Properties

Label 360.8.f.b.289.2
Level $360$
Weight $8$
Character 360.289
Analytic conductor $112.459$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [360,8,Mod(289,360)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(360, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1])) N = Newforms(chi, 8, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("360.289"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 360.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(112.458609174\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 196x^{6} + 7674x^{4} + 75204x^{2} + 18225 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{38}\cdot 3^{2}\cdot 5^{3} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 289.2
Root \(12.1404i\) of defining polynomial
Character \(\chi\) \(=\) 360.289
Dual form 360.8.f.b.289.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-61.1163 + 272.745i) q^{5} -1567.21i q^{7} -7334.60 q^{11} +6045.58i q^{13} +797.737i q^{17} -629.101 q^{19} +102919. i q^{23} +(-70654.6 - 33338.3i) q^{25} -134474. q^{29} +198533. q^{31} +(427448. + 95781.9i) q^{35} -111197. i q^{37} -10889.0 q^{41} -561169. i q^{43} +12720.3i q^{47} -1.63260e6 q^{49} -919664. i q^{53} +(448264. - 2.00048e6i) q^{55} -403069. q^{59} +230286. q^{61} +(-1.64890e6 - 369483. i) q^{65} +987745. i q^{67} +3.63077e6 q^{71} +376686. i q^{73} +1.14948e7i q^{77} +4.84319e6 q^{79} -3.05462e6i q^{83} +(-217579. - 48754.8i) q^{85} +4.54896e6 q^{89} +9.47467e6 q^{91} +(38448.3 - 171584. i) q^{95} -1.55682e6i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 744 q^{5} - 9120 q^{11} - 61600 q^{19} - 254424 q^{25} - 35760 q^{29} + 519168 q^{31} + 162144 q^{35} + 852336 q^{41} - 4310376 q^{49} + 829664 q^{55} - 1202976 q^{59} - 1290128 q^{61} - 1750848 q^{65}+ \cdots + 8588256 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/360\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(217\) \(271\) \(281\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −61.1163 + 272.745i −0.218656 + 0.975802i
\(6\) 0 0
\(7\) 1567.21i 1.72696i −0.504380 0.863482i \(-0.668279\pi\)
0.504380 0.863482i \(-0.331721\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −7334.60 −1.66151 −0.830754 0.556640i \(-0.812090\pi\)
−0.830754 + 0.556640i \(0.812090\pi\)
\(12\) 0 0
\(13\) 6045.58i 0.763196i 0.924328 + 0.381598i \(0.124626\pi\)
−0.924328 + 0.381598i \(0.875374\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 797.737i 0.0393812i 0.999806 + 0.0196906i \(0.00626811\pi\)
−0.999806 + 0.0196906i \(0.993732\pi\)
\(18\) 0 0
\(19\) −629.101 −0.0210418 −0.0105209 0.999945i \(-0.503349\pi\)
−0.0105209 + 0.999945i \(0.503349\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 102919.i 1.76380i 0.471434 + 0.881902i \(0.343737\pi\)
−0.471434 + 0.881902i \(0.656263\pi\)
\(24\) 0 0
\(25\) −70654.6 33338.3i −0.904379 0.426731i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −134474. −1.02387 −0.511937 0.859023i \(-0.671072\pi\)
−0.511937 + 0.859023i \(0.671072\pi\)
\(30\) 0 0
\(31\) 198533. 1.19693 0.598463 0.801150i \(-0.295778\pi\)
0.598463 + 0.801150i \(0.295778\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 427448. + 95781.9i 1.68517 + 0.377612i
\(36\) 0 0
\(37\) 111197.i 0.360901i −0.983584 0.180450i \(-0.942244\pi\)
0.983584 0.180450i \(-0.0577555\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −10889.0 −0.0246743 −0.0123372 0.999924i \(-0.503927\pi\)
−0.0123372 + 0.999924i \(0.503927\pi\)
\(42\) 0 0
\(43\) 561169.i 1.07635i −0.842833 0.538176i \(-0.819114\pi\)
0.842833 0.538176i \(-0.180886\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12720.3i 0.0178712i 0.999960 + 0.00893559i \(0.00284432\pi\)
−0.999960 + 0.00893559i \(0.997156\pi\)
\(48\) 0 0
\(49\) −1.63260e6 −1.98240
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 919664.i 0.848523i −0.905540 0.424261i \(-0.860534\pi\)
0.905540 0.424261i \(-0.139466\pi\)
\(54\) 0 0
\(55\) 448264. 2.00048e6i 0.363299 1.62130i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −403069. −0.255504 −0.127752 0.991806i \(-0.540776\pi\)
−0.127752 + 0.991806i \(0.540776\pi\)
\(60\) 0 0
\(61\) 230286. 0.129901 0.0649506 0.997888i \(-0.479311\pi\)
0.0649506 + 0.997888i \(0.479311\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.64890e6 369483.i −0.744728 0.166878i
\(66\) 0 0
\(67\) 987745.i 0.401221i 0.979671 + 0.200610i \(0.0642925\pi\)
−0.979671 + 0.200610i \(0.935708\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.63077e6 1.20391 0.601956 0.798529i \(-0.294388\pi\)
0.601956 + 0.798529i \(0.294388\pi\)
\(72\) 0 0
\(73\) 376686.i 0.113331i 0.998393 + 0.0566657i \(0.0180469\pi\)
−0.998393 + 0.0566657i \(0.981953\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.14948e7i 2.86936i
\(78\) 0 0
\(79\) 4.84319e6 1.10519 0.552595 0.833450i \(-0.313638\pi\)
0.552595 + 0.833450i \(0.313638\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.05462e6i 0.586386i −0.956053 0.293193i \(-0.905282\pi\)
0.956053 0.293193i \(-0.0947179\pi\)
\(84\) 0 0
\(85\) −217579. 48754.8i −0.0384282 0.00861094i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.54896e6 0.683986 0.341993 0.939703i \(-0.388898\pi\)
0.341993 + 0.939703i \(0.388898\pi\)
\(90\) 0 0
\(91\) 9.47467e6 1.31801
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 38448.3 171584.i 0.00460092 0.0205326i
\(96\) 0 0
\(97\) 1.55682e6i 0.173195i −0.996243 0.0865977i \(-0.972401\pi\)
0.996243 0.0865977i \(-0.0275995\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.42005e7 1.37145 0.685723 0.727862i \(-0.259486\pi\)
0.685723 + 0.727862i \(0.259486\pi\)
\(102\) 0 0
\(103\) 1.51725e7i 1.36813i 0.729421 + 0.684065i \(0.239789\pi\)
−0.729421 + 0.684065i \(0.760211\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.20296e6i 0.647332i 0.946171 + 0.323666i \(0.104915\pi\)
−0.946171 + 0.323666i \(0.895085\pi\)
\(108\) 0 0
\(109\) −1.66069e7 −1.22828 −0.614139 0.789198i \(-0.710497\pi\)
−0.614139 + 0.789198i \(0.710497\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.90200e7i 1.24004i −0.784587 0.620019i \(-0.787125\pi\)
0.784587 0.620019i \(-0.212875\pi\)
\(114\) 0 0
\(115\) −2.80708e7 6.29006e6i −1.72112 0.385667i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.25022e6 0.0680099
\(120\) 0 0
\(121\) 3.43092e7 1.76061
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.34110e7 1.72332e7i 0.614153 0.789187i
\(126\) 0 0
\(127\) 1.50382e7i 0.651451i −0.945464 0.325725i \(-0.894392\pi\)
0.945464 0.325725i \(-0.105608\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −5.27882e6 −0.205158 −0.102579 0.994725i \(-0.532709\pi\)
−0.102579 + 0.994725i \(0.532709\pi\)
\(132\) 0 0
\(133\) 985932.i 0.0363384i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.33664e7i 1.77315i −0.462583 0.886576i \(-0.653077\pi\)
0.462583 0.886576i \(-0.346923\pi\)
\(138\) 0 0
\(139\) 2.80350e7 0.885418 0.442709 0.896665i \(-0.354017\pi\)
0.442709 + 0.896665i \(0.354017\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.43419e7i 1.26806i
\(144\) 0 0
\(145\) 8.21858e6 3.66772e7i 0.223877 0.999098i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.41075e6 −0.208297 −0.104148 0.994562i \(-0.533212\pi\)
−0.104148 + 0.994562i \(0.533212\pi\)
\(150\) 0 0
\(151\) 7.66401e7 1.81149 0.905747 0.423820i \(-0.139311\pi\)
0.905747 + 0.423820i \(0.139311\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.21336e7 + 5.41489e7i −0.261716 + 1.16796i
\(156\) 0 0
\(157\) 4.32322e7i 0.891577i 0.895138 + 0.445788i \(0.147077\pi\)
−0.895138 + 0.445788i \(0.852923\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.61296e8 3.04602
\(162\) 0 0
\(163\) 2.78860e7i 0.504347i −0.967682 0.252173i \(-0.918855\pi\)
0.967682 0.252173i \(-0.0811454\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 4.92856e7i 0.818865i −0.912340 0.409433i \(-0.865727\pi\)
0.912340 0.409433i \(-0.134273\pi\)
\(168\) 0 0
\(169\) 2.61995e7 0.417532
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.89940e7i 1.01309i 0.862212 + 0.506547i \(0.169078\pi\)
−0.862212 + 0.506547i \(0.830922\pi\)
\(174\) 0 0
\(175\) −5.22481e7 + 1.10730e8i −0.736948 + 1.56183i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 9.96347e7 1.29845 0.649225 0.760596i \(-0.275093\pi\)
0.649225 + 0.760596i \(0.275093\pi\)
\(180\) 0 0
\(181\) −6.79192e7 −0.851369 −0.425684 0.904872i \(-0.639967\pi\)
−0.425684 + 0.904872i \(0.639967\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.03285e7 + 6.79596e6i 0.352168 + 0.0789133i
\(186\) 0 0
\(187\) 5.85109e6i 0.0654321i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 9.12927e7 0.948024 0.474012 0.880518i \(-0.342805\pi\)
0.474012 + 0.880518i \(0.342805\pi\)
\(192\) 0 0
\(193\) 3.18801e7i 0.319204i 0.987181 + 0.159602i \(0.0510211\pi\)
−0.987181 + 0.159602i \(0.948979\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.50081e7i 0.419429i 0.977763 + 0.209715i \(0.0672535\pi\)
−0.977763 + 0.209715i \(0.932747\pi\)
\(198\) 0 0
\(199\) 1.79160e8 1.61159 0.805797 0.592192i \(-0.201737\pi\)
0.805797 + 0.592192i \(0.201737\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.10749e8i 1.76819i
\(204\) 0 0
\(205\) 665497. 2.96993e6i 0.00539520 0.0240773i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 4.61421e6 0.0349611
\(210\) 0 0
\(211\) 8.85380e7 0.648845 0.324422 0.945912i \(-0.394830\pi\)
0.324422 + 0.945912i \(0.394830\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.53056e8 + 3.42966e7i 1.05031 + 0.235351i
\(216\) 0 0
\(217\) 3.11143e8i 2.06705i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −4.82278e6 −0.0300556
\(222\) 0 0
\(223\) 3.22465e6i 0.0194722i −0.999953 0.00973612i \(-0.996901\pi\)
0.999953 0.00973612i \(-0.00309915\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.90542e8i 1.64861i −0.566143 0.824307i \(-0.691565\pi\)
0.566143 0.824307i \(-0.308435\pi\)
\(228\) 0 0
\(229\) 8.89116e7 0.489254 0.244627 0.969617i \(-0.421335\pi\)
0.244627 + 0.969617i \(0.421335\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.87337e8i 0.970235i −0.874449 0.485117i \(-0.838777\pi\)
0.874449 0.485117i \(-0.161223\pi\)
\(234\) 0 0
\(235\) −3.46938e6 777415.i −0.0174387 0.00390765i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.14791e8 1.01771 0.508854 0.860853i \(-0.330069\pi\)
0.508854 + 0.860853i \(0.330069\pi\)
\(240\) 0 0
\(241\) 1.00588e8 0.462898 0.231449 0.972847i \(-0.425653\pi\)
0.231449 + 0.972847i \(0.425653\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.97782e7 4.45282e8i 0.433465 1.93443i
\(246\) 0 0
\(247\) 3.80328e6i 0.0160590i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.40407e8 −0.560443 −0.280222 0.959935i \(-0.590408\pi\)
−0.280222 + 0.959935i \(0.590408\pi\)
\(252\) 0 0
\(253\) 7.54873e8i 2.93057i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 4.07786e8i 1.49853i 0.662268 + 0.749267i \(0.269594\pi\)
−0.662268 + 0.749267i \(0.730406\pi\)
\(258\) 0 0
\(259\) −1.74269e8 −0.623263
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.38653e7i 0.182585i 0.995824 + 0.0912923i \(0.0290997\pi\)
−0.995824 + 0.0912923i \(0.970900\pi\)
\(264\) 0 0
\(265\) 2.50834e8 + 5.62065e7i 0.827990 + 0.185535i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.40416e8 −1.37953 −0.689764 0.724034i \(-0.742286\pi\)
−0.689764 + 0.724034i \(0.742286\pi\)
\(270\) 0 0
\(271\) −5.80619e8 −1.77214 −0.886072 0.463548i \(-0.846576\pi\)
−0.886072 + 0.463548i \(0.846576\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.18223e8 + 2.44523e8i 1.50263 + 0.709016i
\(276\) 0 0
\(277\) 5.99169e8i 1.69383i 0.531728 + 0.846915i \(0.321543\pi\)
−0.531728 + 0.846915i \(0.678457\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.15072e8 0.578246 0.289123 0.957292i \(-0.406636\pi\)
0.289123 + 0.957292i \(0.406636\pi\)
\(282\) 0 0
\(283\) 6.33158e8i 1.66058i 0.557333 + 0.830289i \(0.311825\pi\)
−0.557333 + 0.830289i \(0.688175\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.70654e7i 0.0426117i
\(288\) 0 0
\(289\) 4.09702e8 0.998449
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.98465e8i 0.460942i −0.973079 0.230471i \(-0.925973\pi\)
0.973079 0.230471i \(-0.0740267\pi\)
\(294\) 0 0
\(295\) 2.46341e7 1.09935e8i 0.0558676 0.249321i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −6.22208e8 −1.34613
\(300\) 0 0
\(301\) −8.79468e8 −1.85882
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.40742e7 + 6.28094e7i −0.0284037 + 0.126758i
\(306\) 0 0
\(307\) 3.12274e8i 0.615958i 0.951393 + 0.307979i \(0.0996526\pi\)
−0.951393 + 0.307979i \(0.900347\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 5.87905e8 1.10827 0.554136 0.832426i \(-0.313049\pi\)
0.554136 + 0.832426i \(0.313049\pi\)
\(312\) 0 0
\(313\) 2.65789e8i 0.489928i 0.969532 + 0.244964i \(0.0787762\pi\)
−0.969532 + 0.244964i \(0.921224\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 5.69257e7i 0.100369i 0.998740 + 0.0501846i \(0.0159810\pi\)
−0.998740 + 0.0501846i \(0.984019\pi\)
\(318\) 0 0
\(319\) 9.86316e8 1.70117
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 501857.i 0.000828651i
\(324\) 0 0
\(325\) 2.01549e8 4.27148e8i 0.325679 0.690218i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.99353e7 0.0308629
\(330\) 0 0
\(331\) 2.23025e8 0.338030 0.169015 0.985614i \(-0.445941\pi\)
0.169015 + 0.985614i \(0.445941\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −2.69403e8 6.03674e7i −0.391512 0.0877294i
\(336\) 0 0
\(337\) 3.52001e8i 0.501002i −0.968116 0.250501i \(-0.919405\pi\)
0.968116 0.250501i \(-0.0805953\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.45616e9 −1.98870
\(342\) 0 0
\(343\) 1.26795e9i 1.69658i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.38775e8i 0.306786i 0.988165 + 0.153393i \(0.0490200\pi\)
−0.988165 + 0.153393i \(0.950980\pi\)
\(348\) 0 0
\(349\) 8.46269e8 1.06566 0.532831 0.846222i \(-0.321128\pi\)
0.532831 + 0.846222i \(0.321128\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 8.30033e8i 1.00435i −0.864767 0.502174i \(-0.832534\pi\)
0.864767 0.502174i \(-0.167466\pi\)
\(354\) 0 0
\(355\) −2.21900e8 + 9.90275e8i −0.263243 + 1.17478i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −5.83160e8 −0.665207 −0.332604 0.943067i \(-0.607927\pi\)
−0.332604 + 0.943067i \(0.607927\pi\)
\(360\) 0 0
\(361\) −8.93476e8 −0.999557
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.02739e8 2.30217e7i −0.110589 0.0247806i
\(366\) 0 0
\(367\) 5.96738e8i 0.630163i −0.949065 0.315081i \(-0.897968\pi\)
0.949065 0.315081i \(-0.102032\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.44130e9 −1.46537
\(372\) 0 0
\(373\) 1.15850e9i 1.15588i −0.816078 0.577942i \(-0.803856\pi\)
0.816078 0.577942i \(-0.196144\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 8.12975e8i 0.781416i
\(378\) 0 0
\(379\) −7.41506e8 −0.699644 −0.349822 0.936816i \(-0.613758\pi\)
−0.349822 + 0.936816i \(0.613758\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.06298e8i 0.369529i 0.982783 + 0.184765i \(0.0591523\pi\)
−0.982783 + 0.184765i \(0.940848\pi\)
\(384\) 0 0
\(385\) −3.13516e9 7.02522e8i −2.79993 0.627405i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.78517e8 0.153764 0.0768822 0.997040i \(-0.475503\pi\)
0.0768822 + 0.997040i \(0.475503\pi\)
\(390\) 0 0
\(391\) −8.21027e7 −0.0694606
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −2.95998e8 + 1.32096e9i −0.241657 + 1.07845i
\(396\) 0 0
\(397\) 1.79226e9i 1.43758i −0.695225 0.718792i \(-0.744695\pi\)
0.695225 0.718792i \(-0.255305\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.77831e8 0.137722 0.0688610 0.997626i \(-0.478064\pi\)
0.0688610 + 0.997626i \(0.478064\pi\)
\(402\) 0 0
\(403\) 1.20025e9i 0.913489i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.15587e8i 0.599639i
\(408\) 0 0
\(409\) −1.79387e9 −1.29646 −0.648231 0.761443i \(-0.724491\pi\)
−0.648231 + 0.761443i \(0.724491\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.31693e8i 0.441246i
\(414\) 0 0
\(415\) 8.33132e8 + 1.86687e8i 0.572197 + 0.128217i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2.19067e9 −1.45488 −0.727442 0.686169i \(-0.759291\pi\)
−0.727442 + 0.686169i \(0.759291\pi\)
\(420\) 0 0
\(421\) 1.65657e9 1.08199 0.540994 0.841027i \(-0.318048\pi\)
0.540994 + 0.841027i \(0.318048\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.65952e7 5.63638e7i 0.0168052 0.0356155i
\(426\) 0 0
\(427\) 3.60906e8i 0.224335i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.03672e9 0.623722 0.311861 0.950128i \(-0.399048\pi\)
0.311861 + 0.950128i \(0.399048\pi\)
\(432\) 0 0
\(433\) 3.80495e8i 0.225238i 0.993638 + 0.112619i \(0.0359240\pi\)
−0.993638 + 0.112619i \(0.964076\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.47468e7i 0.0371136i
\(438\) 0 0
\(439\) −1.14225e9 −0.644371 −0.322185 0.946677i \(-0.604417\pi\)
−0.322185 + 0.946677i \(0.604417\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5.15916e8i 0.281946i 0.990013 + 0.140973i \(0.0450231\pi\)
−0.990013 + 0.140973i \(0.954977\pi\)
\(444\) 0 0
\(445\) −2.78016e8 + 1.24071e9i −0.149558 + 0.667434i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2.43839e9 −1.27128 −0.635639 0.771987i \(-0.719263\pi\)
−0.635639 + 0.771987i \(0.719263\pi\)
\(450\) 0 0
\(451\) 7.98667e7 0.0409966
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −5.79057e8 + 2.58417e9i −0.288192 + 1.28612i
\(456\) 0 0
\(457\) 2.74663e9i 1.34615i −0.739575 0.673074i \(-0.764974\pi\)
0.739575 0.673074i \(-0.235026\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.24337e9 0.591082 0.295541 0.955330i \(-0.404500\pi\)
0.295541 + 0.955330i \(0.404500\pi\)
\(462\) 0 0
\(463\) 1.94862e9i 0.912416i −0.889873 0.456208i \(-0.849207\pi\)
0.889873 0.456208i \(-0.150793\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 5.39865e8i 0.245288i −0.992451 0.122644i \(-0.960863\pi\)
0.992451 0.122644i \(-0.0391373\pi\)
\(468\) 0 0
\(469\) 1.54800e9 0.692894
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.11595e9i 1.78837i
\(474\) 0 0
\(475\) 4.44489e7 + 2.09732e7i 0.0190298 + 0.00897918i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.05001e9 −1.26802 −0.634011 0.773324i \(-0.718592\pi\)
−0.634011 + 0.773324i \(0.718592\pi\)
\(480\) 0 0
\(481\) 6.72251e8 0.275438
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.24614e8 + 9.51469e7i 0.169004 + 0.0378703i
\(486\) 0 0
\(487\) 3.23990e9i 1.27110i 0.772060 + 0.635550i \(0.219227\pi\)
−0.772060 + 0.635550i \(0.780773\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.52405e9 0.581052 0.290526 0.956867i \(-0.406170\pi\)
0.290526 + 0.956867i \(0.406170\pi\)
\(492\) 0 0
\(493\) 1.07275e8i 0.0403214i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.69018e9i 2.07911i
\(498\) 0 0
\(499\) 2.42876e8 0.0875050 0.0437525 0.999042i \(-0.486069\pi\)
0.0437525 + 0.999042i \(0.486069\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 1.44474e9i 0.506178i −0.967443 0.253089i \(-0.918553\pi\)
0.967443 0.253089i \(-0.0814465\pi\)
\(504\) 0 0
\(505\) −8.67882e8 + 3.87311e9i −0.299876 + 1.33826i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.96881e9 −0.661747 −0.330873 0.943675i \(-0.607343\pi\)
−0.330873 + 0.943675i \(0.607343\pi\)
\(510\) 0 0
\(511\) 5.90346e8 0.195719
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −4.13822e9 9.27288e8i −1.33502 0.299150i
\(516\) 0 0
\(517\) 9.32980e7i 0.0296931i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1.45071e9 −0.449416 −0.224708 0.974426i \(-0.572143\pi\)
−0.224708 + 0.974426i \(0.572143\pi\)
\(522\) 0 0
\(523\) 4.57337e9i 1.39791i 0.715164 + 0.698957i \(0.246352\pi\)
−0.715164 + 0.698957i \(0.753648\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.58377e8i 0.0471364i
\(528\) 0 0
\(529\) −7.18759e9 −2.11100
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.58305e7i 0.0188314i
\(534\) 0 0
\(535\) −2.23731e9 5.01334e8i −0.631668 0.141543i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.19744e10 3.29378
\(540\) 0 0
\(541\) 2.84589e9 0.772731 0.386365 0.922346i \(-0.373730\pi\)
0.386365 + 0.922346i \(0.373730\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.01495e9 4.52946e9i 0.268571 1.19856i
\(546\) 0 0
\(547\) 1.68110e9i 0.439175i −0.975593 0.219587i \(-0.929529\pi\)
0.975593 0.219587i \(-0.0704711\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.45980e7 0.0215442
\(552\) 0 0
\(553\) 7.59028e9i 1.90862i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.60972e9i 0.394692i −0.980334 0.197346i \(-0.936768\pi\)
0.980334 0.197346i \(-0.0632322\pi\)
\(558\) 0 0
\(559\) 3.39259e9 0.821467
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.60363e9i 0.614894i −0.951565 0.307447i \(-0.900525\pi\)
0.951565 0.307447i \(-0.0994748\pi\)
\(564\) 0 0
\(565\) 5.18760e9 + 1.16243e9i 1.21003 + 0.271142i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.44326e9 1.46627 0.733133 0.680085i \(-0.238057\pi\)
0.733133 + 0.680085i \(0.238057\pi\)
\(570\) 0 0
\(571\) 4.63353e9 1.04156 0.520781 0.853690i \(-0.325641\pi\)
0.520781 + 0.853690i \(0.325641\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.43116e9 7.27173e9i 0.752669 1.59515i
\(576\) 0 0
\(577\) 1.84995e9i 0.400908i 0.979703 + 0.200454i \(0.0642418\pi\)
−0.979703 + 0.200454i \(0.935758\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.78722e9 −1.01267
\(582\) 0 0
\(583\) 6.74537e9i 1.40983i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 8.24371e9i 1.68225i 0.540844 + 0.841123i \(0.318105\pi\)
−0.540844 + 0.841123i \(0.681895\pi\)
\(588\) 0 0
\(589\) −1.24897e8 −0.0251855
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6.14399e9i 1.20993i 0.796253 + 0.604963i \(0.206812\pi\)
−0.796253 + 0.604963i \(0.793188\pi\)
\(594\) 0 0
\(595\) −7.64088e7 + 3.40991e8i −0.0148708 + 0.0663642i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1.96742e9 −0.374028 −0.187014 0.982357i \(-0.559881\pi\)
−0.187014 + 0.982357i \(0.559881\pi\)
\(600\) 0 0
\(601\) 1.40986e9 0.264920 0.132460 0.991188i \(-0.457712\pi\)
0.132460 + 0.991188i \(0.457712\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.09685e9 + 9.35767e9i −0.384968 + 1.71800i
\(606\) 0 0
\(607\) 3.90414e9i 0.708541i −0.935143 0.354270i \(-0.884729\pi\)
0.935143 0.354270i \(-0.115271\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −7.69013e7 −0.0136392
\(612\) 0 0
\(613\) 1.75471e9i 0.307677i 0.988096 + 0.153838i \(0.0491635\pi\)
−0.988096 + 0.153838i \(0.950836\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.96725e9i 0.337180i −0.985686 0.168590i \(-0.946079\pi\)
0.985686 0.168590i \(-0.0539214\pi\)
\(618\) 0 0
\(619\) 5.83043e9 0.988060 0.494030 0.869445i \(-0.335523\pi\)
0.494030 + 0.869445i \(0.335523\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 7.12916e9i 1.18122i
\(624\) 0 0
\(625\) 3.88063e9 + 4.71101e9i 0.635802 + 0.771852i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 8.87062e7 0.0142127
\(630\) 0 0
\(631\) −8.13487e9 −1.28899 −0.644493 0.764611i \(-0.722931\pi\)
−0.644493 + 0.764611i \(0.722931\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.10158e9 + 9.19077e8i 0.635687 + 0.142444i
\(636\) 0 0
\(637\) 9.86998e9i 1.51296i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.22668e10 1.83961 0.919807 0.392371i \(-0.128345\pi\)
0.919807 + 0.392371i \(0.128345\pi\)
\(642\) 0 0
\(643\) 8.60241e9i 1.27609i −0.769999 0.638045i \(-0.779743\pi\)
0.769999 0.638045i \(-0.220257\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.28250e9i 0.766787i 0.923585 + 0.383393i \(0.125245\pi\)
−0.923585 + 0.383393i \(0.874755\pi\)
\(648\) 0 0
\(649\) 2.95635e9 0.424522
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.02641e9i 1.26858i −0.773094 0.634291i \(-0.781292\pi\)
0.773094 0.634291i \(-0.218708\pi\)
\(654\) 0 0
\(655\) 3.22622e8 1.43977e9i 0.0448590 0.200193i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 9.61503e9 1.30873 0.654367 0.756177i \(-0.272935\pi\)
0.654367 + 0.756177i \(0.272935\pi\)
\(660\) 0 0
\(661\) −1.20472e10 −1.62248 −0.811242 0.584710i \(-0.801208\pi\)
−0.811242 + 0.584710i \(0.801208\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −2.68908e8 6.02565e7i −0.0354591 0.00794563i
\(666\) 0 0
\(667\) 1.38400e10i 1.80591i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.68906e9 −0.215832
\(672\) 0 0
\(673\) 1.21089e10i 1.53127i 0.643278 + 0.765633i \(0.277574\pi\)
−0.643278 + 0.765633i \(0.722426\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.88163e9i 1.10010i −0.835132 0.550050i \(-0.814609\pi\)
0.835132 0.550050i \(-0.185391\pi\)
\(678\) 0 0
\(679\) −2.43985e9 −0.299102
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.11480e7i 0.00133883i −1.00000 0.000669414i \(-0.999787\pi\)
1.00000 0.000669414i \(-0.000213081\pi\)
\(684\) 0 0
\(685\) 1.45554e10 + 3.26156e9i 1.73024 + 0.387711i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 5.55990e9 0.647589
\(690\) 0 0
\(691\) −1.27585e10 −1.47105 −0.735526 0.677497i \(-0.763065\pi\)
−0.735526 + 0.677497i \(0.763065\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.71339e9 + 7.64640e9i −0.193602 + 0.863993i
\(696\) 0 0
\(697\) 8.68658e6i 0.000971705i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −5.93252e8 −0.0650468 −0.0325234 0.999471i \(-0.510354\pi\)
−0.0325234 + 0.999471i \(0.510354\pi\)
\(702\) 0 0
\(703\) 6.99543e7i 0.00759400i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 2.22551e10i 2.36844i
\(708\) 0 0
\(709\) 4.17030e9 0.439446 0.219723 0.975562i \(-0.429485\pi\)
0.219723 + 0.975562i \(0.429485\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.04329e10i 2.11114i
\(714\) 0 0
\(715\) 1.20940e10 + 2.71001e9i 1.23737 + 0.277268i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 8.56642e9 0.859505 0.429752 0.902947i \(-0.358601\pi\)
0.429752 + 0.902947i \(0.358601\pi\)
\(720\) 0 0
\(721\) 2.37785e10 2.36271
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.50123e9 + 4.48315e9i 0.925970 + 0.436918i
\(726\) 0 0
\(727\) 1.45545e10i 1.40484i −0.711765 0.702418i \(-0.752104\pi\)
0.711765 0.702418i \(-0.247896\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 4.47665e8 0.0423880
\(732\) 0 0
\(733\) 3.87389e9i 0.363315i 0.983362 + 0.181657i \(0.0581462\pi\)
−0.983362 + 0.181657i \(0.941854\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 7.24472e9i 0.666631i
\(738\) 0 0
\(739\) −1.89101e10 −1.72361 −0.861804 0.507242i \(-0.830665\pi\)
−0.861804 + 0.507242i \(0.830665\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 7.66965e8i 0.0685985i −0.999412 0.0342993i \(-0.989080\pi\)
0.999412 0.0342993i \(-0.0109199\pi\)
\(744\) 0 0
\(745\) 5.14034e8 2.29399e9i 0.0455454 0.203256i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.28557e10 1.11792
\(750\) 0 0
\(751\) 1.65279e10 1.42390 0.711948 0.702232i \(-0.247813\pi\)
0.711948 + 0.702232i \(0.247813\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.68396e9 + 2.09032e10i −0.396094 + 1.76766i
\(756\) 0 0
\(757\) 1.29897e10i 1.08834i −0.838976 0.544168i \(-0.816845\pi\)
0.838976 0.544168i \(-0.183155\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.70701e9 0.633927 0.316964 0.948438i \(-0.397337\pi\)
0.316964 + 0.948438i \(0.397337\pi\)
\(762\) 0 0
\(763\) 2.60265e10i 2.12119i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 2.43679e9i 0.195000i
\(768\) 0 0
\(769\) 5.65613e9 0.448516 0.224258 0.974530i \(-0.428004\pi\)
0.224258 + 0.974530i \(0.428004\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.82561e8i 0.0765123i 0.999268 + 0.0382561i \(0.0121803\pi\)
−0.999268 + 0.0382561i \(0.987820\pi\)
\(774\) 0 0
\(775\) −1.40273e10 6.61877e9i −1.08247 0.510765i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.85030e6 0.000519193
\(780\) 0 0
\(781\) −2.66303e10 −2.00031
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −1.17914e10 2.64219e9i −0.870002 0.194949i
\(786\) 0 0
\(787\) 7.84313e9i 0.573559i 0.957997 + 0.286779i \(0.0925846\pi\)
−0.957997 + 0.286779i \(0.907415\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.98082e10 −2.14150
\(792\) 0 0
\(793\) 1.39221e9i 0.0991401i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.44628e10i 1.01193i 0.862555 + 0.505964i \(0.168863\pi\)
−0.862555 + 0.505964i \(0.831137\pi\)
\(798\) 0 0
\(799\) −1.01474e7 −0.000703788
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.76285e9i 0.188301i
\(804\) 0 0
\(805\) −9.85782e9 + 4.39927e10i −0.666033 + 2.97232i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −1.35190e10 −0.897684 −0.448842 0.893611i \(-0.648163\pi\)
−0.448842 + 0.893611i \(0.648163\pi\)
\(810\) 0 0
\(811\) 2.47720e10 1.63075 0.815377 0.578930i \(-0.196530\pi\)
0.815377 + 0.578930i \(0.196530\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 7.60576e9 + 1.70429e9i 0.492143 + 0.110279i
\(816\) 0 0
\(817\) 3.53032e8i 0.0226484i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.31400e10 −0.828692 −0.414346 0.910119i \(-0.635990\pi\)
−0.414346 + 0.910119i \(0.635990\pi\)
\(822\) 0 0
\(823\) 2.13367e10i 1.33422i −0.744959 0.667111i \(-0.767531\pi\)
0.744959 0.667111i \(-0.232469\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.27212e10i 1.39689i −0.715663 0.698446i \(-0.753875\pi\)
0.715663 0.698446i \(-0.246125\pi\)
\(828\) 0 0
\(829\) −5.03801e9 −0.307127 −0.153564 0.988139i \(-0.549075\pi\)
−0.153564 + 0.988139i \(0.549075\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.30238e9i 0.0780694i
\(834\) 0 0
\(835\) 1.34424e10 + 3.01215e9i 0.799050 + 0.179050i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.18094e10 0.690334 0.345167 0.938541i \(-0.387822\pi\)
0.345167 + 0.938541i \(0.387822\pi\)
\(840\) 0 0
\(841\) 8.33482e8 0.0483182
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.60122e9 + 7.14579e9i −0.0912960 + 0.407429i
\(846\) 0 0
\(847\) 5.37697e10i 3.04050i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 1.14444e10 0.636558
\(852\) 0 0
\(853\) 7.15162e9i 0.394532i 0.980350 + 0.197266i \(0.0632063\pi\)
−0.980350 + 0.197266i \(0.936794\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.74665e9i 0.0947921i 0.998876 + 0.0473960i \(0.0150923\pi\)
−0.998876 + 0.0473960i \(0.984908\pi\)
\(858\) 0 0
\(859\) −8.22608e9 −0.442810 −0.221405 0.975182i \(-0.571064\pi\)
−0.221405 + 0.975182i \(0.571064\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.20533e9i 0.381607i −0.981628 0.190803i \(-0.938891\pi\)
0.981628 0.190803i \(-0.0611093\pi\)
\(864\) 0 0
\(865\) −1.88178e10 4.21666e9i −0.988579 0.221519i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.55229e10 −1.83628
\(870\) 0 0
\(871\) −5.97149e9 −0.306210
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.70079e10 2.10178e10i −1.36290 1.06062i
\(876\) 0 0
\(877\) 1.52548e10i 0.763676i 0.924229 + 0.381838i \(0.124709\pi\)
−0.924229 + 0.381838i \(0.875291\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.17539e10 1.07182 0.535911 0.844275i \(-0.319968\pi\)
0.535911 + 0.844275i \(0.319968\pi\)
\(882\) 0 0
\(883\) 8.10982e9i 0.396414i 0.980160 + 0.198207i \(0.0635118\pi\)
−0.980160 + 0.198207i \(0.936488\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.27974e10i 1.57800i −0.614393 0.789000i \(-0.710599\pi\)
0.614393 0.789000i \(-0.289401\pi\)
\(888\) 0 0
\(889\) −2.35679e10 −1.12503
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.00233e6i 0.000376042i
\(894\) 0 0
\(895\) −6.08931e9 + 2.71749e10i −0.283914 + 1.26703i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.66976e10 −1.22550
\(900\) 0 0
\(901\) 7.33650e8 0.0334158
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.15097e9 1.85246e10i 0.186157 0.830767i
\(906\) 0 0
\(907\) 3.51778e10i 1.56546i −0.622360 0.782731i \(-0.713826\pi\)
0.622360 0.782731i \(-0.286174\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.69402e10 1.18056 0.590278 0.807200i \(-0.299018\pi\)
0.590278 + 0.807200i \(0.299018\pi\)
\(912\) 0 0
\(913\) 2.24044e10i 0.974285i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.27301e9i 0.354300i
\(918\) 0 0
\(919\) 1.53332e10 0.651671 0.325836 0.945426i \(-0.394354\pi\)
0.325836 + 0.945426i \(0.394354\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.19501e10i 0.918821i
\(924\) 0 0
\(925\) −3.70713e9 + 7.85659e9i −0.154007 + 0.326391i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −1.27999e10 −0.523783 −0.261891 0.965097i \(-0.584346\pi\)
−0.261891 + 0.965097i \(0.584346\pi\)
\(930\) 0 0
\(931\) 1.02707e9 0.0417134
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 1.59585e9 + 3.57597e8i 0.0638488 + 0.0143071i
\(936\) 0 0
\(937\) 4.53222e9i 0.179979i 0.995943 + 0.0899896i \(0.0286834\pi\)
−0.995943 + 0.0899896i \(0.971317\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.40485e9 −0.250579 −0.125290 0.992120i \(-0.539986\pi\)
−0.125290 + 0.992120i \(0.539986\pi\)
\(942\) 0 0
\(943\) 1.12069e9i 0.0435207i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.55218e10i 0.976533i 0.872695 + 0.488266i \(0.162371\pi\)
−0.872695 + 0.488266i \(0.837629\pi\)
\(948\) 0 0
\(949\) −2.27729e9 −0.0864940
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 2.24447e10i 0.840020i 0.907520 + 0.420010i \(0.137973\pi\)
−0.907520 + 0.420010i \(0.862027\pi\)
\(954\) 0 0
\(955\) −5.57947e9 + 2.48996e10i −0.207291 + 0.925083i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −8.36362e10 −3.06217
\(960\) 0 0
\(961\) 1.19028e10 0.432632
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.69513e9 1.94839e9i −0.311480 0.0697960i
\(966\) 0 0
\(967\) 1.19222e10i 0.423998i −0.977270 0.211999i \(-0.932003\pi\)
0.977270 0.211999i \(-0.0679973\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3.70027e10 −1.29708 −0.648540 0.761181i \(-0.724620\pi\)
−0.648540 + 0.761181i \(0.724620\pi\)
\(972\) 0 0
\(973\) 4.39366e10i 1.52908i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.23468e9i 0.0766627i 0.999265 + 0.0383314i \(0.0122042\pi\)
−0.999265 + 0.0383314i \(0.987796\pi\)
\(978\) 0 0
\(979\) −3.33648e10 −1.13645
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.50064e10i 0.839679i 0.907598 + 0.419839i \(0.137914\pi\)
−0.907598 + 0.419839i \(0.862086\pi\)
\(984\) 0 0
\(985\) −1.22757e10 2.75073e9i −0.409280 0.0917109i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 5.77552e10 1.89847
\(990\) 0 0
\(991\) −1.33087e10 −0.434388 −0.217194 0.976128i \(-0.569690\pi\)
−0.217194 + 0.976128i \(0.569690\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.09496e10 + 4.88650e10i −0.352385 + 1.57260i
\(996\) 0 0
\(997\) 3.56881e10i 1.14049i 0.821476 + 0.570244i \(0.193151\pi\)
−0.821476 + 0.570244i \(0.806849\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 360.8.f.b.289.2 8
3.2 odd 2 40.8.c.b.9.7 yes 8
5.4 even 2 inner 360.8.f.b.289.1 8
12.11 even 2 80.8.c.e.49.2 8
15.2 even 4 200.8.a.r.1.4 4
15.8 even 4 200.8.a.q.1.1 4
15.14 odd 2 40.8.c.b.9.2 8
24.5 odd 2 320.8.c.k.129.2 8
24.11 even 2 320.8.c.l.129.7 8
60.23 odd 4 400.8.a.bl.1.4 4
60.47 odd 4 400.8.a.bj.1.1 4
60.59 even 2 80.8.c.e.49.7 8
120.29 odd 2 320.8.c.k.129.7 8
120.59 even 2 320.8.c.l.129.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.8.c.b.9.2 8 15.14 odd 2
40.8.c.b.9.7 yes 8 3.2 odd 2
80.8.c.e.49.2 8 12.11 even 2
80.8.c.e.49.7 8 60.59 even 2
200.8.a.q.1.1 4 15.8 even 4
200.8.a.r.1.4 4 15.2 even 4
320.8.c.k.129.2 8 24.5 odd 2
320.8.c.k.129.7 8 120.29 odd 2
320.8.c.l.129.2 8 120.59 even 2
320.8.c.l.129.7 8 24.11 even 2
360.8.f.b.289.1 8 5.4 even 2 inner
360.8.f.b.289.2 8 1.1 even 1 trivial
400.8.a.bj.1.1 4 60.47 odd 4
400.8.a.bl.1.4 4 60.23 odd 4