Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [363,2,Mod(161,363)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(363, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("363.161");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.f (of order \(10\), degree \(4\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.89856959337\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Relative dimension: | \(8\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
161.1 | −1.93692 | − | 1.40726i | −1.49697 | − | 0.871256i | 1.15327 | + | 3.54939i | 0.728450 | + | 1.00263i | 1.67343 | + | 3.79418i | −2.68999 | + | 0.874032i | 1.28144 | − | 3.94386i | 1.48183 | + | 2.60848i | − | 2.96713i | |
161.2 | −1.93692 | − | 1.40726i | 1.72318 | + | 0.175035i | 1.15327 | + | 3.54939i | −0.728450 | − | 1.00263i | −3.09136 | − | 2.76399i | 2.68999 | − | 0.874032i | 1.28144 | − | 3.94386i | 2.93873 | + | 0.603233i | 2.96713i | ||
161.3 | −1.21836 | − | 0.885188i | −1.43489 | + | 0.970101i | 0.0828009 | + | 0.254835i | −1.71005 | − | 2.35368i | 2.60693 | + | 0.0882174i | −2.68999 | + | 0.874032i | −0.806046 | + | 2.48075i | 1.11781 | − | 2.78397i | 4.38134i | ||
161.4 | −1.21836 | − | 0.885188i | 0.590638 | + | 1.62823i | 0.0828009 | + | 0.254835i | 1.71005 | + | 2.35368i | 0.721685 | − | 2.50660i | 2.68999 | − | 0.874032i | −0.806046 | + | 2.48075i | −2.30229 | + | 1.92339i | − | 4.38134i | |
161.5 | 1.21836 | + | 0.885188i | −1.43489 | + | 0.970101i | 0.0828009 | + | 0.254835i | −1.71005 | − | 2.35368i | −2.60693 | − | 0.0882174i | 2.68999 | − | 0.874032i | 0.806046 | − | 2.48075i | 1.11781 | − | 2.78397i | − | 4.38134i | |
161.6 | 1.21836 | + | 0.885188i | 0.590638 | + | 1.62823i | 0.0828009 | + | 0.254835i | 1.71005 | + | 2.35368i | −0.721685 | + | 2.50660i | −2.68999 | + | 0.874032i | 0.806046 | − | 2.48075i | −2.30229 | + | 1.92339i | 4.38134i | ||
161.7 | 1.93692 | + | 1.40726i | −1.49697 | − | 0.871256i | 1.15327 | + | 3.54939i | 0.728450 | + | 1.00263i | −1.67343 | − | 3.79418i | 2.68999 | − | 0.874032i | −1.28144 | + | 3.94386i | 1.48183 | + | 2.60848i | 2.96713i | ||
161.8 | 1.93692 | + | 1.40726i | 1.72318 | + | 0.175035i | 1.15327 | + | 3.54939i | −0.728450 | − | 1.00263i | 3.09136 | + | 2.76399i | −2.68999 | + | 0.874032i | −1.28144 | + | 3.94386i | 2.93873 | + | 0.603233i | − | 2.96713i | |
215.1 | −0.739839 | − | 2.27699i | −1.29120 | + | 1.15447i | −3.01929 | + | 2.19364i | −1.17866 | − | 0.382969i | 3.58400 | + | 2.08594i | 1.66251 | + | 2.28825i | 3.35485 | + | 2.43744i | 0.334407 | − | 2.98130i | 2.96713i | ||
215.2 | −0.739839 | − | 2.27699i | 0.698961 | − | 1.58476i | −3.01929 | + | 2.19364i | 1.17866 | + | 0.382969i | −4.12560 | − | 0.419062i | −1.66251 | − | 2.28825i | 3.35485 | + | 2.43744i | −2.02291 | − | 2.21537i | − | 2.96713i | |
215.3 | −0.465371 | − | 1.43226i | 0.479216 | + | 1.66444i | −0.216775 | + | 0.157497i | 2.76692 | + | 0.899027i | 2.16090 | − | 1.46094i | 1.66251 | + | 2.28825i | −2.11025 | − | 1.53319i | −2.54070 | + | 1.59525i | − | 4.38134i | |
215.4 | −0.465371 | − | 1.43226i | 1.73106 | − | 0.0585784i | −0.216775 | + | 0.157497i | −2.76692 | − | 0.899027i | −0.889484 | − | 2.45207i | −1.66251 | − | 2.28825i | −2.11025 | − | 1.53319i | 2.99314 | − | 0.202805i | 4.38134i | ||
215.5 | 0.465371 | + | 1.43226i | 0.479216 | + | 1.66444i | −0.216775 | + | 0.157497i | 2.76692 | + | 0.899027i | −2.16090 | + | 1.46094i | −1.66251 | − | 2.28825i | 2.11025 | + | 1.53319i | −2.54070 | + | 1.59525i | 4.38134i | ||
215.6 | 0.465371 | + | 1.43226i | 1.73106 | − | 0.0585784i | −0.216775 | + | 0.157497i | −2.76692 | − | 0.899027i | 0.889484 | + | 2.45207i | 1.66251 | + | 2.28825i | 2.11025 | + | 1.53319i | 2.99314 | − | 0.202805i | − | 4.38134i | |
215.7 | 0.739839 | + | 2.27699i | −1.29120 | + | 1.15447i | −3.01929 | + | 2.19364i | −1.17866 | − | 0.382969i | −3.58400 | − | 2.08594i | −1.66251 | − | 2.28825i | −3.35485 | − | 2.43744i | 0.334407 | − | 2.98130i | − | 2.96713i | |
215.8 | 0.739839 | + | 2.27699i | 0.698961 | − | 1.58476i | −3.01929 | + | 2.19364i | 1.17866 | + | 0.382969i | 4.12560 | + | 0.419062i | 1.66251 | + | 2.28825i | −3.35485 | − | 2.43744i | −2.02291 | − | 2.21537i | 2.96713i | ||
233.1 | −0.739839 | + | 2.27699i | −1.29120 | − | 1.15447i | −3.01929 | − | 2.19364i | −1.17866 | + | 0.382969i | 3.58400 | − | 2.08594i | 1.66251 | − | 2.28825i | 3.35485 | − | 2.43744i | 0.334407 | + | 2.98130i | − | 2.96713i | |
233.2 | −0.739839 | + | 2.27699i | 0.698961 | + | 1.58476i | −3.01929 | − | 2.19364i | 1.17866 | − | 0.382969i | −4.12560 | + | 0.419062i | −1.66251 | + | 2.28825i | 3.35485 | − | 2.43744i | −2.02291 | + | 2.21537i | 2.96713i | ||
233.3 | −0.465371 | + | 1.43226i | 0.479216 | − | 1.66444i | −0.216775 | − | 0.157497i | 2.76692 | − | 0.899027i | 2.16090 | + | 1.46094i | 1.66251 | − | 2.28825i | −2.11025 | + | 1.53319i | −2.54070 | − | 1.59525i | 4.38134i | ||
233.4 | −0.465371 | + | 1.43226i | 1.73106 | + | 0.0585784i | −0.216775 | − | 0.157497i | −2.76692 | + | 0.899027i | −0.889484 | + | 2.45207i | −1.66251 | + | 2.28825i | −2.11025 | + | 1.53319i | 2.99314 | + | 0.202805i | − | 4.38134i | |
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.b | odd | 2 | 1 | inner |
11.c | even | 5 | 3 | inner |
11.d | odd | 10 | 3 | inner |
33.d | even | 2 | 1 | inner |
33.f | even | 10 | 3 | inner |
33.h | odd | 10 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 363.2.f.i | 32 | |
3.b | odd | 2 | 1 | inner | 363.2.f.i | 32 | |
11.b | odd | 2 | 1 | inner | 363.2.f.i | 32 | |
11.c | even | 5 | 1 | 363.2.d.e | ✓ | 8 | |
11.c | even | 5 | 3 | inner | 363.2.f.i | 32 | |
11.d | odd | 10 | 1 | 363.2.d.e | ✓ | 8 | |
11.d | odd | 10 | 3 | inner | 363.2.f.i | 32 | |
33.d | even | 2 | 1 | inner | 363.2.f.i | 32 | |
33.f | even | 10 | 1 | 363.2.d.e | ✓ | 8 | |
33.f | even | 10 | 3 | inner | 363.2.f.i | 32 | |
33.h | odd | 10 | 1 | 363.2.d.e | ✓ | 8 | |
33.h | odd | 10 | 3 | inner | 363.2.f.i | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
363.2.d.e | ✓ | 8 | 11.c | even | 5 | 1 | |
363.2.d.e | ✓ | 8 | 11.d | odd | 10 | 1 | |
363.2.d.e | ✓ | 8 | 33.f | even | 10 | 1 | |
363.2.d.e | ✓ | 8 | 33.h | odd | 10 | 1 | |
363.2.f.i | 32 | 1.a | even | 1 | 1 | trivial | |
363.2.f.i | 32 | 3.b | odd | 2 | 1 | inner | |
363.2.f.i | 32 | 11.b | odd | 2 | 1 | inner | |
363.2.f.i | 32 | 11.c | even | 5 | 3 | inner | |
363.2.f.i | 32 | 11.d | odd | 10 | 3 | inner | |
363.2.f.i | 32 | 33.d | even | 2 | 1 | inner | |
363.2.f.i | 32 | 33.f | even | 10 | 3 | inner | |
363.2.f.i | 32 | 33.h | odd | 10 | 3 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(363, [\chi])\):
\( T_{2}^{16} + 8T_{2}^{14} + 51T_{2}^{12} + 304T_{2}^{10} + 1769T_{2}^{8} + 3952T_{2}^{6} + 8619T_{2}^{4} + 17576T_{2}^{2} + 28561 \)
|
\( T_{5}^{16} - 10T_{5}^{14} + 87T_{5}^{12} - 740T_{5}^{10} + 6269T_{5}^{8} - 9620T_{5}^{6} + 14703T_{5}^{4} - 21970T_{5}^{2} + 28561 \)
|
\( T_{7}^{8} - 8T_{7}^{6} + 64T_{7}^{4} - 512T_{7}^{2} + 4096 \)
|