Properties

Label 2-363-1.1-c7-0-60
Degree $2$
Conductor $363$
Sign $-1$
Analytic cond. $113.395$
Root an. cond. $10.6487$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.13·2-s + 27·3-s − 118.·4-s − 324.·5-s − 84.7·6-s − 1.65e3·7-s + 772.·8-s + 729·9-s + 1.02e3·10-s − 3.18e3·12-s − 5.92e3·13-s + 5.20e3·14-s − 8.77e3·15-s + 1.26e4·16-s + 2.92e4·17-s − 2.28e3·18-s + 3.24e4·19-s + 3.83e4·20-s − 4.47e4·21-s + 1.09e4·23-s + 2.08e4·24-s + 2.74e4·25-s + 1.86e4·26-s + 1.96e4·27-s + 1.95e5·28-s − 1.00e5·29-s + 2.75e4·30-s + ⋯
L(s)  = 1  − 0.277·2-s + 0.577·3-s − 0.922·4-s − 1.16·5-s − 0.160·6-s − 1.82·7-s + 0.533·8-s + 0.333·9-s + 0.322·10-s − 0.532·12-s − 0.748·13-s + 0.506·14-s − 0.671·15-s + 0.774·16-s + 1.44·17-s − 0.0925·18-s + 1.08·19-s + 1.07·20-s − 1.05·21-s + 0.187·23-s + 0.308·24-s + 0.351·25-s + 0.207·26-s + 0.192·27-s + 1.68·28-s − 0.761·29-s + 0.186·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363\)    =    \(3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(113.395\)
Root analytic conductor: \(10.6487\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 27T \)
11 \( 1 \)
good2 \( 1 + 3.13T + 128T^{2} \)
5 \( 1 + 324.T + 7.81e4T^{2} \)
7 \( 1 + 1.65e3T + 8.23e5T^{2} \)
13 \( 1 + 5.92e3T + 6.27e7T^{2} \)
17 \( 1 - 2.92e4T + 4.10e8T^{2} \)
19 \( 1 - 3.24e4T + 8.93e8T^{2} \)
23 \( 1 - 1.09e4T + 3.40e9T^{2} \)
29 \( 1 + 1.00e5T + 1.72e10T^{2} \)
31 \( 1 - 2.14e5T + 2.75e10T^{2} \)
37 \( 1 - 8.52e4T + 9.49e10T^{2} \)
41 \( 1 - 3.47e5T + 1.94e11T^{2} \)
43 \( 1 - 4.92e5T + 2.71e11T^{2} \)
47 \( 1 + 9.53e5T + 5.06e11T^{2} \)
53 \( 1 + 6.33e5T + 1.17e12T^{2} \)
59 \( 1 - 5.69e4T + 2.48e12T^{2} \)
61 \( 1 + 1.82e6T + 3.14e12T^{2} \)
67 \( 1 + 1.57e6T + 6.06e12T^{2} \)
71 \( 1 + 1.98e6T + 9.09e12T^{2} \)
73 \( 1 + 4.30e6T + 1.10e13T^{2} \)
79 \( 1 - 1.14e6T + 1.92e13T^{2} \)
83 \( 1 + 5.57e6T + 2.71e13T^{2} \)
89 \( 1 - 1.21e7T + 4.42e13T^{2} \)
97 \( 1 - 1.72e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.688864712582977249300761618204, −9.010141705011446522924181005814, −7.78288840575256732522003170613, −7.39787378651935510430877197766, −5.94022584672486811188023189829, −4.60267682875578371908196992706, −3.53774388337659911978506700976, −3.03311935844154326011090550544, −0.906040062722935065392603651007, 0, 0.906040062722935065392603651007, 3.03311935844154326011090550544, 3.53774388337659911978506700976, 4.60267682875578371908196992706, 5.94022584672486811188023189829, 7.39787378651935510430877197766, 7.78288840575256732522003170613, 9.010141705011446522924181005814, 9.688864712582977249300761618204

Graph of the $Z$-function along the critical line