 0.122112
\(339\) 1.30613e8 0.182090
\(340\) 1.12394e9 1.55085
\(341\) 0 0
\(342\) −7.42228e7 −0.100333
\(343\) −1.81741e9 −2.43178
\(344\) 3.80249e8 0.503633
\(345\) −9.59426e7 −0.125790
\(346\) 3.24962e8 0.421761
\(347\) −1.31921e9 −1.69496 −0.847480 0.530828i \(-0.821881\pi\)
−0.847480 + 0.530828i \(0.821881\pi\)
\(348\) 3.19212e8 0.406025
\(349\) −5.11888e7 −0.0644594 −0.0322297 0.999480i \(-0.510261\pi\)
−0.0322297 + 0.999480i \(0.510261\pi\)
\(350\) 1.42687e8 0.177888
\(351\) −1.16674e8 −0.144013
\(352\) 0 0
\(353\) −6.46661e8 −0.782465 −0.391233 0.920292i \(-0.627951\pi\)
−0.391233 + 0.920292i \(0.627951\pi\)
\(354\) −4.83050e6 −0.00578737
\(355\) 6.44748e8 0.764875
\(356\) −1.43060e9 −1.68051
\(357\) −1.30966e9 −1.52342
\(358\) −4.35604e8 −0.501766
\(359\) 1.43435e9 1.63616 0.818080 0.575104i \(-0.195038\pi\)
0.818080 + 0.575104i \(0.195038\pi\)
\(360\) −1.83039e8 −0.206768
\(361\) 1.57753e8 0.176482
\(362\) −1.66972e8 −0.184996
\(363\) 0 0
\(364\) −1.16011e9 −1.26079
\(365\) 1.39775e9 1.50455
\(366\) 1.55051e8 0.165307
\(367\) −6.32780e8 −0.668223 −0.334112 0.942533i \(-0.608436\pi\)
−0.334112 + 0.942533i \(0.608436\pi\)
\(368\) 1.38856e8 0.145244
\(369\) 2.53577e8 0.262734
\(370\) 8.70038e7 0.0892960
\(371\) 1.04929e9 1.06681
\(372\) −6.85242e8 −0.690150
\(373\) 1.73311e8 0.172920 0.0864599 0.996255i \(-0.472445\pi\)
0.0864599 + 0.996255i \(0.472445\pi\)
\(374\) 0 0
\(375\) 4.44671e8 0.435441
\(376\) −7.37083e8 −0.715087
\(377\) 5.93189e8 0.570162
\(378\) 1.02371e8 0.0974891
\(379\) 1.23599e8 0.116621 0.0583105 0.998298i \(-0.481429\pi\)
0.0583105 + 0.998298i \(0.481429\pi\)
\(380\) 1.24476e9 1.16371
\(381\) −1.22042e8 −0.113051
\(382\) 1.38680e8 0.127289
\(383\) 1.42530e8 0.129632 0.0648159 0.997897i \(-0.479354\pi\)
0.0648159 + 0.997897i \(0.479354\pi\)
\(384\) 5.80443e8 0.523119
\(385\) 0 0
\(386\) −2.21712e8 −0.196216
\(387\) 3.58699e8 0.314587
\(388\) −2.03679e9 −1.77025
\(389\) −6.64554e8 −0.572409 −0.286205 0.958168i \(-0.592394\pi\)
−0.286205 + 0.958168i \(0.592394\pi\)
\(390\) −1.63259e8 −0.139364
\(391\) 3.20249e8 0.270938
\(392\) 1.48427e9 1.24455
\(393\) 5.90778e8 0.490965
\(394\) 4.32215e8 0.356011
\(395\) −3.70512e8 −0.302491
\(396\) 0 0
\(397\) 3.05049e8 0.244683 0.122341 0.992488i \(-0.460960\pi\)
0.122341 + 0.992488i \(0.460960\pi\)
\(398\) −6.68363e7 −0.0531400
\(399\) −1.45044e9 −1.14313
\(400\) 3.48308e8 0.272116
\(401\) 1.66426e9 1.28889 0.644447 0.764649i \(-0.277088\pi\)
0.644447 + 0.764649i \(0.277088\pi\)
\(402\) 1.33886e8 0.102788
\(403\) −1.27338e9 −0.969147
\(404\) 4.95956e8 0.374204
\(405\) −1.72665e8 −0.129155
\(406\) −5.20469e8 −0.385971
\(407\) 0 0
\(408\) 6.10969e8 0.445357
\(409\) −7.97481e8 −0.576353 −0.288177 0.957577i \(-0.593049\pi\)
−0.288177 + 0.957577i \(0.593049\pi\)
\(410\) 3.54821e8 0.254253
\(411\) 9.38616e8 0.666871
\(412\) −2.52421e9 −1.77822
\(413\) −9.43966e7 −0.0659373
\(414\) −2.50326e7 −0.0173382
\(415\) 1.81154e9 1.24417
\(416\) 8.22635e8 0.560248
\(417\) −1.35103e9 −0.912410
\(418\) 0 0
\(419\) 1.70754e9 1.13402 0.567010 0.823711i \(-0.308100\pi\)
0.567010 + 0.823711i \(0.308100\pi\)
\(420\) −1.71683e9 −1.13072
\(421\) 4.33041e7 0.0282840 0.0141420 0.999900i \(-0.495498\pi\)
0.0141420 + 0.999900i \(0.495498\pi\)
\(422\) −1.27729e8 −0.0827363
\(423\) −6.95309e8 −0.446670
\(424\) −4.89503e8 −0.311871
\(425\) 8.03318e8 0.507605
\(426\) 1.68223e8 0.105427
\(427\) 3.02997e9 1.88339
\(428\) 3.39395e8 0.209243
\(429\) 0 0
\(430\) 5.01915e8 0.304432
\(431\) 1.95369e9 1.17540 0.587698 0.809080i \(-0.300034\pi\)
0.587698 + 0.809080i \(0.300034\pi\)
\(432\) 2.49895e8 0.149130
\(433\) −6.94306e7 −0.0411002 −0.0205501 0.999789i \(-0.506542\pi\)
−0.0205501 + 0.999789i \(0.506542\pi\)
\(434\) 1.11727e9 0.656063
\(435\) 8.77853e8 0.511339
\(436\) 3.16870e8 0.183096
\(437\) 3.54674e8 0.203303
\(438\) 3.64691e8 0.207379
\(439\) −2.35341e9 −1.32761 −0.663806 0.747904i \(-0.731060\pi\)
−0.663806 + 0.747904i \(0.731060\pi\)
\(440\) 0 0
\(441\) 1.40015e9 0.777391
\(442\) 5.44945e8 0.300175
\(443\) −1.38310e9 −0.755857 −0.377928 0.925835i \(-0.623363\pi\)
−0.377928 + 0.925835i \(0.623363\pi\)
\(444\) −2.72070e8 −0.147516
\(445\) −3.93422e9 −2.11641
\(446\) 7.86780e8 0.419934
\(447\) −4.75621e8 −0.251875
\(448\) 1.97026e9 1.03526
\(449\) 2.72720e9 1.42186 0.710928 0.703265i \(-0.248275\pi\)
0.710928 + 0.703265i \(0.248275\pi\)
\(450\) −6.27921e7 −0.0324834
\(451\) 0 0
\(452\) −5.71516e8 −0.291101
\(453\) −6.49358e7 −0.0328202
\(454\) 2.93995e8 0.147450
\(455\) −3.19036e9 −1.58781
\(456\) 6.76644e8 0.334182
\(457\) −1.56713e9 −0.768065 −0.384033 0.923320i \(-0.625465\pi\)
−0.384033 + 0.923320i \(0.625465\pi\)
\(458\) −2.15352e8 −0.104742
\(459\) 5.76342e8 0.278187
\(460\) 4.19812e8 0.201095
\(461\) 2.51125e9 1.19381 0.596907 0.802311i \(-0.296396\pi\)
0.596907 + 0.802311i \(0.296396\pi\)
\(462\) 0 0
\(463\) 2.26078e9 1.05858 0.529292 0.848440i \(-0.322458\pi\)
0.529292 + 0.848440i \(0.322458\pi\)
\(464\) −1.27050e9 −0.590421
\(465\) −1.88446e9 −0.869161
\(466\) 4.09013e8 0.187235
\(467\) 2.60651e9 1.18427 0.592135 0.805839i \(-0.298285\pi\)
0.592135 + 0.805839i \(0.298285\pi\)
\(468\) 5.10526e8 0.230228
\(469\) 2.61637e9 1.17110
\(470\) −9.72923e8 −0.432251
\(471\) −1.50205e8 −0.0662386
\(472\) 4.40368e7 0.0192761
\(473\) 0 0
\(474\) −9.66710e7 −0.0416939
\(475\) 8.89669e8 0.380891
\(476\) 5.73064e9 2.43545
\(477\) −4.61760e8 −0.194806
\(478\) −2.78063e8 −0.116452
\(479\) −3.69188e9 −1.53488 −0.767438 0.641123i \(-0.778469\pi\)
−0.767438 + 0.641123i \(0.778469\pi\)
\(480\) 1.21741e9 0.502449
\(481\) −5.05585e8 −0.207151
\(482\) 5.66339e8 0.230363
\(483\) −4.89181e8 −0.197540
\(484\) 0 0
\(485\) −5.60129e9 −2.22942
\(486\) −4.50504e7 −0.0178021
\(487\) −4.57363e8 −0.179436 −0.0897180 0.995967i \(-0.528597\pi\)
−0.0897180 + 0.995967i \(0.528597\pi\)
\(488\) −1.41351e9 −0.550590
\(489\) −1.16135e9 −0.449142
\(490\) 1.95918e9 0.752296
\(491\) −2.68320e9 −1.02298 −0.511491 0.859289i \(-0.670906\pi\)
−0.511491 + 0.859289i \(0.670906\pi\)
\(492\) −1.10956e9 −0.420024
\(493\) −2.93021e9 −1.10137
\(494\) 6.03523e8 0.225242
\(495\) 0 0
\(496\) 2.72734e9 1.00358
\(497\) 3.28737e9 1.20116
\(498\) 4.72653e8 0.171490
\(499\) −1.86676e9 −0.672568 −0.336284 0.941761i \(-0.609170\pi\)
−0.336284 + 0.941761i \(0.609170\pi\)
\(500\) −1.94573e9 −0.696124
\(501\) 1.18196e9 0.419925
\(502\) 1.31089e9 0.462491
\(503\) 4.44792e9 1.55836 0.779182 0.626798i \(-0.215635\pi\)
0.779182 + 0.626798i \(0.215635\pi\)
\(504\) −9.33256e8 −0.324709
\(505\) 1.36391e9 0.471265
\(506\) 0 0
\(507\) −7.45504e8 −0.254052
\(508\) 5.34015e8 0.180730
\(509\) −6.09237e8 −0.204774 −0.102387 0.994745i \(-0.532648\pi\)
−0.102387 + 0.994745i \(0.532648\pi\)
\(510\) 8.06457e8 0.269206
\(511\) 7.12670e9 2.36274
\(512\) −3.01779e9 −0.993675
\(513\) 6.38295e8 0.208742
\(514\) 8.93155e7 0.0290106
\(515\) −6.94174e9 −2.23946
\(516\) −1.56954e9 −0.502920
\(517\) 0 0
\(518\) 4.43605e8 0.140230
\(519\) −2.79459e9 −0.877469
\(520\) 1.48833e9 0.464181
\(521\) −5.17948e9 −1.60455 −0.802276 0.596953i \(-0.796378\pi\)
−0.802276 + 0.596953i \(0.796378\pi\)
\(522\) 2.29042e8 0.0704805
\(523\) −3.39726e9 −1.03842 −0.519209 0.854647i \(-0.673773\pi\)
−0.519209 + 0.854647i \(0.673773\pi\)
\(524\) −2.58504e9 −0.784889
\(525\) −1.22707e9 −0.370093
\(526\) −4.24159e8 −0.127080
\(527\) 6.29017e9 1.87208
\(528\) 0 0
\(529\) −3.28521e9 −0.964868
\(530\) −6.46126e8 −0.188518
\(531\) 4.15410e7 0.0120405
\(532\) 6.34664e9 1.82748
\(533\) −2.06189e9 −0.589821
\(534\) −1.02649e9 −0.291715
\(535\) 9.33355e8 0.263517
\(536\) −1.22056e9 −0.342359
\(537\) 3.74607e9 1.04392
\(538\) 6.41480e8 0.177601
\(539\) 0 0
\(540\) 7.55522e8 0.206476
\(541\) −3.43167e9 −0.931784 −0.465892 0.884842i \(-0.654266\pi\)
−0.465892 + 0.884842i \(0.654266\pi\)
\(542\) −3.94353e8 −0.106387
\(543\) 1.43591e9 0.384882
\(544\) −4.06362e9 −1.08222
\(545\) 8.71410e8 0.230587
\(546\) −8.32403e8 −0.218857
\(547\) −7.64825e9 −1.99805 −0.999025 0.0441449i \(-0.985944\pi\)
−0.999025 + 0.0441449i \(0.985944\pi\)
\(548\) −4.10706e9 −1.06610
\(549\) −1.33340e9 −0.343919
\(550\) 0 0
\(551\) −3.24518e9 −0.826435
\(552\) 2.28207e8 0.0577487
\(553\) −1.88912e9 −0.475031
\(554\) −3.53673e8 −0.0883727
\(555\) −7.48208e8 −0.185779
\(556\) 5.91166e9 1.45864
\(557\) 2.46388e9 0.604125 0.302062 0.953288i \(-0.402325\pi\)
0.302062 + 0.953288i \(0.402325\pi\)
\(558\) −4.91677e8 −0.119801
\(559\) −2.91666e9 −0.706228
\(560\) 6.83315e9 1.64423
\(561\) 0 0
\(562\) −1.51004e9 −0.358849
\(563\) 4.80512e9 1.13481 0.567407 0.823437i \(-0.307946\pi\)
0.567407 + 0.823437i \(0.307946\pi\)
\(564\) 3.04243e9 0.714075
\(565\) −1.57170e9 −0.366607
\(566\) 4.81611e8 0.111645
\(567\) −8.80363e8 −0.202825
\(568\) −1.53358e9 −0.351146
\(569\) 1.91268e9 0.435261 0.217631 0.976031i \(-0.430167\pi\)
0.217631 + 0.976031i \(0.430167\pi\)
\(570\) 8.93146e8 0.202004
\(571\) −5.11420e9 −1.14961 −0.574806 0.818290i \(-0.694922\pi\)
−0.574806 + 0.818290i \(0.694922\pi\)
\(572\) 0 0
\(573\) −1.19261e9 −0.264823
\(574\) 1.80912e9 0.399279
\(575\) 3.00053e8 0.0658203
\(576\) −8.67049e8 −0.189045
\(577\) 7.21875e9 1.56440 0.782198 0.623030i \(-0.214098\pi\)
0.782198 + 0.623030i \(0.214098\pi\)
\(578\) −1.40358e9 −0.302336
\(579\) 1.90666e9 0.408224
\(580\) −3.84118e9 −0.817460
\(581\) 9.23647e9 1.95384
\(582\) −1.46145e9 −0.307293
\(583\) 0 0
\(584\) −3.32466e9 −0.690721
\(585\) 1.40398e9 0.289944
\(586\) 1.60813e9 0.330127
\(587\) 5.59159e9 1.14104 0.570522 0.821283i \(-0.306741\pi\)
0.570522 + 0.821283i \(0.306741\pi\)
\(588\) −6.12657e9 −1.24279
\(589\) 6.96632e9 1.40475
\(590\) 5.81269e7 0.0116519
\(591\) −3.71693e9 −0.740676
\(592\) 1.08287e9 0.214511
\(593\) −6.64072e9 −1.30775 −0.653873 0.756604i \(-0.726857\pi\)
−0.653873 + 0.756604i \(0.726857\pi\)
\(594\) 0 0
\(595\) 1.57596e10 3.06715
\(596\) 2.08115e9 0.402663
\(597\) 5.74774e8 0.110557
\(598\) 2.03546e8 0.0389232
\(599\) 4.98631e9 0.947950 0.473975 0.880538i \(-0.342819\pi\)
0.473975 + 0.880538i \(0.342819\pi\)
\(600\) 5.72438e8 0.108193
\(601\) 1.99239e9 0.374381 0.187191 0.982324i \(-0.440062\pi\)
0.187191 + 0.982324i \(0.440062\pi\)
\(602\) 2.55911e9 0.478080
\(603\) −1.15138e9 −0.213850
\(604\) 2.84137e8 0.0524685
\(605\) 0 0
\(606\) 3.55860e8 0.0649568
\(607\) −1.02364e9 −0.185775 −0.0928875 0.995677i \(-0.529610\pi\)
−0.0928875 + 0.995677i \(0.529610\pi\)
\(608\) −4.50043e9 −0.812066
\(609\) 4.47589e9 0.803007
\(610\) −1.86578e9 −0.332817
\(611\) 5.65372e9 1.00274
\(612\) −2.52188e9 −0.444727
\(613\) 1.00525e10 1.76264 0.881320 0.472520i \(-0.156656\pi\)
0.881320 + 0.472520i \(0.156656\pi\)
\(614\) 4.19331e8 0.0731085
\(615\) −3.05137e9 −0.528970
\(616\) 0 0
\(617\) −1.40682e9 −0.241124 −0.120562 0.992706i \(-0.538470\pi\)
−0.120562 + 0.992706i \(0.538470\pi\)
\(618\) −1.81118e9 −0.308676
\(619\) −6.83926e9 −1.15902 −0.579511 0.814964i \(-0.696756\pi\)
−0.579511 + 0.814964i \(0.696756\pi\)
\(620\) 8.24572e9 1.38950
\(621\) 2.15273e8 0.0360720
\(622\) 3.81494e8 0.0635655
\(623\) −2.00594e10 −3.32360
\(624\) −2.03195e9 −0.334786
\(625\) −7.49419e9 −1.22785
\(626\) 2.60056e9 0.423698
\(627\) 0 0
\(628\) 6.57245e8 0.105893
\(629\) 2.49746e9 0.400149
\(630\) −1.23186e9 −0.196278
\(631\) 1.06266e10 1.68381 0.841904 0.539627i \(-0.181435\pi\)
0.841904 + 0.539627i \(0.181435\pi\)
\(632\) 8.81291e8 0.138870
\(633\) 1.09843e9 0.172132
\(634\) −1.58367e9 −0.246804
\(635\) 1.46857e9 0.227608
\(636\) 2.02050e9 0.311430
\(637\) −1.13849e10 −1.74519
\(638\) 0 0
\(639\) −1.44667e9 −0.219339
\(640\) −6.98465e9 −1.05321
\(641\) 4.38990e9 0.658342 0.329171 0.944270i \(-0.393231\pi\)
0.329171 + 0.944270i \(0.393231\pi\)
\(642\) 2.43524e8 0.0363219
\(643\) −8.47636e9 −1.25739 −0.628697 0.777651i \(-0.716411\pi\)
−0.628697 + 0.777651i \(0.716411\pi\)
\(644\) 2.14049e9 0.315800
\(645\) −4.31633e9 −0.633367
\(646\) −2.98125e9 −0.435096
\(647\) −1.20293e9 −0.174613 −0.0873063 0.996182i \(-0.527826\pi\)
−0.0873063 + 0.996182i \(0.527826\pi\)
\(648\) 4.10697e8 0.0592937
\(649\) 0 0
\(650\) 5.10577e8 0.0729230
\(651\) −9.60824e9 −1.36493
\(652\) 5.08168e9 0.718027
\(653\) −3.30426e9 −0.464385 −0.232193 0.972670i \(-0.574590\pi\)
−0.232193 + 0.972670i \(0.574590\pi\)
\(654\) 2.27362e8 0.0317830
\(655\) −7.10902e9 −0.988473
\(656\) 4.41618e9 0.610778
\(657\) −3.13624e9 −0.431450
\(658\) −4.96062e9 −0.678806
\(659\) −8.72843e9 −1.18806 −0.594028 0.804444i \(-0.702463\pi\)
−0.594028 + 0.804444i \(0.702463\pi\)
\(660\) 0 0
\(661\) −1.07586e10 −1.44895 −0.724473 0.689303i \(-0.757917\pi\)
−0.724473 + 0.689303i \(0.757917\pi\)
\(662\) −1.13863e9 −0.152539
\(663\) −4.68637e9 −0.624510
\(664\) −4.30889e9 −0.571186
\(665\) 1.74536e10 2.30150
\(666\) −1.95217e8 −0.0256069
\(667\) −1.09448e9 −0.142813
\(668\) −5.17186e9 −0.671320
\(669\) −6.76609e9 −0.873668
\(670\) −1.61109e9 −0.206947
\(671\) 0 0
\(672\) 6.20718e9 0.789045
\(673\) −4.13126e9 −0.522432 −0.261216 0.965280i \(-0.584124\pi\)
−0.261216 + 0.965280i \(0.584124\pi\)
\(674\) 7.72614e8 0.0971971
\(675\) 5.39995e8 0.0675813
\(676\) 3.26207e9 0.406144
\(677\) 3.46057e9 0.428635 0.214317 0.976764i \(-0.431247\pi\)
0.214317 + 0.976764i \(0.431247\pi\)
\(678\) −4.10076e8 −0.0505313
\(679\) −2.85592e10 −3.50108
\(680\) −7.35198e9 −0.896650
\(681\) −2.52828e9 −0.306768
\(682\) 0 0
\(683\) −1.30563e10 −1.56801 −0.784006 0.620753i \(-0.786827\pi\)
−0.784006 + 0.620753i \(0.786827\pi\)
\(684\) −2.79296e9 −0.333709
\(685\) −1.12947e10 −1.34263
\(686\) 5.70601e9 0.674836
\(687\) 1.85197e9 0.217914
\(688\) 6.24694e9 0.731321
\(689\) 3.75468e9 0.437327
\(690\) 3.01225e8 0.0349075
\(691\) 5.11420e9 0.589664 0.294832 0.955549i \(-0.404736\pi\)
0.294832 + 0.955549i \(0.404736\pi\)
\(692\) 1.22281e10 1.40278
\(693\) 0 0
\(694\) 4.14182e9 0.470363
\(695\) 1.62574e10 1.83698
\(696\) −2.08804e9 −0.234751
\(697\) 1.01852e10 1.13935
\(698\) 1.60714e8 0.0178879
\(699\) −3.51740e9 −0.389539
\(700\) 5.36923e9 0.591655
\(701\) −1.07835e10 −1.18235 −0.591175 0.806543i \(-0.701336\pi\)
−0.591175 + 0.806543i \(0.701336\pi\)
\(702\) 3.66315e8 0.0399645
\(703\) 2.76592e9 0.300259
\(704\) 0 0
\(705\) 8.36686e9 0.899292
\(706\) 2.03028e9 0.217140
\(707\) 6.95413e9 0.740073
\(708\) −1.81769e8 −0.0192488
\(709\) −4.17468e9 −0.439908 −0.219954 0.975510i \(-0.570591\pi\)
−0.219954 + 0.975510i \(0.570591\pi\)
\(710\) −2.02427e9 −0.212258
\(711\) 8.31344e8 0.0867435
\(712\) 9.35786e9 0.971620
\(713\) 2.34948e9 0.242750
\(714\) 4.11187e9 0.422762
\(715\) 0 0
\(716\) −1.63915e10 −1.66887
\(717\) 2.39127e9 0.242276
\(718\) −4.50335e9 −0.454046
\(719\) −3.53308e9 −0.354489 −0.177244 0.984167i \(-0.556718\pi\)
−0.177244 + 0.984167i \(0.556718\pi\)
\(720\) −3.00706e9 −0.300247
\(721\) −3.53937e10 −3.51684
\(722\) −4.95286e8 −0.0489751
\(723\) −4.87036e9 −0.479266
\(724\) −6.28304e9 −0.615297
\(725\) −2.74541e9 −0.267562
\(726\) 0 0
\(727\) 3.02429e9 0.291913 0.145957 0.989291i \(-0.453374\pi\)
0.145957 + 0.989291i \(0.453374\pi\)
\(728\) 7.58852e9 0.728949
\(729\) 3.87420e8 0.0370370
\(730\) −4.38844e9 −0.417522
\(731\) 1.44076e10 1.36421
\(732\) 5.83448e9 0.549811
\(733\) −2.04302e10 −1.91605 −0.958027 0.286677i \(-0.907449\pi\)
−0.958027 + 0.286677i \(0.907449\pi\)
\(734\) 1.98670e9 0.185437
\(735\) −1.68484e10 −1.56514
\(736\) −1.51783e9 −0.140330
\(737\) 0 0
\(738\) −7.96138e8 −0.0729107
\(739\) −7.88680e9 −0.718862 −0.359431 0.933172i \(-0.617029\pi\)
−0.359431 + 0.933172i \(0.617029\pi\)
\(740\) 3.27390e9 0.296999
\(741\) −5.19013e9 −0.468613
\(742\) −3.29439e9 −0.296048
\(743\) −5.31124e8 −0.0475045 −0.0237522 0.999718i \(-0.507561\pi\)
−0.0237522 + 0.999718i \(0.507561\pi\)
\(744\) 4.48232e9 0.399023
\(745\) 5.72329e9 0.507106
\(746\) −5.44133e8 −0.0479865
\(747\) −4.06468e9 −0.356783
\(748\) 0 0
\(749\) 4.75888e9 0.413827
\(750\) −1.39610e9 −0.120838
\(751\) 2.53404e9 0.218310 0.109155 0.994025i \(-0.465186\pi\)
0.109155 + 0.994025i \(0.465186\pi\)
\(752\) −1.21092e10 −1.03837
\(753\) −1.12733e10 −0.962207
\(754\) −1.86240e9 −0.158224
\(755\) 7.81393e8 0.0660777
\(756\) 3.85217e9 0.324249
\(757\) 1.12293e10 0.940844 0.470422 0.882442i \(-0.344102\pi\)
0.470422 + 0.882442i \(0.344102\pi\)
\(758\) −3.88055e8 −0.0323632
\(759\) 0 0
\(760\) −8.14227e9 −0.672818
\(761\) 1.06239e10 0.873852 0.436926 0.899497i \(-0.356067\pi\)
0.436926 + 0.899497i \(0.356067\pi\)
\(762\) 3.83168e8 0.0313724
\(763\) 4.44304e9 0.362114
\(764\) 5.21844e9 0.423364
\(765\) −6.93530e9 −0.560081
\(766\) −4.47493e8 −0.0359738
\(767\) −3.37779e8 −0.0270302
\(768\) 2.28807e9 0.182266
\(769\) 6.21266e9 0.492646 0.246323 0.969188i \(-0.420778\pi\)
0.246323 + 0.969188i \(0.420778\pi\)
\(770\) 0 0
\(771\) −7.68089e8 −0.0603561
\(772\) −8.34290e9 −0.652614
\(773\) −1.75118e10 −1.36365 −0.681823 0.731517i \(-0.738813\pi\)
−0.681823 + 0.731517i \(0.738813\pi\)
\(774\) −1.12618e9 −0.0873003
\(775\) 5.89347e9 0.454795
\(776\) 1.33231e10 1.02350
\(777\) −3.81488e9 −0.291747
\(778\) 2.08646e9 0.158848
\(779\) 1.12801e10 0.854931
\(780\) −6.14332e9 −0.463524
\(781\) 0 0
\(782\) −1.00547e9 −0.0751872
\(783\) −1.96970e9 −0.146634
\(784\) 2.43844e10 1.80720
\(785\) 1.80746e9 0.133360
\(786\) −1.85483e9 −0.136246
\(787\) 1.35514e10 0.990997 0.495499 0.868609i \(-0.334985\pi\)
0.495499 + 0.868609i \(0.334985\pi\)
\(788\) 1.62640e10 1.18409
\(789\) 3.64765e9 0.264389
\(790\) 1.16327e9 0.0839434
\(791\) −8.01361e9 −0.575719
\(792\) 0 0
\(793\) 1.08422e10 0.772075
\(794\) −9.57743e8 −0.0679012
\(795\) 5.55651e9 0.392208
\(796\) −2.51501e9 −0.176744
\(797\) 8.58457e9 0.600640 0.300320 0.953838i \(-0.402906\pi\)
0.300320 + 0.953838i \(0.402906\pi\)
\(798\) 4.55387e9 0.317227
\(799\) −2.79280e10 −1.93698
\(800\) −3.80734e9 −0.262910
\(801\) 8.82750e9 0.606909
\(802\) −5.22519e9 −0.357677
\(803\) 0 0
\(804\) 5.03806e9 0.341875
\(805\) 5.88647e9 0.397712
\(806\) 3.99794e9 0.268945
\(807\) −5.51655e9 −0.369496
\(808\) −3.24416e9 −0.216353
\(809\) 1.96443e9 0.130441 0.0652207 0.997871i \(-0.479225\pi\)
0.0652207 + 0.997871i \(0.479225\pi\)
\(810\) 5.42105e8 0.0358415
\(811\) 2.38624e9 0.157088 0.0785438 0.996911i \(-0.474973\pi\)
0.0785438 + 0.996911i \(0.474973\pi\)
\(812\) −1.95850e10 −1.28374
\(813\) 3.39133e9 0.221336
\(814\) 0 0
\(815\) 1.39749e10 0.904270
\(816\) 1.00373e10 0.646700
\(817\) 1.59563e10 1.02366
\(818\) 2.50380e9 0.159942
\(819\) 7.15844e9 0.455328
\(820\) 1.33517e10 0.845647
\(821\) −4.38247e8 −0.0276387 −0.0138194 0.999905i \(-0.504399\pi\)
−0.0138194 + 0.999905i \(0.504399\pi\)
\(822\) −2.94691e9 −0.185061
\(823\) 1.49310e9 0.0933663 0.0466832 0.998910i \(-0.485135\pi\)
0.0466832 + 0.998910i \(0.485135\pi\)
\(824\) 1.65115e10 1.02811
\(825\) 0 0
\(826\) 2.96371e8 0.0182981
\(827\) −2.74902e9 −0.169008 −0.0845042 0.996423i \(-0.526931\pi\)
−0.0845042 + 0.996423i \(0.526931\pi\)
\(828\) −9.41962e8 −0.0576670
\(829\) −2.68318e9 −0.163572 −0.0817861 0.996650i \(-0.526062\pi\)
−0.0817861 + 0.996650i \(0.526062\pi\)
\(830\) −5.68758e9 −0.345266
\(831\) 3.04149e9 0.183858
\(832\) 7.05017e9 0.424393
\(833\) 5.62388e10 3.37115
\(834\) 4.24176e9 0.253200
\(835\) −1.42229e10 −0.845447
\(836\) 0 0
\(837\) 4.22829e9 0.249244
\(838\) −5.36104e9 −0.314699
\(839\) 4.31552e9 0.252271 0.126135 0.992013i \(-0.459743\pi\)
0.126135 + 0.992013i \(0.459743\pi\)
\(840\) 1.12302e10 0.653745
\(841\) −7.23563e9 −0.419460
\(842\) −1.35959e8 −0.00784903
\(843\) 1.29859e10 0.746581
\(844\) −4.80637e9 −0.275181
\(845\) 8.97088e9 0.511489
\(846\) 2.18302e9 0.123954
\(847\) 0 0
\(848\) −8.04183e9 −0.452865
\(849\) −4.14172e9 −0.232276
\(850\) −2.52213e9 −0.140864
\(851\) 9.32844e8 0.0518866
\(852\) 6.33012e9 0.350649
\(853\) 1.97919e10 1.09186 0.545930 0.837831i \(-0.316177\pi\)
0.545930 + 0.837831i \(0.316177\pi\)
\(854\) −9.51301e9 −0.522655
\(855\) −7.68080e9 −0.420267
\(856\) −2.22006e9 −0.120978
\(857\) 2.86789e9 0.155643 0.0778215 0.996967i \(-0.475204\pi\)
0.0778215 + 0.996967i \(0.475204\pi\)
\(858\) 0 0
\(859\) −3.50044e10 −1.88428 −0.942142 0.335215i \(-0.891191\pi\)
−0.942142 + 0.335215i \(0.891191\pi\)
\(860\) 1.88868e10 1.01254
\(861\) −1.55579e10 −0.830694
\(862\) −6.13386e9 −0.326181
\(863\) −3.23684e10 −1.71429 −0.857143 0.515078i \(-0.827763\pi\)
−0.857143 + 0.515078i \(0.827763\pi\)
\(864\) −2.73159e9 −0.144084
\(865\) 3.36281e10 1.76663
\(866\) 2.17987e8 0.0114056
\(867\) 1.20704e10 0.629005
\(868\) 4.20423e10 2.18207
\(869\) 0 0
\(870\) −2.75614e9 −0.141900
\(871\) 9.36216e9 0.480079
\(872\) −2.07272e9 −0.105860
\(873\) 1.25680e10 0.639318
\(874\) −1.11355e9 −0.0564181
\(875\) −2.72823e10 −1.37674
\(876\) 1.37231e10 0.689744
\(877\) 1.36182e10 0.681741 0.340871 0.940110i \(-0.389278\pi\)
0.340871 + 0.940110i \(0.389278\pi\)
\(878\) 7.38885e9 0.368422
\(879\) −1.38295e10 −0.686824
\(880\) 0 0
\(881\) 2.28881e10 1.12770 0.563851 0.825877i \(-0.309319\pi\)
0.563851 + 0.825877i \(0.309319\pi\)
\(882\) −4.39596e9 −0.215732
\(883\) −3.22248e10 −1.57517 −0.787585 0.616207i \(-0.788669\pi\)
−0.787585 + 0.616207i \(0.788669\pi\)
\(884\) 2.05060e10 0.998383
\(885\) −4.99876e8 −0.0242416
\(886\) 4.34242e9 0.209756
\(887\) 1.23059e10 0.592081 0.296041 0.955175i \(-0.404334\pi\)
0.296041 + 0.955175i \(0.404334\pi\)
\(888\) 1.77967e9 0.0852893
\(889\) 7.48779e9 0.357435
\(890\) 1.23520e10 0.587318
\(891\) 0 0
\(892\) 2.96061e10 1.39670
\(893\) −3.09300e10 −1.45345
\(894\) 1.49328e9 0.0698970
\(895\) −4.50777e10 −2.10175
\(896\) −3.56125e10 −1.65396
\(897\) −1.75044e9 −0.0809791
\(898\) −8.56243e9 −0.394575
\(899\) −2.14972e10 −0.986787
\(900\) −2.36283e9 −0.108040
\(901\) −1.85472e10 −0.844776
\(902\) 0 0
\(903\) −2.20076e10 −0.994639
\(904\) 3.73841e9 0.168305
\(905\) −1.72787e10 −0.774893
\(906\) 2.03875e8 0.00910784
\(907\) −5.53790e9 −0.246445 −0.123222 0.992379i \(-0.539323\pi\)
−0.123222 + 0.992379i \(0.539323\pi\)
\(908\) 1.10629e10 0.490419
\(909\) −3.06030e9 −0.135142
\(910\) 1.00166e10 0.440630
\(911\) −1.58122e10 −0.692911 −0.346456 0.938066i \(-0.612615\pi\)
−0.346456 + 0.938066i \(0.612615\pi\)
\(912\) 1.11163e10 0.485263
\(913\) 0 0
\(914\) 4.92022e9 0.213144
\(915\) 1.60452e10 0.692421
\(916\) −8.10357e9 −0.348371
\(917\) −3.62466e10 −1.55230
\(918\) −1.80951e9 −0.0771988
\(919\) −1.25552e10 −0.533604 −0.266802 0.963751i \(-0.585967\pi\)
−0.266802 + 0.963751i \(0.585967\pi\)
\(920\) −2.74609e9 −0.116267
\(921\) −3.60613e9 −0.152101
\(922\) −7.88441e9 −0.331292
\(923\) 1.17632e10 0.492401
\(924\) 0 0
\(925\) 2.33996e9 0.0972103
\(926\) −7.09803e9 −0.293765
\(927\) 1.55757e10 0.642196
\(928\) 1.38878e10 0.570446
\(929\) −6.07012e9 −0.248394 −0.124197 0.992258i \(-0.539636\pi\)
−0.124197 + 0.992258i \(0.539636\pi\)
\(930\) 5.91650e9 0.241199
\(931\) 6.22841e10 2.52961
\(932\) 1.53909e10 0.622743
\(933\) −3.28074e9 −0.132247
\(934\) −8.18350e9 −0.328643
\(935\) 0 0
\(936\) −3.33947e9 −0.133110
\(937\) −4.22666e8 −0.0167845 −0.00839226 0.999965i \(-0.502671\pi\)
−0.00839226 + 0.999965i \(0.502671\pi\)
\(938\) −8.21445e9 −0.324989
\(939\) −2.23641e10 −0.881499
\(940\) −3.66105e10 −1.43767
\(941\) −3.60538e10 −1.41055 −0.705274 0.708935i \(-0.749176\pi\)
−0.705274 + 0.708935i \(0.749176\pi\)
\(942\) 4.71589e8 0.0183817
\(943\) 3.80435e9 0.147737
\(944\) 7.23460e8 0.0279906
\(945\) 1.05937e10 0.408353
\(946\) 0 0
\(947\) −2.42390e10 −0.927449 −0.463724 0.885980i \(-0.653487\pi\)
−0.463724 + 0.885980i \(0.653487\pi\)
\(948\) −3.63767e9 −0.138674
\(949\) 2.55015e10 0.968576
\(950\) −2.79324e9 −0.105700
\(951\) 1.36191e10 0.513472
\(952\) −3.74854e10 −1.40810
\(953\) −2.06886e10 −0.774295 −0.387148 0.922018i \(-0.626540\pi\)
−0.387148 + 0.922018i \(0.626540\pi\)
\(954\) 1.44976e9 0.0540601
\(955\) 1.43510e10 0.533176
\(956\) −1.04634e10 −0.387319
\(957\) 0 0
\(958\) 1.15912e10 0.425939
\(959\) −5.75879e10 −2.10846
\(960\) 1.04335e10 0.380609
\(961\) 1.86347e10 0.677315
\(962\) 1.58735e9 0.0574858
\(963\) −2.09424e9 −0.0755673
\(964\) 2.13110e10 0.766186
\(965\) −2.29435e10 −0.821889
\(966\) 1.53585e9 0.0548187
\(967\) 4.91299e9 0.174724 0.0873621 0.996177i \(-0.472156\pi\)
0.0873621 + 0.996177i \(0.472156\pi\)
\(968\) 0 0
\(969\) 2.56379e10 0.905211
\(970\) 1.75860e10 0.618681
\(971\) 4.08278e10 1.43116 0.715581 0.698530i \(-0.246162\pi\)
0.715581 + 0.698530i \(0.246162\pi\)
\(972\) −1.69522e9 −0.0592098
\(973\) 8.28914e10 2.88479
\(974\) 1.43595e9 0.0497948
\(975\) −4.39082e9 −0.151715
\(976\) −2.32219e10 −0.799508
\(977\) 3.23195e10 1.10875 0.554375 0.832267i \(-0.312957\pi\)
0.554375 + 0.832267i \(0.312957\pi\)
\(978\) 3.64623e9 0.124640
\(979\) 0 0
\(980\) 7.37229e10 2.50214
\(981\) −1.95525e9 −0.0661241
\(982\) 8.42427e9 0.283885
\(983\) −3.43228e10 −1.15251 −0.576256 0.817269i \(-0.695487\pi\)
−0.576256 + 0.817269i \(0.695487\pi\)
\(984\) 7.25791e9 0.242845
\(985\) 4.47270e10 1.49122
\(986\) 9.19978e9 0.305639
\(987\) 4.26600e10 1.41225
\(988\) 2.27102e10 0.749155
\(989\) 5.38147e9 0.176894
\(990\) 0 0
\(991\) −1.89205e10 −0.617554 −0.308777 0.951134i \(-0.599920\pi\)
−0.308777 + 0.951134i \(0.599920\pi\)
\(992\) −2.98124e10 −0.969629
\(993\) 9.79194e9 0.317356
\(994\) −1.03211e10 −0.333330
\(995\) −6.91643e9 −0.222588
\(996\) 1.77857e10 0.570377
\(997\) −2.25462e10 −0.720511 −0.360255 0.932854i \(-0.617310\pi\)
−0.360255 + 0.932854i \(0.617310\pi\)
\(998\) 5.86094e9 0.186642
\(999\) 1.67881e9 0.0532748
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 363.8.a.o.1.7 14
11.3 even 5 33.8.e.b.31.4 yes 28
11.4 even 5 33.8.e.b.16.4 28
11.10 odd 2 363.8.a.r.1.8 14
33.14 odd 10 99.8.f.b.64.4 28
33.26 odd 10 99.8.f.b.82.4 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
33.8.e.b.16.4 28 11.4 even 5
33.8.e.b.31.4 yes 28 11.3 even 5
99.8.f.b.64.4 28 33.14 odd 10
99.8.f.b.82.4 28 33.26 odd 10
363.8.a.o.1.7 14 1.1 even 1 trivial
363.8.a.r.1.8 14 11.10 odd 2