Properties

Label 357.2.c.a
Level $357$
Weight $2$
Character orbit 357.c
Analytic conductor $2.851$
Analytic rank $0$
Dimension $20$
CM discriminant -119
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [357,2,Mod(356,357)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("357.356"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 214x^{10} + 59049 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{19}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{8} q^{2} + \beta_{18} q^{3} + ( - \beta_{10} - 2) q^{4} - \beta_{4} q^{5} + (\beta_{6} + \beta_{5}) q^{6} + \beta_{6} q^{7} + (\beta_{19} + \beta_{12} - 2 \beta_{8}) q^{8} - \beta_{19} q^{9}+ \cdots + 7 \beta_{8} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 40 q^{4} + 80 q^{16} - 100 q^{25} + 10 q^{30} - 50 q^{36} + 70 q^{42} + 140 q^{49} - 110 q^{60} - 160 q^{64} + 130 q^{72}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{20} - 214x^{10} + 59049 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{16} - 1973\nu^{6} ) / 14580 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{15} + 27\nu^{11} + 353\nu^{5} - 189\nu ) / 3240 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{15} - 3\nu^{13} + 353\nu^{5} - 1059\nu^{3} ) / 3240 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{17} - 81\nu^{13} - 1973\nu^{7} + 15147\nu^{3} ) / 43740 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{15} - 3\nu^{13} - 353\nu^{5} - 1059\nu^{3} ) / 3240 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{15} + 457\nu^{5} ) / 2430 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -7\nu^{16} + 18\nu^{14} + 729\nu^{10} + 769\nu^{6} + 6354\nu^{4} - 92583 ) / 29160 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -7\nu^{16} - 9\nu^{14} + 769\nu^{6} - 3177\nu^{4} ) / 29160 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( -7\nu^{16} - 45\nu^{14} + 769\nu^{6} + 13275\nu^{4} ) / 29160 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( -23\nu^{18} + 729\nu^{12} - 1639\nu^{8} - 5103\nu^{2} ) / 262440 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( -19\nu^{17} + 27\nu^{15} - 162\nu^{13} + 6253\nu^{7} + 9531\nu^{5} + 30294\nu^{3} ) / 87480 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( -23\nu^{18} - 729\nu^{12} - 1639\nu^{8} + 267543\nu^{2} ) / 262440 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( -7\nu^{17} - 9\nu^{15} + 54\nu^{13} + 769\nu^{7} - 3177\nu^{5} - 10098\nu^{3} ) / 29160 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( 23\nu^{18} - 63\nu^{16} + 162\nu^{14} + 1639\nu^{8} + 6921\nu^{6} + 57186\nu^{4} + 262440\nu^{2} ) / 262440 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( -29\nu^{19} + 243\nu^{15} - 13477\nu^{9} + 85779\nu^{5} + 1574640\nu ) / 787320 \) Copy content Toggle raw display
\(\beta_{16}\)\(=\) \( ( -29\nu^{19} + 243\nu^{15} - 13477\nu^{9} + 85779\nu^{5} - 787320\nu ) / 787320 \) Copy content Toggle raw display
\(\beta_{17}\)\(=\) \( ( -23\nu^{18} - 63\nu^{16} + 162\nu^{14} - 1639\nu^{8} + 6921\nu^{6} + 57186\nu^{4} - 262440\nu^{2} ) / 262440 \) Copy content Toggle raw display
\(\beta_{18}\)\(=\) \( ( -\nu^{19} + 214\nu^{9} ) / 19683 \) Copy content Toggle raw display
\(\beta_{19}\)\(=\) \( ( \nu^{18} - 214\nu^{8} ) / 6561 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{16} + \beta_{15} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{17} + \beta_{14} + \beta_{12} + \beta_{10} ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{13} + \beta_{11} - 2\beta_{5} + \beta_{4} - 4\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{17} + 2\beta_{14} + 3\beta_{9} - 7\beta_{8} ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 3\beta_{6} - 2\beta_{5} + 2\beta_{3} \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( \beta_{17} + \beta_{14} + 4\beta_{8} - 21\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -17\beta_{13} + 23\beta_{11} + 20\beta_{5} - 40\beta_{4} - 20\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -69\beta_{19} - 20\beta_{17} + 20\beta_{14} - 40\beta_{12} - 40\beta_{10} ) / 3 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 87\beta_{18} - 80\beta_{16} - 40\beta_{15} - 60\beta_{5} + 60\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( -20\beta_{17} - 20\beta_{14} + 40\beta_{7} + 127 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( -7\beta_{16} + 7\beta_{15} + 180\beta_{5} - 180\beta_{3} + 360\beta_{2} ) / 3 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( ( -187\beta_{17} + 187\beta_{14} - 353\beta_{12} + 727\beta_{10} ) / 3 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 353\beta_{13} - 353\beta_{11} - 914\beta_{5} - 353\beta_{4} - 208\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 914\beta_{17} + 914\beta_{14} - 1059\beta_{9} - 769\beta_{8} ) / 3 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( -1059\beta_{6} - 914\beta_{5} + 914\beta_{3} \) Copy content Toggle raw display
\(\nu^{16}\)\(=\) \( ( -1973\beta_{17} - 1973\beta_{14} - 7892\beta_{8} - 2307\beta_1 ) / 3 \) Copy content Toggle raw display
\(\nu^{17}\)\(=\) \( ( -10199\beta_{13} - 1639\beta_{11} + 4280\beta_{5} - 8560\beta_{4} - 4280\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\nu^{18}\)\(=\) \( ( 4917\beta_{19} - 4280\beta_{17} + 4280\beta_{14} - 8560\beta_{12} - 8560\beta_{10} ) / 3 \) Copy content Toggle raw display
\(\nu^{19}\)\(=\) \( ( -40431\beta_{18} - 17120\beta_{16} - 8560\beta_{15} - 12840\beta_{5} + 12840\beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
356.1
−1.50582 0.855861i
1.50582 + 0.855861i
−0.715174 + 1.57751i
0.715174 1.57751i
−1.72130 0.192695i
1.72130 + 0.192695i
−0.348647 + 1.69660i
0.348647 1.69660i
−1.27930 + 1.16765i
1.27930 1.16765i
−1.27930 1.16765i
1.27930 + 1.16765i
−0.348647 1.69660i
0.348647 + 1.69660i
−1.72130 + 0.192695i
1.72130 0.192695i
−0.715174 1.57751i
0.715174 + 1.57751i
−1.50582 + 0.855861i
1.50582 0.855861i
2.82435i −1.50582 + 0.855861i −5.97697 1.62447i 2.41725 + 4.25298i 2.64575 11.2324i 1.53501 2.57755i 4.58808
356.2 2.82435i 1.50582 0.855861i −5.97697 1.62447i −2.41725 4.25298i −2.64575 11.2324i 1.53501 2.57755i −4.58808
356.3 2.37414i −0.715174 1.57751i −3.63655 4.46472i −3.74522 + 1.69793i −2.64575 3.88541i −1.97705 + 2.25638i 10.5999
356.4 2.37414i 0.715174 + 1.57751i −3.63655 4.46472i 3.74522 1.69793i 2.64575 3.88541i −1.97705 + 2.25638i −10.5999
356.5 2.19576i −1.72130 + 0.192695i −2.82135 3.46074i 0.423111 + 3.77955i −2.64575 1.80349i 2.92574 0.663370i −7.59896
356.6 2.19576i 1.72130 0.192695i −2.82135 3.46074i −0.423111 3.77955i 2.64575 1.80349i 2.92574 0.663370i 7.59896
356.7 1.01709i −0.348647 1.69660i 0.965529 1.13488i −1.72559 + 0.354605i −2.64575 3.01621i −2.75689 + 1.18303i −1.15427
356.8 1.01709i 0.348647 + 1.69660i 0.965529 1.13488i 1.72559 0.354605i 2.64575 3.01621i −2.75689 + 1.18303i 1.15427
356.9 0.728457i −1.27930 1.16765i 1.46935 3.76333i −0.850581 + 0.931913i 2.64575 2.52727i 0.273200 + 2.98753i −2.74142
356.10 0.728457i 1.27930 + 1.16765i 1.46935 3.76333i 0.850581 0.931913i −2.64575 2.52727i 0.273200 + 2.98753i 2.74142
356.11 0.728457i −1.27930 + 1.16765i 1.46935 3.76333i −0.850581 0.931913i 2.64575 2.52727i 0.273200 2.98753i −2.74142
356.12 0.728457i 1.27930 1.16765i 1.46935 3.76333i 0.850581 + 0.931913i −2.64575 2.52727i 0.273200 2.98753i 2.74142
356.13 1.01709i −0.348647 + 1.69660i 0.965529 1.13488i −1.72559 0.354605i −2.64575 3.01621i −2.75689 1.18303i −1.15427
356.14 1.01709i 0.348647 1.69660i 0.965529 1.13488i 1.72559 + 0.354605i 2.64575 3.01621i −2.75689 1.18303i 1.15427
356.15 2.19576i −1.72130 0.192695i −2.82135 3.46074i 0.423111 3.77955i −2.64575 1.80349i 2.92574 + 0.663370i −7.59896
356.16 2.19576i 1.72130 + 0.192695i −2.82135 3.46074i −0.423111 + 3.77955i 2.64575 1.80349i 2.92574 + 0.663370i 7.59896
356.17 2.37414i −0.715174 + 1.57751i −3.63655 4.46472i −3.74522 1.69793i −2.64575 3.88541i −1.97705 2.25638i 10.5999
356.18 2.37414i 0.715174 1.57751i −3.63655 4.46472i 3.74522 + 1.69793i 2.64575 3.88541i −1.97705 2.25638i −10.5999
356.19 2.82435i −1.50582 0.855861i −5.97697 1.62447i 2.41725 4.25298i 2.64575 11.2324i 1.53501 + 2.57755i 4.58808
356.20 2.82435i 1.50582 + 0.855861i −5.97697 1.62447i −2.41725 + 4.25298i −2.64575 11.2324i 1.53501 + 2.57755i −4.58808
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 356.20
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
119.d odd 2 1 CM by \(\Q(\sqrt{-119}) \)
3.b odd 2 1 inner
7.b odd 2 1 inner
17.b even 2 1 inner
21.c even 2 1 inner
51.c odd 2 1 inner
357.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 357.2.c.a 20
3.b odd 2 1 inner 357.2.c.a 20
7.b odd 2 1 inner 357.2.c.a 20
17.b even 2 1 inner 357.2.c.a 20
21.c even 2 1 inner 357.2.c.a 20
51.c odd 2 1 inner 357.2.c.a 20
119.d odd 2 1 CM 357.2.c.a 20
357.c even 2 1 inner 357.2.c.a 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
357.2.c.a 20 1.a even 1 1 trivial
357.2.c.a 20 3.b odd 2 1 inner
357.2.c.a 20 7.b odd 2 1 inner
357.2.c.a 20 17.b even 2 1 inner
357.2.c.a 20 21.c even 2 1 inner
357.2.c.a 20 51.c odd 2 1 inner
357.2.c.a 20 119.d odd 2 1 CM
357.2.c.a 20 357.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{10} + 20T_{2}^{8} + 140T_{2}^{6} + 400T_{2}^{4} + 400T_{2}^{2} + 119 \) acting on \(S_{2}^{\mathrm{new}}(357, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{10} + 20 T^{8} + \cdots + 119)^{2} \) Copy content Toggle raw display
$3$ \( T^{20} - 214 T^{10} + 59049 \) Copy content Toggle raw display
$5$ \( (T^{10} + 50 T^{8} + \cdots + 11492)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 7)^{10} \) Copy content Toggle raw display
$11$ \( T^{20} \) Copy content Toggle raw display
$13$ \( T^{20} \) Copy content Toggle raw display
$17$ \( (T^{2} + 17)^{10} \) Copy content Toggle raw display
$19$ \( T^{20} \) Copy content Toggle raw display
$23$ \( T^{20} \) Copy content Toggle raw display
$29$ \( T^{20} \) Copy content Toggle raw display
$31$ \( (T^{10} - 310 T^{8} + \cdots - 101826172)^{2} \) Copy content Toggle raw display
$37$ \( T^{20} \) Copy content Toggle raw display
$41$ \( (T^{10} + 410 T^{8} + \cdots + 409170212)^{2} \) Copy content Toggle raw display
$43$ \( (T^{5} - 215 T^{3} + \cdots + 6484)^{4} \) Copy content Toggle raw display
$47$ \( T^{20} \) Copy content Toggle raw display
$53$ \( (T^{10} + 530 T^{8} + \cdots + 669539696)^{2} \) Copy content Toggle raw display
$59$ \( T^{20} \) Copy content Toggle raw display
$61$ \( (T^{10} - 610 T^{8} + \cdots - 878707312)^{2} \) Copy content Toggle raw display
$67$ \( (T^{5} - 335 T^{3} + \cdots + 27532)^{4} \) Copy content Toggle raw display
$71$ \( T^{20} \) Copy content Toggle raw display
$73$ \( (T^{10} - 730 T^{8} + \cdots - 6754804672)^{2} \) Copy content Toggle raw display
$79$ \( T^{20} \) Copy content Toggle raw display
$83$ \( T^{20} \) Copy content Toggle raw display
$89$ \( T^{20} \) Copy content Toggle raw display
$97$ \( (T^{10} - 970 T^{8} + \cdots - 29255547328)^{2} \) Copy content Toggle raw display
show more
show less