Newspace parameters
Level: | \( N \) | \(=\) | \( 363 = 3 \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 363.e (of order \(5\), degree \(4\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(2.89856959337\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(2\) over \(\Q(\zeta_{5})\) |
Coefficient field: | 8.0.324000000.3 |
Defining polynomial: |
\( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 3x^{6} + 9x^{4} + 27x^{2} + 81 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{2} ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{3} ) / 3 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{4} ) / 9 \)
|
\(\beta_{5}\) | \(=\) |
\( ( \nu^{5} ) / 9 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{6} ) / 27 \)
|
\(\beta_{7}\) | \(=\) |
\( ( \nu^{7} ) / 27 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( 3\beta_{2} \)
|
\(\nu^{3}\) | \(=\) |
\( 3\beta_{3} \)
|
\(\nu^{4}\) | \(=\) |
\( 9\beta_{4} \)
|
\(\nu^{5}\) | \(=\) |
\( 9\beta_{5} \)
|
\(\nu^{6}\) | \(=\) |
\( 27\beta_{6} \)
|
\(\nu^{7}\) | \(=\) |
\( 27\beta_{7} \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/363\mathbb{Z}\right)^\times\).
\(n\) | \(122\) | \(244\) |
\(\chi(n)\) | \(1\) | \(\beta_{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
124.1 |
|
−1.40126 | + | 1.01807i | −0.309017 | − | 0.951057i | 0.309017 | − | 0.951057i | 2.42705 | + | 1.76336i | 1.40126 | + | 1.01807i | −1.07047 | + | 3.29456i | −0.535233 | − | 1.64728i | −0.809017 | + | 0.587785i | −5.19615 | ||||||||||||||||||||||||||
124.2 | 1.40126 | − | 1.01807i | −0.309017 | − | 0.951057i | 0.309017 | − | 0.951057i | 2.42705 | + | 1.76336i | −1.40126 | − | 1.01807i | 1.07047 | − | 3.29456i | 0.535233 | + | 1.64728i | −0.809017 | + | 0.587785i | 5.19615 | |||||||||||||||||||||||||||
130.1 | −0.535233 | + | 1.64728i | 0.809017 | − | 0.587785i | −0.809017 | − | 0.587785i | −0.927051 | − | 2.85317i | 0.535233 | + | 1.64728i | −2.80252 | − | 2.03615i | −1.40126 | + | 1.01807i | 0.309017 | − | 0.951057i | 5.19615 | |||||||||||||||||||||||||||
130.2 | 0.535233 | − | 1.64728i | 0.809017 | − | 0.587785i | −0.809017 | − | 0.587785i | −0.927051 | − | 2.85317i | −0.535233 | − | 1.64728i | 2.80252 | + | 2.03615i | 1.40126 | − | 1.01807i | 0.309017 | − | 0.951057i | −5.19615 | |||||||||||||||||||||||||||
148.1 | −0.535233 | − | 1.64728i | 0.809017 | + | 0.587785i | −0.809017 | + | 0.587785i | −0.927051 | + | 2.85317i | 0.535233 | − | 1.64728i | −2.80252 | + | 2.03615i | −1.40126 | − | 1.01807i | 0.309017 | + | 0.951057i | 5.19615 | |||||||||||||||||||||||||||
148.2 | 0.535233 | + | 1.64728i | 0.809017 | + | 0.587785i | −0.809017 | + | 0.587785i | −0.927051 | + | 2.85317i | −0.535233 | + | 1.64728i | 2.80252 | − | 2.03615i | 1.40126 | + | 1.01807i | 0.309017 | + | 0.951057i | −5.19615 | |||||||||||||||||||||||||||
202.1 | −1.40126 | − | 1.01807i | −0.309017 | + | 0.951057i | 0.309017 | + | 0.951057i | 2.42705 | − | 1.76336i | 1.40126 | − | 1.01807i | −1.07047 | − | 3.29456i | −0.535233 | + | 1.64728i | −0.809017 | − | 0.587785i | −5.19615 | |||||||||||||||||||||||||||
202.2 | 1.40126 | + | 1.01807i | −0.309017 | + | 0.951057i | 0.309017 | + | 0.951057i | 2.42705 | − | 1.76336i | −1.40126 | + | 1.01807i | 1.07047 | + | 3.29456i | 0.535233 | − | 1.64728i | −0.809017 | − | 0.587785i | 5.19615 | |||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.b | odd | 2 | 1 | inner |
11.c | even | 5 | 3 | inner |
11.d | odd | 10 | 3 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 363.2.e.m | 8 | |
11.b | odd | 2 | 1 | inner | 363.2.e.m | 8 | |
11.c | even | 5 | 1 | 363.2.a.f | ✓ | 2 | |
11.c | even | 5 | 3 | inner | 363.2.e.m | 8 | |
11.d | odd | 10 | 1 | 363.2.a.f | ✓ | 2 | |
11.d | odd | 10 | 3 | inner | 363.2.e.m | 8 | |
33.f | even | 10 | 1 | 1089.2.a.o | 2 | ||
33.h | odd | 10 | 1 | 1089.2.a.o | 2 | ||
44.g | even | 10 | 1 | 5808.2.a.ca | 2 | ||
44.h | odd | 10 | 1 | 5808.2.a.ca | 2 | ||
55.h | odd | 10 | 1 | 9075.2.a.bo | 2 | ||
55.j | even | 10 | 1 | 9075.2.a.bo | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
363.2.a.f | ✓ | 2 | 11.c | even | 5 | 1 | |
363.2.a.f | ✓ | 2 | 11.d | odd | 10 | 1 | |
363.2.e.m | 8 | 1.a | even | 1 | 1 | trivial | |
363.2.e.m | 8 | 11.b | odd | 2 | 1 | inner | |
363.2.e.m | 8 | 11.c | even | 5 | 3 | inner | |
363.2.e.m | 8 | 11.d | odd | 10 | 3 | inner | |
1089.2.a.o | 2 | 33.f | even | 10 | 1 | ||
1089.2.a.o | 2 | 33.h | odd | 10 | 1 | ||
5808.2.a.ca | 2 | 44.g | even | 10 | 1 | ||
5808.2.a.ca | 2 | 44.h | odd | 10 | 1 | ||
9075.2.a.bo | 2 | 55.h | odd | 10 | 1 | ||
9075.2.a.bo | 2 | 55.j | even | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 3T_{2}^{6} + 9T_{2}^{4} + 27T_{2}^{2} + 81 \)
acting on \(S_{2}^{\mathrm{new}}(363, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 3 T^{6} + 9 T^{4} + 27 T^{2} + \cdots + 81 \)
$3$
\( (T^{4} - T^{3} + T^{2} - T + 1)^{2} \)
$5$
\( (T^{4} - 3 T^{3} + 9 T^{2} - 27 T + 81)^{2} \)
$7$
\( T^{8} + 12 T^{6} + 144 T^{4} + \cdots + 20736 \)
$11$
\( T^{8} \)
$13$
\( T^{8} + 3 T^{6} + 9 T^{4} + 27 T^{2} + \cdots + 81 \)
$17$
\( T^{8} + 3 T^{6} + 9 T^{4} + 27 T^{2} + \cdots + 81 \)
$19$
\( T^{8} + 48 T^{6} + 2304 T^{4} + \cdots + 5308416 \)
$23$
\( (T + 6)^{8} \)
$29$
\( T^{8} + 3 T^{6} + 9 T^{4} + 27 T^{2} + \cdots + 81 \)
$31$
\( (T^{4} + 4 T^{3} + 16 T^{2} + 64 T + 256)^{2} \)
$37$
\( (T^{4} - 11 T^{3} + 121 T^{2} + \cdots + 14641)^{2} \)
$41$
\( T^{8} + 3 T^{6} + 9 T^{4} + 27 T^{2} + \cdots + 81 \)
$43$
\( (T^{2} - 12)^{4} \)
$47$
\( T^{8} \)
$53$
\( (T^{4} - 9 T^{3} + 81 T^{2} - 729 T + 6561)^{2} \)
$59$
\( (T^{4} - 6 T^{3} + 36 T^{2} - 216 T + 1296)^{2} \)
$61$
\( T^{8} \)
$67$
\( (T + 2)^{8} \)
$71$
\( (T^{4} - 6 T^{3} + 36 T^{2} - 216 T + 1296)^{2} \)
$73$
\( T^{8} + 48 T^{6} + 2304 T^{4} + \cdots + 5308416 \)
$79$
\( T^{8} \)
$83$
\( T^{8} \)
$89$
\( (T - 9)^{8} \)
$97$
\( (T^{4} - 7 T^{3} + 49 T^{2} - 343 T + 2401)^{2} \)
show more
show less