Properties

Label 357.2.i.a
Level $357$
Weight $2$
Character orbit 357.i
Analytic conductor $2.851$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [357,2,Mod(205,357)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("357.205"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{6} q^{2} + (\zeta_{6} - 1) q^{3} + ( - \zeta_{6} + 1) q^{4} - 3 \zeta_{6} q^{5} + q^{6} + (2 \zeta_{6} - 3) q^{7} - 3 q^{8} - \zeta_{6} q^{9} + (3 \zeta_{6} - 3) q^{10} + (6 \zeta_{6} - 6) q^{11} + \cdots + 6 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{3} + q^{4} - 3 q^{5} + 2 q^{6} - 4 q^{7} - 6 q^{8} - q^{9} - 3 q^{10} - 6 q^{11} + q^{12} + 2 q^{13} + 5 q^{14} + 6 q^{15} + q^{16} + q^{17} - q^{18} + 4 q^{19} - 6 q^{20} - q^{21}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
205.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 + 0.866025i −0.500000 0.866025i 0.500000 + 0.866025i −1.50000 + 2.59808i 1.00000 −2.00000 1.73205i −3.00000 −0.500000 + 0.866025i −1.50000 2.59808i
256.1 −0.500000 0.866025i −0.500000 + 0.866025i 0.500000 0.866025i −1.50000 2.59808i 1.00000 −2.00000 + 1.73205i −3.00000 −0.500000 0.866025i −1.50000 + 2.59808i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 357.2.i.a 2
3.b odd 2 1 1071.2.i.c 2
7.c even 3 1 inner 357.2.i.a 2
7.c even 3 1 2499.2.a.l 1
7.d odd 6 1 2499.2.a.i 1
21.g even 6 1 7497.2.a.f 1
21.h odd 6 1 1071.2.i.c 2
21.h odd 6 1 7497.2.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.i.a 2 1.a even 1 1 trivial
357.2.i.a 2 7.c even 3 1 inner
1071.2.i.c 2 3.b odd 2 1
1071.2.i.c 2 21.h odd 6 1
2499.2.a.i 1 7.d odd 6 1
2499.2.a.l 1 7.c even 3 1
7497.2.a.c 1 21.h odd 6 1
7497.2.a.f 1 21.g even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} + 1 \) acting on \(S_{2}^{\mathrm{new}}(357, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$19$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$29$ \( (T + 7)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$37$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$41$ \( (T - 3)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$53$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$59$ \( T^{2} - 5T + 25 \) Copy content Toggle raw display
$61$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$67$ \( T^{2} + 4T + 16 \) Copy content Toggle raw display
$71$ \( (T + 16)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$83$ \( (T - 9)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 14T + 196 \) Copy content Toggle raw display
$97$ \( (T - 8)^{2} \) Copy content Toggle raw display
show more
show less