Properties

Label 357.2
Level 357
Weight 2
Dimension 3143
Nonzero newspaces 20
Newform subspaces 47
Sturm bound 18432
Trace bound 7

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 20 \)
Newform subspaces: \( 47 \)
Sturm bound: \(18432\)
Trace bound: \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(357))\).

Total New Old
Modular forms 4992 3439 1553
Cusp forms 4225 3143 1082
Eisenstein series 767 296 471

Trace form

\( 3143 q + 9 q^{2} - 25 q^{3} - 47 q^{4} + 6 q^{5} - 35 q^{6} - 69 q^{7} + 9 q^{8} - 37 q^{9} - 74 q^{10} - 32 q^{11} - 79 q^{12} - 82 q^{13} - 35 q^{14} - 110 q^{15} - 175 q^{16} - 9 q^{17} - 119 q^{18}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(357))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
357.2.a \(\chi_{357}(1, \cdot)\) 357.2.a.a 1 1
357.2.a.b 1
357.2.a.c 1
357.2.a.d 1
357.2.a.e 2
357.2.a.f 2
357.2.a.g 3
357.2.a.h 4
357.2.c \(\chi_{357}(356, \cdot)\) 357.2.c.a 20 1
357.2.c.b 24
357.2.d \(\chi_{357}(188, \cdot)\) 357.2.d.a 22 1
357.2.d.b 22
357.2.f \(\chi_{357}(169, \cdot)\) 357.2.f.a 6 1
357.2.f.b 10
357.2.i \(\chi_{357}(205, \cdot)\) 357.2.i.a 2 2
357.2.i.b 2
357.2.i.c 2
357.2.i.d 8
357.2.i.e 8
357.2.i.f 10
357.2.i.g 12
357.2.k \(\chi_{357}(64, \cdot)\) 357.2.k.a 12 2
357.2.k.b 20
357.2.l \(\chi_{357}(251, \cdot)\) 357.2.l.a 4 2
357.2.l.b 4
357.2.l.c 80
357.2.p \(\chi_{357}(16, \cdot)\) 357.2.p.a 48 2
357.2.r \(\chi_{357}(290, \cdot)\) 357.2.r.a 2 2
357.2.r.b 2
357.2.r.c 2
357.2.r.d 2
357.2.r.e 4
357.2.r.f 4
357.2.r.g 34
357.2.r.h 34
357.2.s \(\chi_{357}(101, \cdot)\) 357.2.s.a 88 2
357.2.u \(\chi_{357}(43, \cdot)\) 357.2.u.a 32 4
357.2.u.b 48
357.2.w \(\chi_{357}(83, \cdot)\) 357.2.w.a 176 4
357.2.y \(\chi_{357}(38, \cdot)\) 357.2.y.a 176 4
357.2.bb \(\chi_{357}(4, \cdot)\) 357.2.bb.a 96 4
357.2.bc \(\chi_{357}(97, \cdot)\) 357.2.bc.a 192 8
357.2.bf \(\chi_{357}(29, \cdot)\) 357.2.bf.a 288 8
357.2.bh \(\chi_{357}(25, \cdot)\) 357.2.bh.a 192 8
357.2.bj \(\chi_{357}(26, \cdot)\) 357.2.bj.a 352 8
357.2.bl \(\chi_{357}(10, \cdot)\) 357.2.bl.a 384 16
357.2.bm \(\chi_{357}(11, \cdot)\) 357.2.bm.a 704 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(357))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(357)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(17))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(21))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(51))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(119))\)\(^{\oplus 2}\)