Defining parameters
Level: | \( N \) | \(=\) | \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 360.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(576\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(360, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 520 | 52 | 468 |
Cusp forms | 488 | 52 | 436 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(360, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
360.8.f.a | $2$ | $112.459$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-550\) | \(0\) | \(q+(25\beta-275)q^{5}+53\beta q^{7}+1324 q^{11}+\cdots\) |
360.8.f.b | $8$ | $112.459$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(744\) | \(0\) | \(q+(93+\beta _{3})q^{5}+(3\beta _{1}-\beta _{2}-\beta _{3}-\beta _{7})q^{7}+\cdots\) |
360.8.f.c | $10$ | $112.459$ | \(\mathbb{Q}[x]/(x^{10} - \cdots)\) | None | \(0\) | \(0\) | \(-376\) | \(0\) | \(q+(-38+8\beta _{1}-\beta _{4})q^{5}+(3\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\) |
360.8.f.d | $12$ | $112.459$ | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) | None | \(0\) | \(0\) | \(-12\) | \(0\) | \(q+(-1+\beta _{2}-\beta _{4})q^{5}+(26\beta _{2}+\beta _{4}+\cdots)q^{7}+\cdots\) |
360.8.f.e | $20$ | $112.459$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{5}-\beta _{8}q^{7}+(-\beta _{4}+\beta _{9})q^{11}+\cdots\) |
Decomposition of \(S_{8}^{\mathrm{old}}(360, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)