Defining parameters
| Level: | \( N \) | \(=\) | \( 36 = 2^{2} \cdot 3^{2} \) |
| Weight: | \( k \) | \(=\) | \( 9 \) |
| Character orbit: | \([\chi]\) | \(=\) | 36.c (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(54\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(36, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 54 | 2 | 52 |
| Cusp forms | 42 | 2 | 40 |
| Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(36, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 36.9.c.a | $2$ | $14.666$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(616\) | \(q+\beta q^{5}+308q^{7}+244\beta q^{11}+18464q^{13}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(36, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(36, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)