Properties

Label 360.8.f
Level $360$
Weight $8$
Character orbit 360.f
Rep. character $\chi_{360}(289,\cdot)$
Character field $\Q$
Dimension $52$
Newform subspaces $5$
Sturm bound $576$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 360 = 2^{3} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 360.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(576\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(360, [\chi])\).

Total New Old
Modular forms 520 52 468
Cusp forms 488 52 436
Eisenstein series 32 0 32

Trace form

\( 52 q - 194 q^{5} - 9500 q^{11} - 51848 q^{19} + 43824 q^{25} + 156932 q^{29} - 23808 q^{31} + 347428 q^{35} + 933472 q^{41} - 4577844 q^{49} + 533248 q^{55} + 1871004 q^{59} - 764560 q^{61} - 925004 q^{65}+ \cdots + 626296 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(360, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
360.8.f.a 360.f 5.b $2$ $112.459$ \(\Q(\sqrt{-1}) \) None 40.8.c.a \(0\) \(0\) \(-550\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(25\beta-275)q^{5}+53\beta q^{7}+1324 q^{11}+\cdots\)
360.8.f.b 360.f 5.b $8$ $112.459$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 40.8.c.b \(0\) \(0\) \(744\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(93+\beta _{3})q^{5}+(3\beta _{1}-\beta _{2}-\beta _{3}-\beta _{7})q^{7}+\cdots\)
360.8.f.c 360.f 5.b $10$ $112.459$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 120.8.f.a \(0\) \(0\) \(-376\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-38+8\beta _{1}-\beta _{4})q^{5}+(3\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
360.8.f.d 360.f 5.b $12$ $112.459$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 120.8.f.b \(0\) \(0\) \(-12\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{2}-\beta _{4})q^{5}+(26\beta _{2}+\beta _{4}+\cdots)q^{7}+\cdots\)
360.8.f.e 360.f 5.b $20$ $112.459$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 360.8.f.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{5}-\beta _{8}q^{7}+(-\beta _{4}+\beta _{9})q^{11}+\cdots\)

Decomposition of \(S_{8}^{\mathrm{old}}(360, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(360, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(15, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(90, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)