Properties

Label 36.9.c.a.17.2
Level $36$
Weight $9$
Character 36.17
Analytic conductor $14.666$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [36,9,Mod(17,36)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("36.17"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(36, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 36 = 2^{2} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 36.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6656299622\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 17.2
Root \(1.41421i\) of defining polynomial
Character \(\chi\) \(=\) 36.17
Dual form 36.9.c.a.17.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+38.1838i q^{5} +308.000 q^{7} +9316.84i q^{11} +18464.0 q^{13} +118637. i q^{17} +149552. q^{19} +467217. i q^{23} +389167. q^{25} +585854. i q^{29} +466532. q^{31} +11760.6i q^{35} -964522. q^{37} -3.57350e6i q^{41} -2.06716e6 q^{43} -3.93094e6i q^{47} -5.66994e6 q^{49} -9.41402e6i q^{53} -355752. q^{55} +7.74947e6i q^{59} -3.76639e6 q^{61} +705025. i q^{65} +2.62235e7 q^{67} +4.45401e7i q^{71} +709136. q^{73} +2.86959e6i q^{77} +3.84657e7 q^{79} +6.04066e7i q^{83} -4.53001e6 q^{85} -6.34896e7i q^{89} +5.68691e6 q^{91} +5.71046e6i q^{95} -1.11271e8 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 616 q^{7} + 36928 q^{13} + 299104 q^{19} + 778334 q^{25} + 933064 q^{31} - 1929044 q^{37} - 4134320 q^{43} - 11339874 q^{49} - 711504 q^{55} - 7532780 q^{61} + 52447024 q^{67} + 1418272 q^{73} + 76931320 q^{79}+ \cdots - 222541376 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/36\mathbb{Z}\right)^\times\).

\(n\) \(19\) \(29\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 38.1838i 0.0610940i 0.999533 + 0.0305470i \(0.00972493\pi\)
−0.999533 + 0.0305470i \(0.990275\pi\)
\(6\) 0 0
\(7\) 308.000 0.128280 0.0641399 0.997941i \(-0.479570\pi\)
0.0641399 + 0.997941i \(0.479570\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 9316.84i 0.636353i 0.948032 + 0.318176i \(0.103070\pi\)
−0.948032 + 0.318176i \(0.896930\pi\)
\(12\) 0 0
\(13\) 18464.0 0.646476 0.323238 0.946318i \(-0.395229\pi\)
0.323238 + 0.946318i \(0.395229\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 118637.i 1.42044i 0.703977 + 0.710222i \(0.251406\pi\)
−0.703977 + 0.710222i \(0.748594\pi\)
\(18\) 0 0
\(19\) 149552. 1.14757 0.573783 0.819007i \(-0.305475\pi\)
0.573783 + 0.819007i \(0.305475\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 467217.i 1.66958i 0.550569 + 0.834789i \(0.314411\pi\)
−0.550569 + 0.834789i \(0.685589\pi\)
\(24\) 0 0
\(25\) 389167. 0.996268
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 585854.i 0.828318i 0.910205 + 0.414159i \(0.135924\pi\)
−0.910205 + 0.414159i \(0.864076\pi\)
\(30\) 0 0
\(31\) 466532. 0.505167 0.252583 0.967575i \(-0.418720\pi\)
0.252583 + 0.967575i \(0.418720\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 11760.6i 0.00783713i
\(36\) 0 0
\(37\) −964522. −0.514642 −0.257321 0.966326i \(-0.582840\pi\)
−0.257321 + 0.966326i \(0.582840\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 3.57350e6i − 1.26462i −0.774717 0.632308i \(-0.782108\pi\)
0.774717 0.632308i \(-0.217892\pi\)
\(42\) 0 0
\(43\) −2.06716e6 −0.604645 −0.302322 0.953206i \(-0.597762\pi\)
−0.302322 + 0.953206i \(0.597762\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 3.93094e6i − 0.805574i −0.915294 0.402787i \(-0.868042\pi\)
0.915294 0.402787i \(-0.131958\pi\)
\(48\) 0 0
\(49\) −5.66994e6 −0.983544
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 9.41402e6i − 1.19309i −0.802581 0.596543i \(-0.796541\pi\)
0.802581 0.596543i \(-0.203459\pi\)
\(54\) 0 0
\(55\) −355752. −0.0388773
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 7.74947e6i 0.639535i 0.947496 + 0.319767i \(0.103605\pi\)
−0.947496 + 0.319767i \(0.896395\pi\)
\(60\) 0 0
\(61\) −3.76639e6 −0.272023 −0.136012 0.990707i \(-0.543428\pi\)
−0.136012 + 0.990707i \(0.543428\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 705025.i 0.0394958i
\(66\) 0 0
\(67\) 2.62235e7 1.30134 0.650671 0.759360i \(-0.274488\pi\)
0.650671 + 0.759360i \(0.274488\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 4.45401e7i 1.75274i 0.481636 + 0.876371i \(0.340043\pi\)
−0.481636 + 0.876371i \(0.659957\pi\)
\(72\) 0 0
\(73\) 709136. 0.0249711 0.0124856 0.999922i \(-0.496026\pi\)
0.0124856 + 0.999922i \(0.496026\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.86959e6i 0.0816312i
\(78\) 0 0
\(79\) 3.84657e7 0.987563 0.493782 0.869586i \(-0.335614\pi\)
0.493782 + 0.869586i \(0.335614\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.04066e7i 1.27283i 0.771345 + 0.636417i \(0.219584\pi\)
−0.771345 + 0.636417i \(0.780416\pi\)
\(84\) 0 0
\(85\) −4.53001e6 −0.0867807
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 6.34896e7i − 1.01191i −0.862559 0.505956i \(-0.831140\pi\)
0.862559 0.505956i \(-0.168860\pi\)
\(90\) 0 0
\(91\) 5.68691e6 0.0829299
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.71046e6i 0.0701095i
\(96\) 0 0
\(97\) −1.11271e8 −1.25688 −0.628440 0.777858i \(-0.716306\pi\)
−0.628440 + 0.777858i \(0.716306\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1.70351e8i − 1.63704i −0.574479 0.818519i \(-0.694795\pi\)
0.574479 0.818519i \(-0.305205\pi\)
\(102\) 0 0
\(103\) 3.88148e7 0.344864 0.172432 0.985021i \(-0.444837\pi\)
0.172432 + 0.985021i \(0.444837\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 1.46528e7i − 0.111785i −0.998437 0.0558927i \(-0.982200\pi\)
0.998437 0.0558927i \(-0.0178005\pi\)
\(108\) 0 0
\(109\) −1.97164e8 −1.39676 −0.698380 0.715727i \(-0.746095\pi\)
−0.698380 + 0.715727i \(0.746095\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 1.74536e8i − 1.07046i −0.844706 0.535231i \(-0.820225\pi\)
0.844706 0.535231i \(-0.179775\pi\)
\(114\) 0 0
\(115\) −1.78401e7 −0.102001
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.65402e7i 0.182214i
\(120\) 0 0
\(121\) 1.27555e8 0.595055
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.97754e7i 0.121960i
\(126\) 0 0
\(127\) −3.19781e7 −0.122924 −0.0614621 0.998109i \(-0.519576\pi\)
−0.0614621 + 0.998109i \(0.519576\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.86660e8i 0.973380i 0.873575 + 0.486690i \(0.161796\pi\)
−0.873575 + 0.486690i \(0.838204\pi\)
\(132\) 0 0
\(133\) 4.60620e7 0.147210
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.22152e8i 0.914489i 0.889341 + 0.457245i \(0.151164\pi\)
−0.889341 + 0.457245i \(0.848836\pi\)
\(138\) 0 0
\(139\) 6.15554e8 1.64895 0.824474 0.565899i \(-0.191471\pi\)
0.824474 + 0.565899i \(0.191471\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.72026e8i 0.411387i
\(144\) 0 0
\(145\) −2.23701e7 −0.0506053
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.57382e8i 0.725082i 0.931968 + 0.362541i \(0.118091\pi\)
−0.931968 + 0.362541i \(0.881909\pi\)
\(150\) 0 0
\(151\) −2.47603e8 −0.476264 −0.238132 0.971233i \(-0.576535\pi\)
−0.238132 + 0.971233i \(0.576535\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 1.78139e7i 0.0308627i
\(156\) 0 0
\(157\) 9.46913e8 1.55852 0.779259 0.626703i \(-0.215596\pi\)
0.779259 + 0.626703i \(0.215596\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 1.43903e8i 0.214173i
\(162\) 0 0
\(163\) −8.83120e8 −1.25103 −0.625517 0.780210i \(-0.715112\pi\)
−0.625517 + 0.780210i \(0.715112\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 9.79955e8i − 1.25991i −0.776631 0.629956i \(-0.783073\pi\)
0.776631 0.629956i \(-0.216927\pi\)
\(168\) 0 0
\(169\) −4.74811e8 −0.582069
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 1.87766e8i − 0.209620i −0.994492 0.104810i \(-0.966577\pi\)
0.994492 0.104810i \(-0.0334234\pi\)
\(174\) 0 0
\(175\) 1.19863e8 0.127801
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 1.19137e9i − 1.16047i −0.814447 0.580237i \(-0.802960\pi\)
0.814447 0.580237i \(-0.197040\pi\)
\(180\) 0 0
\(181\) −1.05118e9 −0.979405 −0.489702 0.871890i \(-0.662895\pi\)
−0.489702 + 0.871890i \(0.662895\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 3.68291e7i − 0.0314416i
\(186\) 0 0
\(187\) −1.10532e9 −0.903904
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.87106e9i − 1.40590i −0.711240 0.702949i \(-0.751866\pi\)
0.711240 0.702949i \(-0.248134\pi\)
\(192\) 0 0
\(193\) 2.04392e9 1.47311 0.736553 0.676380i \(-0.236452\pi\)
0.736553 + 0.676380i \(0.236452\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.02247e8i 0.599047i 0.954089 + 0.299523i \(0.0968276\pi\)
−0.954089 + 0.299523i \(0.903172\pi\)
\(198\) 0 0
\(199\) −2.57553e9 −1.64231 −0.821154 0.570707i \(-0.806669\pi\)
−0.821154 + 0.570707i \(0.806669\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.80443e8i 0.106257i
\(204\) 0 0
\(205\) 1.36450e8 0.0772605
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.39335e9i 0.730257i
\(210\) 0 0
\(211\) 3.40870e9 1.71973 0.859863 0.510525i \(-0.170549\pi\)
0.859863 + 0.510525i \(0.170549\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 7.89320e7i − 0.0369402i
\(216\) 0 0
\(217\) 1.43692e8 0.0648027
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.19051e9i 0.918283i
\(222\) 0 0
\(223\) −1.02091e9 −0.412826 −0.206413 0.978465i \(-0.566179\pi\)
−0.206413 + 0.978465i \(0.566179\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.58798e9i 1.35128i 0.737230 + 0.675642i \(0.236134\pi\)
−0.737230 + 0.675642i \(0.763866\pi\)
\(228\) 0 0
\(229\) 4.35815e9 1.58475 0.792375 0.610035i \(-0.208845\pi\)
0.792375 + 0.610035i \(0.208845\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.29656e9i 0.439916i 0.975509 + 0.219958i \(0.0705920\pi\)
−0.975509 + 0.219958i \(0.929408\pi\)
\(234\) 0 0
\(235\) 1.50098e8 0.0492157
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 1.47964e9i − 0.453485i −0.973955 0.226743i \(-0.927192\pi\)
0.973955 0.226743i \(-0.0728077\pi\)
\(240\) 0 0
\(241\) −1.31031e9 −0.388424 −0.194212 0.980960i \(-0.562215\pi\)
−0.194212 + 0.980960i \(0.562215\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 2.16500e8i − 0.0600887i
\(246\) 0 0
\(247\) 2.76133e9 0.741874
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2.38442e9i 0.600742i 0.953822 + 0.300371i \(0.0971105\pi\)
−0.953822 + 0.300371i \(0.902890\pi\)
\(252\) 0 0
\(253\) −4.35298e9 −1.06244
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 1.89123e9i − 0.433524i −0.976225 0.216762i \(-0.930450\pi\)
0.976225 0.216762i \(-0.0695495\pi\)
\(258\) 0 0
\(259\) −2.97073e8 −0.0660182
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 5.33367e9i − 1.11482i −0.830239 0.557408i \(-0.811796\pi\)
0.830239 0.557408i \(-0.188204\pi\)
\(264\) 0 0
\(265\) 3.59463e8 0.0728904
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 7.81908e9i − 1.49330i −0.665218 0.746650i \(-0.731661\pi\)
0.665218 0.746650i \(-0.268339\pi\)
\(270\) 0 0
\(271\) −5.87364e9 −1.08901 −0.544503 0.838759i \(-0.683282\pi\)
−0.544503 + 0.838759i \(0.683282\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.62581e9i 0.633977i
\(276\) 0 0
\(277\) −4.66702e9 −0.792721 −0.396360 0.918095i \(-0.629727\pi\)
−0.396360 + 0.918095i \(0.629727\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 6.59175e9i − 1.05724i −0.848857 0.528622i \(-0.822709\pi\)
0.848857 0.528622i \(-0.177291\pi\)
\(282\) 0 0
\(283\) 4.70364e9 0.733311 0.366655 0.930357i \(-0.380503\pi\)
0.366655 + 0.930357i \(0.380503\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 1.10064e9i − 0.162225i
\(288\) 0 0
\(289\) −7.09897e9 −1.01766
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 5.71651e9i − 0.775641i −0.921735 0.387821i \(-0.873228\pi\)
0.921735 0.387821i \(-0.126772\pi\)
\(294\) 0 0
\(295\) −2.95904e8 −0.0390717
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.62669e9i 1.07934i
\(300\) 0 0
\(301\) −6.36685e8 −0.0775638
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 1.43815e8i − 0.0166190i
\(306\) 0 0
\(307\) 1.35171e10 1.52170 0.760851 0.648926i \(-0.224782\pi\)
0.760851 + 0.648926i \(0.224782\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.73908e8i 0.0399690i 0.999800 + 0.0199845i \(0.00636169\pi\)
−0.999800 + 0.0199845i \(0.993638\pi\)
\(312\) 0 0
\(313\) −4.77843e8 −0.0497861 −0.0248931 0.999690i \(-0.507925\pi\)
−0.0248931 + 0.999690i \(0.507925\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.78932e9i 0.771370i 0.922631 + 0.385685i \(0.126035\pi\)
−0.922631 + 0.385685i \(0.873965\pi\)
\(318\) 0 0
\(319\) −5.45830e9 −0.527102
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.77424e10i 1.63005i
\(324\) 0 0
\(325\) 7.18558e9 0.644063
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 1.21073e9i − 0.103339i
\(330\) 0 0
\(331\) 1.62253e10 1.35170 0.675852 0.737037i \(-0.263776\pi\)
0.675852 + 0.737037i \(0.263776\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.00131e9i 0.0795043i
\(336\) 0 0
\(337\) 4.39525e9 0.340772 0.170386 0.985377i \(-0.445498\pi\)
0.170386 + 0.985377i \(0.445498\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.34660e9i 0.321464i
\(342\) 0 0
\(343\) −3.52190e9 −0.254449
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.31605e10i 1.59746i 0.601690 + 0.798730i \(0.294494\pi\)
−0.601690 + 0.798730i \(0.705506\pi\)
\(348\) 0 0
\(349\) −4.51839e9 −0.304566 −0.152283 0.988337i \(-0.548663\pi\)
−0.152283 + 0.988337i \(0.548663\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 5.62597e9i − 0.362325i −0.983453 0.181163i \(-0.942014\pi\)
0.983453 0.181163i \(-0.0579860\pi\)
\(354\) 0 0
\(355\) −1.70071e9 −0.107082
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 3.11191e10i − 1.87348i −0.350027 0.936740i \(-0.613827\pi\)
0.350027 0.936740i \(-0.386173\pi\)
\(360\) 0 0
\(361\) 5.38224e9 0.316909
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.70775e7i 0.00152559i
\(366\) 0 0
\(367\) −1.56434e9 −0.0862318 −0.0431159 0.999070i \(-0.513728\pi\)
−0.0431159 + 0.999070i \(0.513728\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 2.89952e9i − 0.153049i
\(372\) 0 0
\(373\) −2.26218e10 −1.16867 −0.584334 0.811513i \(-0.698644\pi\)
−0.584334 + 0.811513i \(0.698644\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.08172e10i 0.535488i
\(378\) 0 0
\(379\) −3.93940e8 −0.0190929 −0.00954647 0.999954i \(-0.503039\pi\)
−0.00954647 + 0.999954i \(0.503039\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 4.12365e10i − 1.91640i −0.286092 0.958202i \(-0.592356\pi\)
0.286092 0.958202i \(-0.407644\pi\)
\(384\) 0 0
\(385\) −1.09572e8 −0.00498718
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 2.07290e10i − 0.905274i −0.891695 0.452637i \(-0.850483\pi\)
0.891695 0.452637i \(-0.149517\pi\)
\(390\) 0 0
\(391\) −5.54292e10 −2.37154
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.46876e9i 0.0603342i
\(396\) 0 0
\(397\) 3.50017e10 1.40905 0.704526 0.709678i \(-0.251160\pi\)
0.704526 + 0.709678i \(0.251160\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 2.48313e9i − 0.0960333i −0.998847 0.0480166i \(-0.984710\pi\)
0.998847 0.0480166i \(-0.0152900\pi\)
\(402\) 0 0
\(403\) 8.61405e9 0.326578
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 8.98630e9i − 0.327494i
\(408\) 0 0
\(409\) −2.76424e10 −0.987832 −0.493916 0.869510i \(-0.664435\pi\)
−0.493916 + 0.869510i \(0.664435\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.38684e9i 0.0820394i
\(414\) 0 0
\(415\) −2.30655e9 −0.0777626
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 6.32695e9i − 0.205276i −0.994719 0.102638i \(-0.967272\pi\)
0.994719 0.102638i \(-0.0327283\pi\)
\(420\) 0 0
\(421\) 1.98153e10 0.630772 0.315386 0.948963i \(-0.397866\pi\)
0.315386 + 0.948963i \(0.397866\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 4.61696e10i 1.41514i
\(426\) 0 0
\(427\) −1.16005e9 −0.0348951
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 2.61939e10i − 0.759086i −0.925174 0.379543i \(-0.876081\pi\)
0.925174 0.379543i \(-0.123919\pi\)
\(432\) 0 0
\(433\) 4.04686e10 1.15124 0.575621 0.817717i \(-0.304761\pi\)
0.575621 + 0.817717i \(0.304761\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.98732e10i 1.91595i
\(438\) 0 0
\(439\) −1.22359e9 −0.0329441 −0.0164721 0.999864i \(-0.505243\pi\)
−0.0164721 + 0.999864i \(0.505243\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 1.42135e10i 0.369051i 0.982828 + 0.184526i \(0.0590749\pi\)
−0.982828 + 0.184526i \(0.940925\pi\)
\(444\) 0 0
\(445\) 2.42427e9 0.0618218
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 5.31389e9i 0.130746i 0.997861 + 0.0653728i \(0.0208236\pi\)
−0.997861 + 0.0653728i \(0.979176\pi\)
\(450\) 0 0
\(451\) 3.32938e10 0.804742
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.17148e8i 0.00506652i
\(456\) 0 0
\(457\) 4.66165e10 1.06875 0.534374 0.845248i \(-0.320547\pi\)
0.534374 + 0.845248i \(0.320547\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.02949e10i 0.449349i 0.974434 + 0.224674i \(0.0721318\pi\)
−0.974434 + 0.224674i \(0.927868\pi\)
\(462\) 0 0
\(463\) −5.91381e10 −1.28689 −0.643447 0.765490i \(-0.722497\pi\)
−0.643447 + 0.765490i \(0.722497\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 8.72934e10i 1.83533i 0.397356 + 0.917664i \(0.369928\pi\)
−0.397356 + 0.917664i \(0.630072\pi\)
\(468\) 0 0
\(469\) 8.07684e9 0.166936
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 1.92594e10i − 0.384767i
\(474\) 0 0
\(475\) 5.82007e10 1.14328
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 7.77943e10i − 1.47777i −0.673833 0.738883i \(-0.735353\pi\)
0.673833 0.738883i \(-0.264647\pi\)
\(480\) 0 0
\(481\) −1.78089e10 −0.332704
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 4.24873e9i − 0.0767879i
\(486\) 0 0
\(487\) 2.25316e10 0.400568 0.200284 0.979738i \(-0.435814\pi\)
0.200284 + 0.979738i \(0.435814\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.53255e9i 0.0263688i 0.999913 + 0.0131844i \(0.00419684\pi\)
−0.999913 + 0.0131844i \(0.995803\pi\)
\(492\) 0 0
\(493\) −6.95039e10 −1.17658
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.37184e10i 0.224842i
\(498\) 0 0
\(499\) −9.06869e10 −1.46266 −0.731329 0.682025i \(-0.761099\pi\)
−0.731329 + 0.682025i \(0.761099\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 5.91507e10i − 0.924034i −0.886871 0.462017i \(-0.847126\pi\)
0.886871 0.462017i \(-0.152874\pi\)
\(504\) 0 0
\(505\) 6.50464e9 0.100013
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) − 9.78868e10i − 1.45832i −0.684343 0.729160i \(-0.739911\pi\)
0.684343 0.729160i \(-0.260089\pi\)
\(510\) 0 0
\(511\) 2.18414e8 0.00320329
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1.48209e9i 0.0210691i
\(516\) 0 0
\(517\) 3.66240e10 0.512629
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 7.22778e10i − 0.980967i −0.871451 0.490483i \(-0.836820\pi\)
0.871451 0.490483i \(-0.163180\pi\)
\(522\) 0 0
\(523\) −1.12539e10 −0.150417 −0.0752085 0.997168i \(-0.523962\pi\)
−0.0752085 + 0.997168i \(0.523962\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.53479e10i 0.717561i
\(528\) 0 0
\(529\) −1.39980e11 −1.78749
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 6.59812e10i − 0.817544i
\(534\) 0 0
\(535\) 5.59499e8 0.00682942
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 5.28259e10i − 0.625881i
\(540\) 0 0
\(541\) −4.32921e10 −0.505382 −0.252691 0.967547i \(-0.581316\pi\)
−0.252691 + 0.967547i \(0.581316\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 7.52847e9i − 0.0853337i
\(546\) 0 0
\(547\) 1.40671e11 1.57128 0.785641 0.618682i \(-0.212333\pi\)
0.785641 + 0.618682i \(0.212333\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 8.76156e10i 0.950550i
\(552\) 0 0
\(553\) 1.18474e10 0.126684
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.91458e10i 0.614473i 0.951633 + 0.307237i \(0.0994043\pi\)
−0.951633 + 0.307237i \(0.900596\pi\)
\(558\) 0 0
\(559\) −3.81680e10 −0.390888
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 2.18458e10i 0.217438i 0.994073 + 0.108719i \(0.0346748\pi\)
−0.994073 + 0.108719i \(0.965325\pi\)
\(564\) 0 0
\(565\) 6.66444e9 0.0653988
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 8.81079e10i − 0.840555i −0.907396 0.420277i \(-0.861933\pi\)
0.907396 0.420277i \(-0.138067\pi\)
\(570\) 0 0
\(571\) 4.66558e10 0.438895 0.219448 0.975624i \(-0.429574\pi\)
0.219448 + 0.975624i \(0.429574\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.81825e11i 1.66335i
\(576\) 0 0
\(577\) 5.51677e10 0.497716 0.248858 0.968540i \(-0.419945\pi\)
0.248858 + 0.968540i \(0.419945\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.86052e10i 0.163279i
\(582\) 0 0
\(583\) 8.77089e10 0.759223
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 2.11137e11i 1.77833i 0.457590 + 0.889163i \(0.348713\pi\)
−0.457590 + 0.889163i \(0.651287\pi\)
\(588\) 0 0
\(589\) 6.97708e10 0.579712
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.54170e10i 0.124675i 0.998055 + 0.0623376i \(0.0198555\pi\)
−0.998055 + 0.0623376i \(0.980144\pi\)
\(594\) 0 0
\(595\) −1.39524e9 −0.0111322
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 3.08975e10i − 0.240003i −0.992774 0.120001i \(-0.961710\pi\)
0.992774 0.120001i \(-0.0382899\pi\)
\(600\) 0 0
\(601\) −8.71875e10 −0.668277 −0.334138 0.942524i \(-0.608445\pi\)
−0.334138 + 0.942524i \(0.608445\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.87055e9i 0.0363543i
\(606\) 0 0
\(607\) 2.50783e11 1.84732 0.923662 0.383208i \(-0.125181\pi\)
0.923662 + 0.383208i \(0.125181\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 7.25809e10i − 0.520784i
\(612\) 0 0
\(613\) −1.15871e11 −0.820599 −0.410300 0.911951i \(-0.634576\pi\)
−0.410300 + 0.911951i \(0.634576\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.94008e11i 1.33869i 0.742954 + 0.669343i \(0.233424\pi\)
−0.742954 + 0.669343i \(0.766576\pi\)
\(618\) 0 0
\(619\) −8.55898e10 −0.582988 −0.291494 0.956573i \(-0.594152\pi\)
−0.291494 + 0.956573i \(0.594152\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 1.95548e10i − 0.129808i
\(624\) 0 0
\(625\) 1.50881e11 0.988816
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 1.14428e11i − 0.731021i
\(630\) 0 0
\(631\) −1.01422e11 −0.639758 −0.319879 0.947458i \(-0.603642\pi\)
−0.319879 + 0.947458i \(0.603642\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 1.22104e9i − 0.00750993i
\(636\) 0 0
\(637\) −1.04690e11 −0.635838
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 1.64922e11i − 0.976893i −0.872594 0.488446i \(-0.837564\pi\)
0.872594 0.488446i \(-0.162436\pi\)
\(642\) 0 0
\(643\) −7.82285e10 −0.457637 −0.228818 0.973469i \(-0.573486\pi\)
−0.228818 + 0.973469i \(0.573486\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 8.07501e10i 0.460814i 0.973094 + 0.230407i \(0.0740058\pi\)
−0.973094 + 0.230407i \(0.925994\pi\)
\(648\) 0 0
\(649\) −7.22006e10 −0.406970
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 2.31263e11i − 1.27190i −0.771731 0.635949i \(-0.780609\pi\)
0.771731 0.635949i \(-0.219391\pi\)
\(654\) 0 0
\(655\) −1.09458e10 −0.0594677
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 3.23651e11i − 1.71607i −0.513589 0.858036i \(-0.671684\pi\)
0.513589 0.858036i \(-0.328316\pi\)
\(660\) 0 0
\(661\) 1.62923e11 0.853448 0.426724 0.904382i \(-0.359668\pi\)
0.426724 + 0.904382i \(0.359668\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 1.75882e9i 0.00899363i
\(666\) 0 0
\(667\) −2.73720e11 −1.38294
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 3.50908e10i − 0.173103i
\(672\) 0 0
\(673\) −2.27514e11 −1.10904 −0.554521 0.832170i \(-0.687099\pi\)
−0.554521 + 0.832170i \(0.687099\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.40015e11i 1.61861i 0.587387 + 0.809306i \(0.300157\pi\)
−0.587387 + 0.809306i \(0.699843\pi\)
\(678\) 0 0
\(679\) −3.42714e10 −0.161232
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 3.79283e11i − 1.74293i −0.490455 0.871467i \(-0.663169\pi\)
0.490455 0.871467i \(-0.336831\pi\)
\(684\) 0 0
\(685\) −1.23010e10 −0.0558698
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 1.73820e11i − 0.771301i
\(690\) 0 0
\(691\) 3.21427e10 0.140984 0.0704921 0.997512i \(-0.477543\pi\)
0.0704921 + 0.997512i \(0.477543\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.35042e10i 0.100741i
\(696\) 0 0
\(697\) 4.23950e11 1.79632
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 1.42670e11i 0.590828i 0.955369 + 0.295414i \(0.0954576\pi\)
−0.955369 + 0.295414i \(0.904542\pi\)
\(702\) 0 0
\(703\) −1.44246e11 −0.590586
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 5.24681e10i − 0.209999i
\(708\) 0 0
\(709\) −2.64697e11 −1.04752 −0.523762 0.851865i \(-0.675472\pi\)
−0.523762 + 0.851865i \(0.675472\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.17971e11i 0.843415i
\(714\) 0 0
\(715\) −6.56860e9 −0.0251333
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 2.37840e11i 0.889959i 0.895541 + 0.444979i \(0.146789\pi\)
−0.895541 + 0.444979i \(0.853211\pi\)
\(720\) 0 0
\(721\) 1.19549e10 0.0442391
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.27995e11i 0.825226i
\(726\) 0 0
\(727\) 4.73481e11 1.69498 0.847490 0.530811i \(-0.178113\pi\)
0.847490 + 0.530811i \(0.178113\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 2.45242e11i − 0.858864i
\(732\) 0 0
\(733\) 5.42473e11 1.87915 0.939577 0.342338i \(-0.111219\pi\)
0.939577 + 0.342338i \(0.111219\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.44320e11i 0.828113i
\(738\) 0 0
\(739\) −4.30205e11 −1.44244 −0.721220 0.692706i \(-0.756418\pi\)
−0.721220 + 0.692706i \(0.756418\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.89115e11i 0.948671i 0.880344 + 0.474336i \(0.157312\pi\)
−0.880344 + 0.474336i \(0.842688\pi\)
\(744\) 0 0
\(745\) −1.36462e10 −0.0442982
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 4.51306e9i − 0.0143398i
\(750\) 0 0
\(751\) 1.20953e10 0.0380240 0.0190120 0.999819i \(-0.493948\pi\)
0.0190120 + 0.999819i \(0.493948\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 9.45441e9i − 0.0290969i
\(756\) 0 0
\(757\) 4.84047e11 1.47402 0.737012 0.675880i \(-0.236236\pi\)
0.737012 + 0.675880i \(0.236236\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.43604e11i 1.62085i 0.585839 + 0.810427i \(0.300765\pi\)
−0.585839 + 0.810427i \(0.699235\pi\)
\(762\) 0 0
\(763\) −6.07265e10 −0.179176
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.43086e11i 0.413444i
\(768\) 0 0
\(769\) 1.11279e11 0.318206 0.159103 0.987262i \(-0.449140\pi\)
0.159103 + 0.987262i \(0.449140\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 8.62777e9i 0.0241647i 0.999927 + 0.0120823i \(0.00384602\pi\)
−0.999927 + 0.0120823i \(0.996154\pi\)
\(774\) 0 0
\(775\) 1.81559e11 0.503281
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 5.34425e11i − 1.45123i
\(780\) 0 0
\(781\) −4.14973e11 −1.11536
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.61567e10i 0.0952161i
\(786\) 0 0
\(787\) −3.44168e11 −0.897163 −0.448582 0.893742i \(-0.648071\pi\)
−0.448582 + 0.893742i \(0.648071\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 5.37571e10i − 0.137319i
\(792\) 0 0
\(793\) −6.95426e10 −0.175856
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 8.55307e10i − 0.211977i −0.994367 0.105989i \(-0.966199\pi\)
0.994367 0.105989i \(-0.0338007\pi\)
\(798\) 0 0
\(799\) 4.66355e11 1.14427
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.60691e9i 0.0158904i
\(804\) 0 0
\(805\) −5.49475e9 −0.0130847
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 4.54082e11i − 1.06008i −0.847972 0.530041i \(-0.822176\pi\)
0.847972 0.530041i \(-0.177824\pi\)
\(810\) 0 0
\(811\) −1.65545e11 −0.382677 −0.191339 0.981524i \(-0.561283\pi\)
−0.191339 + 0.981524i \(0.561283\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 3.37209e10i − 0.0764308i
\(816\) 0 0
\(817\) −3.09148e11 −0.693870
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 3.33968e11i − 0.735076i −0.930008 0.367538i \(-0.880201\pi\)
0.930008 0.367538i \(-0.119799\pi\)
\(822\) 0 0
\(823\) −5.69842e11 −1.24210 −0.621048 0.783772i \(-0.713293\pi\)
−0.621048 + 0.783772i \(0.713293\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.20093e11i − 0.256742i −0.991726 0.128371i \(-0.959025\pi\)
0.991726 0.128371i \(-0.0409748\pi\)
\(828\) 0 0
\(829\) −3.28795e11 −0.696158 −0.348079 0.937465i \(-0.613166\pi\)
−0.348079 + 0.937465i \(0.613166\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 6.72664e11i − 1.39707i
\(834\) 0 0
\(835\) 3.74184e10 0.0769731
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.31570e11i 0.467341i 0.972316 + 0.233670i \(0.0750737\pi\)
−0.972316 + 0.233670i \(0.924926\pi\)
\(840\) 0 0
\(841\) 1.57022e11 0.313889
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 1.81301e10i − 0.0355609i
\(846\) 0 0
\(847\) 3.92871e10 0.0763336
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 4.50641e11i − 0.859235i
\(852\) 0 0
\(853\) −2.07386e11 −0.391727 −0.195864 0.980631i \(-0.562751\pi\)
−0.195864 + 0.980631i \(0.562751\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 2.44983e11i − 0.454164i −0.973876 0.227082i \(-0.927082\pi\)
0.973876 0.227082i \(-0.0729185\pi\)
\(858\) 0 0
\(859\) −1.57885e11 −0.289981 −0.144991 0.989433i \(-0.546315\pi\)
−0.144991 + 0.989433i \(0.546315\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.15251e11i 0.207780i 0.994589 + 0.103890i \(0.0331290\pi\)
−0.994589 + 0.103890i \(0.966871\pi\)
\(864\) 0 0
\(865\) 7.16960e9 0.0128065
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 3.58378e11i 0.628438i
\(870\) 0 0
\(871\) 4.84191e11 0.841287
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 9.17082e9i 0.0156450i
\(876\) 0 0
\(877\) −7.38618e11 −1.24859 −0.624297 0.781187i \(-0.714615\pi\)
−0.624297 + 0.781187i \(0.714615\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 2.88079e10i 0.0478198i 0.999714 + 0.0239099i \(0.00761148\pi\)
−0.999714 + 0.0239099i \(0.992389\pi\)
\(882\) 0 0
\(883\) 5.52423e11 0.908718 0.454359 0.890819i \(-0.349868\pi\)
0.454359 + 0.890819i \(0.349868\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.11814e12i 1.80635i 0.429275 + 0.903174i \(0.358769\pi\)
−0.429275 + 0.903174i \(0.641231\pi\)
\(888\) 0 0
\(889\) −9.84924e9 −0.0157687
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 5.87880e11i − 0.924449i
\(894\) 0 0
\(895\) 4.54911e10 0.0708981
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.73319e11i 0.418439i
\(900\) 0 0
\(901\) 1.11685e12 1.69471
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 4.01380e10i − 0.0598358i
\(906\) 0 0
\(907\) 5.83483e11 0.862183 0.431091 0.902308i \(-0.358129\pi\)
0.431091 + 0.902308i \(0.358129\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.16715e11i 1.33095i 0.746422 + 0.665473i \(0.231770\pi\)
−0.746422 + 0.665473i \(0.768230\pi\)
\(912\) 0 0
\(913\) −5.62798e11 −0.809971
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 8.82913e10i 0.124865i
\(918\) 0 0
\(919\) 6.20521e11 0.869951 0.434975 0.900442i \(-0.356757\pi\)
0.434975 + 0.900442i \(0.356757\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.22389e11i 1.13311i
\(924\) 0 0
\(925\) −3.75360e11 −0.512721
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 7.45299e11i 1.00062i 0.865847 + 0.500309i \(0.166780\pi\)
−0.865847 + 0.500309i \(0.833220\pi\)
\(930\) 0 0
\(931\) −8.47950e11 −1.12868
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 4.22053e10i − 0.0552231i
\(936\) 0 0
\(937\) 5.37546e11 0.697360 0.348680 0.937242i \(-0.386630\pi\)
0.348680 + 0.937242i \(0.386630\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 5.84470e11i − 0.745424i −0.927947 0.372712i \(-0.878428\pi\)
0.927947 0.372712i \(-0.121572\pi\)
\(942\) 0 0
\(943\) 1.66960e12 2.11138
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 4.46879e11i − 0.555636i −0.960634 0.277818i \(-0.910389\pi\)
0.960634 0.277818i \(-0.0896112\pi\)
\(948\) 0 0
\(949\) 1.30935e10 0.0161432
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.28928e11i 0.883717i 0.897085 + 0.441858i \(0.145681\pi\)
−0.897085 + 0.441858i \(0.854319\pi\)
\(954\) 0 0
\(955\) 7.14441e10 0.0858920
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 9.92228e10i 0.117311i
\(960\) 0 0
\(961\) −6.35239e11 −0.744807
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.80444e10i 0.0899980i
\(966\) 0 0
\(967\) −1.11861e12 −1.27930 −0.639650 0.768666i \(-0.720921\pi\)
−0.639650 + 0.768666i \(0.720921\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.66426e11i 0.974663i 0.873217 + 0.487331i \(0.162030\pi\)
−0.873217 + 0.487331i \(0.837970\pi\)
\(972\) 0 0
\(973\) 1.89591e11 0.211527
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 1.78648e12i − 1.96074i −0.197176 0.980368i \(-0.563177\pi\)
0.197176 0.980368i \(-0.436823\pi\)
\(978\) 0 0
\(979\) 5.91523e11 0.643933
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 5.77446e11i − 0.618439i −0.950991 0.309220i \(-0.899932\pi\)
0.950991 0.309220i \(-0.100068\pi\)
\(984\) 0 0
\(985\) −3.44512e10 −0.0365982
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 9.65811e11i − 1.00950i
\(990\) 0 0
\(991\) −1.02797e12 −1.06582 −0.532912 0.846171i \(-0.678902\pi\)
−0.532912 + 0.846171i \(0.678902\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 9.83435e10i − 0.100335i
\(996\) 0 0
\(997\) −6.19055e11 −0.626540 −0.313270 0.949664i \(-0.601424\pi\)
−0.313270 + 0.949664i \(0.601424\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 36.9.c.a.17.2 yes 2
3.2 odd 2 inner 36.9.c.a.17.1 2
4.3 odd 2 144.9.e.c.17.2 2
9.2 odd 6 324.9.g.d.53.2 4
9.4 even 3 324.9.g.d.269.2 4
9.5 odd 6 324.9.g.d.269.1 4
9.7 even 3 324.9.g.d.53.1 4
12.11 even 2 144.9.e.c.17.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
36.9.c.a.17.1 2 3.2 odd 2 inner
36.9.c.a.17.2 yes 2 1.1 even 1 trivial
144.9.e.c.17.1 2 12.11 even 2
144.9.e.c.17.2 2 4.3 odd 2
324.9.g.d.53.1 4 9.7 even 3
324.9.g.d.53.2 4 9.2 odd 6
324.9.g.d.269.1 4 9.5 odd 6
324.9.g.d.269.2 4 9.4 even 3