Properties

Label 357.2.a.h.1.3
Level 357357
Weight 22
Character 357.1
Self dual yes
Analytic conductor 2.8512.851
Analytic rank 00
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [357,2,Mod(1,357)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("357.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 357=3717 357 = 3 \cdot 7 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 357.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,-4,6,-2,-2,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 2.850659352162.85065935216
Analytic rank: 00
Dimension: 44
Coefficient field: 4.4.7232.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x42x35x2+4x+4 x^{4} - 2x^{3} - 5x^{2} + 4x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 3.066443.06644 of defining polynomial
Character χ\chi == 357.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.65222q21.00000q3+0.729840q4+3.48065q51.65222q6+1.00000q72.09859q8+1.00000q9+5.75081q10+3.57461q110.729840q123.48065q13+1.65222q143.48065q154.92701q161.00000q17+1.65222q18+4.17620q19+2.54032q201.00000q21+5.90604q22+7.92701q23+2.09859q24+7.11492q255.75081q261.00000q27+0.729840q283.30445q295.75081q309.59557q313.94335q323.57461q331.65222q34+3.48065q35+0.729840q367.05526q37+6.90002q38+3.48065q397.30445q406.94033q411.65222q42+4.96571q43+2.60889q44+3.48065q45+13.0972q469.59557q47+4.92701q48+1.00000q49+11.7554q50+1.00000q512.54032q523.59557q531.65222q54+12.4420q552.09859q564.17620q575.45968q589.40766q592.54032q6012.1718q6115.8540q62+1.00000q63+3.33873q6412.1149q655.90604q66+8.54032q670.729840q687.92701q69+5.75081q702.06857q712.09859q72+10.4537q7311.6569q747.11492q75+3.04796q76+3.57461q77+5.75081q78+0.162528q7917.1492q80+1.00000q8111.4670q82+8.54032q830.729840q843.48065q85+8.20447q86+3.30445q877.50162q88+0.961300q89+5.75081q903.48065q91+5.78546q92+9.59557q9315.8540q94+14.5359q95+3.94335q96+9.72543q97+1.65222q98+3.57461q99+O(q100)q+1.65222 q^{2} -1.00000 q^{3} +0.729840 q^{4} +3.48065 q^{5} -1.65222 q^{6} +1.00000 q^{7} -2.09859 q^{8} +1.00000 q^{9} +5.75081 q^{10} +3.57461 q^{11} -0.729840 q^{12} -3.48065 q^{13} +1.65222 q^{14} -3.48065 q^{15} -4.92701 q^{16} -1.00000 q^{17} +1.65222 q^{18} +4.17620 q^{19} +2.54032 q^{20} -1.00000 q^{21} +5.90604 q^{22} +7.92701 q^{23} +2.09859 q^{24} +7.11492 q^{25} -5.75081 q^{26} -1.00000 q^{27} +0.729840 q^{28} -3.30445 q^{29} -5.75081 q^{30} -9.59557 q^{31} -3.94335 q^{32} -3.57461 q^{33} -1.65222 q^{34} +3.48065 q^{35} +0.729840 q^{36} -7.05526 q^{37} +6.90002 q^{38} +3.48065 q^{39} -7.30445 q^{40} -6.94033 q^{41} -1.65222 q^{42} +4.96571 q^{43} +2.60889 q^{44} +3.48065 q^{45} +13.0972 q^{46} -9.59557 q^{47} +4.92701 q^{48} +1.00000 q^{49} +11.7554 q^{50} +1.00000 q^{51} -2.54032 q^{52} -3.59557 q^{53} -1.65222 q^{54} +12.4420 q^{55} -2.09859 q^{56} -4.17620 q^{57} -5.45968 q^{58} -9.40766 q^{59} -2.54032 q^{60} -12.1718 q^{61} -15.8540 q^{62} +1.00000 q^{63} +3.33873 q^{64} -12.1149 q^{65} -5.90604 q^{66} +8.54032 q^{67} -0.729840 q^{68} -7.92701 q^{69} +5.75081 q^{70} -2.06857 q^{71} -2.09859 q^{72} +10.4537 q^{73} -11.6569 q^{74} -7.11492 q^{75} +3.04796 q^{76} +3.57461 q^{77} +5.75081 q^{78} +0.162528 q^{79} -17.1492 q^{80} +1.00000 q^{81} -11.4670 q^{82} +8.54032 q^{83} -0.729840 q^{84} -3.48065 q^{85} +8.20447 q^{86} +3.30445 q^{87} -7.50162 q^{88} +0.961300 q^{89} +5.75081 q^{90} -3.48065 q^{91} +5.78546 q^{92} +9.59557 q^{93} -15.8540 q^{94} +14.5359 q^{95} +3.94335 q^{96} +9.72543 q^{97} +1.65222 q^{98} +3.57461 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q24q3+6q42q52q6+4q7+6q8+4q9+4q10+2q116q12+2q13+2q14+2q15+6q164q17+2q18+10q19+4q20++2q99+O(q100) 4 q + 2 q^{2} - 4 q^{3} + 6 q^{4} - 2 q^{5} - 2 q^{6} + 4 q^{7} + 6 q^{8} + 4 q^{9} + 4 q^{10} + 2 q^{11} - 6 q^{12} + 2 q^{13} + 2 q^{14} + 2 q^{15} + 6 q^{16} - 4 q^{17} + 2 q^{18} + 10 q^{19} + 4 q^{20}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.65222 1.16830 0.584149 0.811646i 0.301428π-0.301428\pi
0.584149 + 0.811646i 0.301428π0.301428\pi
33 −1.00000 −0.577350
44 0.729840 0.364920
55 3.48065 1.55659 0.778297 0.627896i 0.216084π-0.216084\pi
0.778297 + 0.627896i 0.216084π0.216084\pi
66 −1.65222 −0.674517
77 1.00000 0.377964
88 −2.09859 −0.741962
99 1.00000 0.333333
1010 5.75081 1.81857
1111 3.57461 1.07778 0.538892 0.842375i 0.318843π-0.318843\pi
0.538892 + 0.842375i 0.318843π0.318843\pi
1212 −0.729840 −0.210687
1313 −3.48065 −0.965359 −0.482679 0.875797i 0.660336π-0.660336\pi
−0.482679 + 0.875797i 0.660336π0.660336\pi
1414 1.65222 0.441575
1515 −3.48065 −0.898700
1616 −4.92701 −1.23175
1717 −1.00000 −0.242536
1818 1.65222 0.389433
1919 4.17620 0.958087 0.479043 0.877791i 0.340984π-0.340984\pi
0.479043 + 0.877791i 0.340984π0.340984\pi
2020 2.54032 0.568033
2121 −1.00000 −0.218218
2222 5.90604 1.25917
2323 7.92701 1.65290 0.826448 0.563013i 0.190358π-0.190358\pi
0.826448 + 0.563013i 0.190358π0.190358\pi
2424 2.09859 0.428372
2525 7.11492 1.42298
2626 −5.75081 −1.12783
2727 −1.00000 −0.192450
2828 0.729840 0.137927
2929 −3.30445 −0.613620 −0.306810 0.951771i 0.599262π-0.599262\pi
−0.306810 + 0.951771i 0.599262π0.599262\pi
3030 −5.75081 −1.04995
3131 −9.59557 −1.72342 −0.861708 0.507404i 0.830605π-0.830605\pi
−0.861708 + 0.507404i 0.830605π0.830605\pi
3232 −3.94335 −0.697093
3333 −3.57461 −0.622259
3434 −1.65222 −0.283354
3535 3.48065 0.588337
3636 0.729840 0.121640
3737 −7.05526 −1.15988 −0.579938 0.814660i 0.696923π-0.696923\pi
−0.579938 + 0.814660i 0.696923π0.696923\pi
3838 6.90002 1.11933
3939 3.48065 0.557350
4040 −7.30445 −1.15493
4141 −6.94033 −1.08390 −0.541949 0.840412i 0.682313π-0.682313\pi
−0.541949 + 0.840412i 0.682313π0.682313\pi
4242 −1.65222 −0.254944
4343 4.96571 0.757264 0.378632 0.925547i 0.376395π-0.376395\pi
0.378632 + 0.925547i 0.376395π0.376395\pi
4444 2.60889 0.393305
4545 3.48065 0.518865
4646 13.0972 1.93108
4747 −9.59557 −1.39966 −0.699829 0.714310i 0.746741π-0.746741\pi
−0.699829 + 0.714310i 0.746741π0.746741\pi
4848 4.92701 0.711153
4949 1.00000 0.142857
5050 11.7554 1.66247
5151 1.00000 0.140028
5252 −2.54032 −0.352279
5353 −3.59557 −0.493890 −0.246945 0.969029i 0.579427π-0.579427\pi
−0.246945 + 0.969029i 0.579427π0.579427\pi
5454 −1.65222 −0.224839
5555 12.4420 1.67767
5656 −2.09859 −0.280435
5757 −4.17620 −0.553152
5858 −5.45968 −0.716891
5959 −9.40766 −1.22477 −0.612387 0.790558i 0.709790π-0.709790\pi
−0.612387 + 0.790558i 0.709790π0.709790\pi
6060 −2.54032 −0.327954
6161 −12.1718 −1.55844 −0.779219 0.626752i 0.784384π-0.784384\pi
−0.779219 + 0.626752i 0.784384π0.784384\pi
6262 −15.8540 −2.01346
6363 1.00000 0.125988
6464 3.33873 0.417341
6565 −12.1149 −1.50267
6666 −5.90604 −0.726984
6767 8.54032 1.04337 0.521683 0.853139i 0.325304π-0.325304\pi
0.521683 + 0.853139i 0.325304π0.325304\pi
6868 −0.729840 −0.0885062
6969 −7.92701 −0.954300
7070 5.75081 0.687353
7171 −2.06857 −0.245494 −0.122747 0.992438i 0.539170π-0.539170\pi
−0.122747 + 0.992438i 0.539170π0.539170\pi
7272 −2.09859 −0.247321
7373 10.4537 1.22351 0.611754 0.791048i 0.290464π-0.290464\pi
0.611754 + 0.791048i 0.290464π0.290464\pi
7474 −11.6569 −1.35508
7575 −7.11492 −0.821561
7676 3.04796 0.349625
7777 3.57461 0.407364
7878 5.75081 0.651151
7979 0.162528 0.0182858 0.00914290 0.999958i 0.497090π-0.497090\pi
0.00914290 + 0.999958i 0.497090π0.497090\pi
8080 −17.1492 −1.91734
8181 1.00000 0.111111
8282 −11.4670 −1.26632
8383 8.54032 0.937422 0.468711 0.883352i 0.344719π-0.344719\pi
0.468711 + 0.883352i 0.344719π0.344719\pi
8484 −0.729840 −0.0796321
8585 −3.48065 −0.377529
8686 8.20447 0.884710
8787 3.30445 0.354274
8888 −7.50162 −0.799675
8989 0.961300 0.101898 0.0509488 0.998701i 0.483775π-0.483775\pi
0.0509488 + 0.998701i 0.483775π0.483775\pi
9090 5.75081 0.606189
9191 −3.48065 −0.364871
9292 5.78546 0.603175
9393 9.59557 0.995015
9494 −15.8540 −1.63522
9595 14.5359 1.49135
9696 3.94335 0.402467
9797 9.72543 0.987467 0.493734 0.869613i 0.335632π-0.335632\pi
0.493734 + 0.869613i 0.335632π0.335632\pi
9898 1.65222 0.166900
9999 3.57461 0.359261
100100 5.19276 0.519276
101101 −10.7028 −1.06497 −0.532487 0.846438i 0.678742π-0.678742\pi
−0.532487 + 0.846438i 0.678742π0.678742\pi
102102 1.65222 0.163594
103103 19.3674 1.90832 0.954161 0.299294i 0.0967511π-0.0967511\pi
0.954161 + 0.299294i 0.0967511π0.0967511\pi
104104 7.30445 0.716260
105105 −3.48065 −0.339677
106106 −5.94069 −0.577011
107107 10.8464 1.04856 0.524279 0.851546i 0.324335π-0.324335\pi
0.524279 + 0.851546i 0.324335π0.324335\pi
108108 −0.729840 −0.0702289
109109 3.55364 0.340377 0.170188 0.985412i 0.445562π-0.445562\pi
0.170188 + 0.985412i 0.445562π0.445562\pi
110110 20.5569 1.96002
111111 7.05526 0.669655
112112 −4.92701 −0.465559
113113 −11.9597 −1.12507 −0.562536 0.826772i 0.690174π-0.690174\pi
−0.562536 + 0.826772i 0.690174π0.690174\pi
114114 −6.90002 −0.646246
115115 27.5912 2.57289
116116 −2.41172 −0.223922
117117 −3.48065 −0.321786
118118 −15.5436 −1.43090
119119 −1.00000 −0.0916698
120120 7.30445 0.666802
121121 1.77780 0.161618
122122 −20.1105 −1.82072
123123 6.94033 0.625789
124124 −7.00324 −0.628909
125125 7.36131 0.658416
126126 1.65222 0.147192
127127 −3.92701 −0.348466 −0.174233 0.984704i 0.555745π-0.555745\pi
−0.174233 + 0.984704i 0.555745π0.555745\pi
128128 13.4030 1.18467
129129 −4.96571 −0.437207
130130 −20.0166 −1.75557
131131 −16.7944 −1.46733 −0.733665 0.679511i 0.762192π-0.762192\pi
−0.733665 + 0.679511i 0.762192π0.762192\pi
132132 −2.60889 −0.227075
133133 4.17620 0.362123
134134 14.1105 1.21896
135135 −3.48065 −0.299567
136136 2.09859 0.179952
137137 5.17459 0.442095 0.221048 0.975263i 0.429052π-0.429052\pi
0.221048 + 0.975263i 0.429052π0.429052\pi
138138 −13.0972 −1.11491
139139 13.8807 1.17734 0.588671 0.808373i 0.299651π-0.299651\pi
0.588671 + 0.808373i 0.299651π0.299651\pi
140140 2.54032 0.214696
141141 9.59557 0.808093
142142 −3.41774 −0.286811
143143 −12.4420 −1.04045
144144 −4.92701 −0.410584
145145 −11.5016 −0.955157
146146 17.2718 1.42942
147147 −1.00000 −0.0824786
148148 −5.14921 −0.423263
149149 14.5823 1.19463 0.597313 0.802009i 0.296235π-0.296235\pi
0.597313 + 0.802009i 0.296235π0.296235\pi
150150 −11.7554 −0.959828
151151 9.88066 0.804077 0.402038 0.915623i 0.368302π-0.368302\pi
0.402038 + 0.915623i 0.368302π0.368302\pi
152152 −8.76413 −0.710865
153153 −1.00000 −0.0808452
154154 5.90604 0.475923
155155 −33.3988 −2.68266
156156 2.54032 0.203388
157157 −4.20888 −0.335905 −0.167953 0.985795i 0.553716π-0.553716\pi
−0.167953 + 0.985795i 0.553716π0.553716\pi
158158 0.268532 0.0213633
159159 3.59557 0.285148
160160 −13.7254 −1.08509
161161 7.92701 0.624736
162162 1.65222 0.129811
163163 0.540319 0.0423211 0.0211605 0.999776i 0.493264π-0.493264\pi
0.0211605 + 0.999776i 0.493264π0.493264\pi
164164 −5.06533 −0.395536
165165 −12.4420 −0.968604
166166 14.1105 1.09519
167167 −4.08954 −0.316458 −0.158229 0.987402i 0.550578π-0.550578\pi
−0.158229 + 0.987402i 0.550578π0.550578\pi
168168 2.09859 0.161909
169169 −0.885076 −0.0680827
170170 −5.75081 −0.441067
171171 4.17620 0.319362
172172 3.62418 0.276341
173173 15.1702 1.15337 0.576684 0.816968i 0.304347π-0.304347\pi
0.576684 + 0.816968i 0.304347π0.304347\pi
174174 5.45968 0.413897
175175 7.11492 0.537838
176176 −17.6121 −1.32756
177177 9.40766 0.707123
178178 1.58828 0.119047
179179 11.9133 0.890445 0.445222 0.895420i 0.353125π-0.353125\pi
0.445222 + 0.895420i 0.353125π0.353125\pi
180180 2.54032 0.189344
181181 6.45366 0.479697 0.239848 0.970810i 0.422902π-0.422902\pi
0.239848 + 0.970810i 0.422902π0.422902\pi
182182 −5.75081 −0.426278
183183 12.1718 0.899765
184184 −16.6355 −1.22639
185185 −24.5569 −1.80546
186186 15.8540 1.16247
187187 −3.57461 −0.261401
188188 −7.00324 −0.510764
189189 −1.00000 −0.0727393
190190 24.0166 1.74234
191191 −23.0391 −1.66705 −0.833527 0.552479i 0.813682π-0.813682\pi
−0.833527 + 0.552479i 0.813682π0.813682\pi
192192 −3.33873 −0.240952
193193 −6.51494 −0.468955 −0.234478 0.972122i 0.575338π-0.575338\pi
−0.234478 + 0.972122i 0.575338π0.575338\pi
194194 16.0686 1.15366
195195 12.1149 0.867568
196196 0.729840 0.0521315
197197 0.622568 0.0443561 0.0221781 0.999754i 0.492940π-0.492940\pi
0.0221781 + 0.999754i 0.492940π0.492940\pi
198198 5.90604 0.419724
199199 5.05526 0.358358 0.179179 0.983817i 0.442656π-0.442656\pi
0.179179 + 0.983817i 0.442656π0.442656\pi
200200 −14.9313 −1.05580
201201 −8.54032 −0.602388
202202 −17.6835 −1.24421
203203 −3.30445 −0.231927
204204 0.729840 0.0510991
205205 −24.1569 −1.68719
206206 31.9992 2.22949
207207 7.92701 0.550966
208208 17.1492 1.18908
209209 14.9283 1.03261
210210 −5.75081 −0.396844
211211 −10.6343 −0.732094 −0.366047 0.930596i 0.619289π-0.619289\pi
−0.366047 + 0.930596i 0.619289π0.619289\pi
212212 −2.62420 −0.180230
213213 2.06857 0.141736
214214 17.9206 1.22503
215215 17.2839 1.17875
216216 2.09859 0.142791
217217 −9.59557 −0.651390
218218 5.87140 0.397661
219219 −10.4537 −0.706393
220220 9.08064 0.612217
221221 3.48065 0.234134
222222 11.6569 0.782357
223223 −17.9109 −1.19940 −0.599701 0.800224i 0.704714π-0.704714\pi
−0.599701 + 0.800224i 0.704714π0.704714\pi
224224 −3.94335 −0.263476
225225 7.11492 0.474328
226226 −19.7601 −1.31442
227227 5.97903 0.396842 0.198421 0.980117i 0.436419π-0.436419\pi
0.198421 + 0.980117i 0.436419π0.436419\pi
228228 −3.04796 −0.201856
229229 5.27177 0.348368 0.174184 0.984713i 0.444271π-0.444271\pi
0.174184 + 0.984713i 0.444271π0.444271\pi
230230 45.5867 3.00590
231231 −3.57461 −0.235192
232232 6.93467 0.455283
233233 −25.5065 −1.67098 −0.835492 0.549502i 0.814817π-0.814817\pi
−0.835492 + 0.549502i 0.814817π0.814817\pi
234234 −5.75081 −0.375942
235235 −33.3988 −2.17870
236236 −6.86609 −0.446945
237237 −0.162528 −0.0105573
238238 −1.65222 −0.107098
239239 11.5629 0.747942 0.373971 0.927440i 0.377996π-0.377996\pi
0.373971 + 0.927440i 0.377996π0.377996\pi
240240 17.1492 1.10698
241241 24.7287 1.59291 0.796457 0.604696i 0.206705π-0.206705\pi
0.796457 + 0.604696i 0.206705π0.206705\pi
242242 2.93733 0.188819
243243 −1.00000 −0.0641500
244244 −8.88346 −0.568706
245245 3.48065 0.222371
246246 11.4670 0.731108
247247 −14.5359 −0.924898
248248 20.1371 1.27871
249249 −8.54032 −0.541221
250250 12.1625 0.769226
251251 −4.86734 −0.307224 −0.153612 0.988131i 0.549091π-0.549091\pi
−0.153612 + 0.988131i 0.549091π0.549091\pi
252252 0.729840 0.0459756
253253 28.3359 1.78147
254254 −6.48830 −0.407112
255255 3.48065 0.217967
256256 15.4673 0.966708
257257 26.7867 1.67091 0.835455 0.549559i 0.185204π-0.185204\pi
0.835455 + 0.549559i 0.185204π0.185204\pi
258258 −8.20447 −0.510788
259259 −7.05526 −0.438392
260260 −8.84196 −0.548355
261261 −3.30445 −0.204540
262262 −27.7480 −1.71428
263263 30.6867 1.89222 0.946112 0.323839i 0.104974π-0.104974\pi
0.946112 + 0.323839i 0.104974π0.104974\pi
264264 7.50162 0.461693
265265 −12.5149 −0.768786
266266 6.90002 0.423067
267267 −0.961300 −0.0588306
268268 6.23307 0.380745
269269 5.59116 0.340899 0.170450 0.985366i 0.445478π-0.445478\pi
0.170450 + 0.985366i 0.445478π0.445478\pi
270270 −5.75081 −0.349983
271271 8.88102 0.539484 0.269742 0.962933i 0.413062π-0.413062\pi
0.269742 + 0.962933i 0.413062π0.413062\pi
272272 4.92701 0.298744
273273 3.48065 0.210659
274274 8.54958 0.516499
275275 25.4330 1.53367
276276 −5.78546 −0.348243
277277 −1.50162 −0.0902235 −0.0451118 0.998982i 0.514364π-0.514364\pi
−0.0451118 + 0.998982i 0.514364π0.514364\pi
278278 22.9339 1.37549
279279 −9.59557 −0.574472
280280 −7.30445 −0.436524
281281 2.35241 0.140333 0.0701665 0.997535i 0.477647π-0.477647\pi
0.0701665 + 0.997535i 0.477647π0.477647\pi
282282 15.8540 0.944094
283283 −17.4077 −1.03478 −0.517389 0.855750i 0.673096π-0.673096\pi
−0.517389 + 0.855750i 0.673096π0.673096\pi
284284 −1.50973 −0.0895859
285285 −14.5359 −0.861033
286286 −20.5569 −1.21555
287287 −6.94033 −0.409675
288288 −3.94335 −0.232364
289289 1.00000 0.0588235
290290 −19.0032 −1.11591
291291 −9.72543 −0.570115
292292 7.62950 0.446483
293293 −15.9314 −0.930724 −0.465362 0.885120i 0.654076π-0.654076\pi
−0.465362 + 0.885120i 0.654076π0.654076\pi
294294 −1.65222 −0.0963596
295295 −32.7448 −1.90648
296296 14.8061 0.860585
297297 −3.57461 −0.207420
298298 24.0931 1.39568
299299 −27.5912 −1.59564
300300 −5.19276 −0.299804
301301 4.96571 0.286219
302302 16.3251 0.939401
303303 10.7028 0.614862
304304 −20.5762 −1.18013
305305 −42.3657 −2.42586
306306 −1.65222 −0.0944513
307307 −11.5795 −0.660874 −0.330437 0.943828i 0.607196π-0.607196\pi
−0.330437 + 0.943828i 0.607196π0.607196\pi
308308 2.60889 0.148655
309309 −19.3674 −1.10177
310310 −55.1823 −3.13415
311311 −1.52825 −0.0866593 −0.0433296 0.999061i 0.513797π-0.513797\pi
−0.0433296 + 0.999061i 0.513797π0.513797\pi
312312 −7.30445 −0.413533
313313 15.1565 0.856696 0.428348 0.903614i 0.359096π-0.359096\pi
0.428348 + 0.903614i 0.359096π0.359096\pi
314314 −6.95401 −0.392437
315315 3.48065 0.196112
316316 0.118619 0.00667286
317317 12.8746 0.723112 0.361556 0.932350i 0.382246π-0.382246\pi
0.361556 + 0.932350i 0.382246π0.382246\pi
318318 5.94069 0.333137
319319 −11.8121 −0.661350
320320 11.6210 0.649631
321321 −10.8464 −0.605386
322322 13.0972 0.729878
323323 −4.17620 −0.232370
324324 0.729840 0.0405467
325325 −24.7646 −1.37369
326326 0.892728 0.0494436
327327 −3.55364 −0.196517
328328 14.5649 0.804211
329329 −9.59557 −0.529021
330330 −20.5569 −1.13162
331331 24.2794 1.33452 0.667259 0.744826i 0.267467π-0.267467\pi
0.667259 + 0.744826i 0.267467π0.267467\pi
332332 6.23307 0.342084
333333 −7.05526 −0.386626
334334 −6.75683 −0.369718
335335 29.7259 1.62410
336336 4.92701 0.268791
337337 −4.78025 −0.260397 −0.130198 0.991488i 0.541561π-0.541561\pi
−0.130198 + 0.991488i 0.541561π0.541561\pi
338338 −1.46234 −0.0795409
339339 11.9597 0.649561
340340 −2.54032 −0.137768
341341 −34.3004 −1.85747
342342 6.90002 0.373110
343343 1.00000 0.0539949
344344 −10.4210 −0.561862
345345 −27.5912 −1.48546
346346 25.0645 1.34748
347347 22.6508 1.21596 0.607980 0.793952i 0.291980π-0.291980\pi
0.607980 + 0.793952i 0.291980π0.291980\pi
348348 2.41172 0.129282
349349 21.2573 1.13788 0.568938 0.822380i 0.307354π-0.307354\pi
0.568938 + 0.822380i 0.307354π0.307354\pi
350350 11.7554 0.628355
351351 3.48065 0.185783
352352 −14.0959 −0.751315
353353 3.55364 0.189141 0.0945705 0.995518i 0.469852π-0.469852\pi
0.0945705 + 0.995518i 0.469852π0.469852\pi
354354 15.5436 0.826131
355355 −7.19998 −0.382135
356356 0.701596 0.0371845
357357 1.00000 0.0529256
358358 19.6835 1.04030
359359 −16.8314 −0.888330 −0.444165 0.895945i 0.646500π-0.646500\pi
−0.444165 + 0.895945i 0.646500π0.646500\pi
360360 −7.30445 −0.384978
361361 −1.55932 −0.0820694
362362 10.6629 0.560428
363363 −1.77780 −0.0933105
364364 −2.54032 −0.133149
365365 36.3855 1.90451
366366 20.1105 1.05119
367367 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
368368 −39.0565 −2.03596
369369 −6.94033 −0.361299
370370 −40.5734 −2.10931
371371 −3.59557 −0.186673
372372 7.00324 0.363101
373373 −1.14921 −0.0595039 −0.0297519 0.999557i 0.509472π-0.509472\pi
−0.0297519 + 0.999557i 0.509472π0.509472\pi
374374 −5.90604 −0.305394
375375 −7.36131 −0.380137
376376 20.1371 1.03849
377377 11.5016 0.592364
378378 −1.65222 −0.0849812
379379 −35.0032 −1.79800 −0.898998 0.437953i 0.855704π-0.855704\pi
−0.898998 + 0.437953i 0.855704π0.855704\pi
380380 10.6089 0.544225
381381 3.92701 0.201187
382382 −38.0658 −1.94762
383383 −15.7867 −0.806663 −0.403332 0.915054i 0.632148π-0.632148\pi
−0.403332 + 0.915054i 0.632148π0.632148\pi
384384 −13.4030 −0.683971
385385 12.4420 0.634100
386386 −10.7641 −0.547880
387387 4.96571 0.252421
388388 7.09801 0.360347
389389 −8.65083 −0.438614 −0.219307 0.975656i 0.570380π-0.570380\pi
−0.219307 + 0.975656i 0.570380π0.570380\pi
390390 20.0166 1.01358
391391 −7.92701 −0.400886
392392 −2.09859 −0.105995
393393 16.7944 0.847163
394394 1.02862 0.0518212
395395 0.565702 0.0284636
396396 2.60889 0.131102
397397 −19.9985 −1.00369 −0.501847 0.864956i 0.667346π-0.667346\pi
−0.501847 + 0.864956i 0.667346π0.667346\pi
398398 8.35241 0.418668
399399 −4.17620 −0.209072
400400 −35.0553 −1.75277
401401 −35.7630 −1.78592 −0.892958 0.450139i 0.851374π-0.851374\pi
−0.892958 + 0.450139i 0.851374π0.851374\pi
402402 −14.1105 −0.703768
403403 33.3988 1.66371
404404 −7.81137 −0.388630
405405 3.48065 0.172955
406406 −5.45968 −0.270959
407407 −25.2198 −1.25010
408408 −2.09859 −0.103896
409409 15.3435 0.758688 0.379344 0.925256i 0.376150π-0.376150\pi
0.379344 + 0.925256i 0.376150π0.376150\pi
410410 −39.9125 −1.97114
411411 −5.17459 −0.255244
412412 14.1351 0.696385
413413 −9.40766 −0.462921
414414 13.0972 0.643692
415415 29.7259 1.45919
416416 13.7254 0.672944
417417 −13.8807 −0.679739
418418 24.6648 1.20640
419419 −1.24514 −0.0608289 −0.0304144 0.999537i 0.509683π-0.509683\pi
−0.0304144 + 0.999537i 0.509683π0.509683\pi
420420 −2.54032 −0.123955
421421 36.3626 1.77220 0.886102 0.463491i 0.153403π-0.153403\pi
0.886102 + 0.463491i 0.153403π0.153403\pi
422422 −17.5702 −0.855304
423423 −9.59557 −0.466553
424424 7.54562 0.366448
425425 −7.11492 −0.345125
426426 3.41774 0.165590
427427 −12.1718 −0.589034
428428 7.91612 0.382640
429429 12.4420 0.600703
430430 28.5569 1.37713
431431 −14.6089 −0.703686 −0.351843 0.936059i 0.614445π-0.614445\pi
−0.351843 + 0.936059i 0.614445π0.614445\pi
432432 4.92701 0.237051
433433 −20.5525 −0.987688 −0.493844 0.869550i 0.664409π-0.664409\pi
−0.493844 + 0.869550i 0.664409π0.664409\pi
434434 −15.8540 −0.761018
435435 11.5016 0.551460
436436 2.59359 0.124210
437437 33.1048 1.58362
438438 −17.2718 −0.825277
439439 −14.5835 −0.696033 −0.348016 0.937488i 0.613145π-0.613145\pi
−0.348016 + 0.937488i 0.613145π0.613145\pi
440440 −26.1105 −1.24477
441441 1.00000 0.0476190
442442 5.75081 0.273538
443443 34.0258 1.61662 0.808308 0.588760i 0.200384π-0.200384\pi
0.808308 + 0.588760i 0.200384π0.200384\pi
444444 5.14921 0.244371
445445 3.34595 0.158613
446446 −29.5928 −1.40126
447447 −14.5823 −0.689717
448448 3.33873 0.157740
449449 −34.4956 −1.62795 −0.813974 0.580901i 0.802700π-0.802700\pi
−0.813974 + 0.580901i 0.802700π0.802700\pi
450450 11.7554 0.554157
451451 −24.8089 −1.16821
452452 −8.72866 −0.410562
453453 −9.88066 −0.464234
454454 9.87869 0.463630
455455 −12.1149 −0.567956
456456 8.76413 0.410418
457457 −3.00765 −0.140692 −0.0703460 0.997523i 0.522410π-0.522410\pi
−0.0703460 + 0.997523i 0.522410π0.522410\pi
458458 8.71014 0.406998
459459 1.00000 0.0466760
460460 20.1371 0.938899
461461 0.258453 0.0120374 0.00601868 0.999982i 0.498084π-0.498084\pi
0.00601868 + 0.999982i 0.498084π0.498084\pi
462462 −5.90604 −0.274774
463463 20.5734 0.956128 0.478064 0.878325i 0.341339π-0.341339\pi
0.478064 + 0.878325i 0.341339π0.341339\pi
464464 16.2810 0.755829
465465 33.3988 1.54883
466466 −42.1424 −1.95221
467467 −11.9766 −0.554210 −0.277105 0.960840i 0.589375π-0.589375\pi
−0.277105 + 0.960840i 0.589375π0.589375\pi
468468 −2.54032 −0.117426
469469 8.54032 0.394355
470470 −55.1823 −2.54537
471471 4.20888 0.193935
472472 19.7428 0.908736
473473 17.7505 0.816167
474474 −0.268532 −0.0123341
475475 29.7134 1.36334
476476 −0.729840 −0.0334522
477477 −3.59557 −0.164630
478478 19.1045 0.873819
479479 −2.56129 −0.117028 −0.0585141 0.998287i 0.518636π-0.518636\pi
−0.0585141 + 0.998287i 0.518636π0.518636\pi
480480 13.7254 0.626477
481481 24.5569 1.11970
482482 40.8573 1.86100
483483 −7.92701 −0.360692
484484 1.29751 0.0589778
485485 33.8508 1.53709
486486 −1.65222 −0.0749464
487487 13.2451 0.600194 0.300097 0.953909i 0.402981π-0.402981\pi
0.300097 + 0.953909i 0.402981π0.402981\pi
488488 25.5436 1.15630
489489 −0.540319 −0.0244341
490490 5.75081 0.259795
491491 32.4302 1.46356 0.731778 0.681543i 0.238691π-0.238691\pi
0.731778 + 0.681543i 0.238691π0.238691\pi
492492 5.06533 0.228363
493493 3.30445 0.148825
494494 −24.0166 −1.08056
495495 12.4420 0.559224
496496 47.2775 2.12282
497497 −2.06857 −0.0927882
498498 −14.1105 −0.632307
499499 −36.1956 −1.62034 −0.810170 0.586195i 0.800625π-0.800625\pi
−0.810170 + 0.586195i 0.800625π0.800625\pi
500500 5.37258 0.240269
501501 4.08954 0.182707
502502 −8.04194 −0.358929
503503 −23.0743 −1.02883 −0.514415 0.857541i 0.671991π-0.671991\pi
−0.514415 + 0.857541i 0.671991π0.671991\pi
504504 −2.09859 −0.0934785
505505 −37.2529 −1.65773
506506 46.8173 2.08128
507507 0.885076 0.0393076
508508 −2.86609 −0.127162
509509 −21.1492 −0.937422 −0.468711 0.883351i 0.655281π-0.655281\pi
−0.468711 + 0.883351i 0.655281π0.655281\pi
510510 5.75081 0.254650
511511 10.4537 0.462443
512512 −1.25058 −0.0552685
513513 −4.17620 −0.184384
514514 44.2576 1.95212
515515 67.4110 2.97048
516516 −3.62418 −0.159546
517517 −34.3004 −1.50853
518518 −11.6569 −0.512173
519519 −15.1702 −0.665897
520520 25.4242 1.11493
521521 −42.6630 −1.86910 −0.934549 0.355834i 0.884197π-0.884197\pi
−0.934549 + 0.355834i 0.884197π0.884197\pi
522522 −5.45968 −0.238964
523523 8.31651 0.363656 0.181828 0.983330i 0.441799π-0.441799\pi
0.181828 + 0.983330i 0.441799π0.441799\pi
524524 −12.2572 −0.535458
525525 −7.11492 −0.310521
526526 50.7013 2.21068
527527 9.59557 0.417990
528528 17.6121 0.766470
529529 39.8375 1.73207
530530 −20.6775 −0.898172
531531 −9.40766 −0.408258
532532 3.04796 0.132146
533533 24.1569 1.04635
534534 −1.58828 −0.0687317
535535 37.7524 1.63218
536536 −17.9226 −0.774138
537537 −11.9133 −0.514098
538538 9.23784 0.398272
539539 3.57461 0.153969
540540 −2.54032 −0.109318
541541 40.4960 1.74106 0.870530 0.492115i 0.163776π-0.163776\pi
0.870530 + 0.492115i 0.163776π0.163776\pi
542542 14.6734 0.630278
543543 −6.45366 −0.276953
544544 3.94335 0.169070
545545 12.3690 0.529828
546546 5.75081 0.246112
547547 6.67621 0.285454 0.142727 0.989762i 0.454413π-0.454413\pi
0.142727 + 0.989762i 0.454413π0.454413\pi
548548 3.77663 0.161330
549549 −12.1718 −0.519479
550550 42.0211 1.79178
551551 −13.8000 −0.587901
552552 16.6355 0.708055
553553 0.162528 0.00691138
554554 −2.48101 −0.105408
555555 24.5569 1.04238
556556 10.1307 0.429636
557557 1.99803 0.0846592 0.0423296 0.999104i 0.486522π-0.486522\pi
0.0423296 + 0.999104i 0.486522π0.486522\pi
558558 −15.8540 −0.671155
559559 −17.2839 −0.731032
560560 −17.1492 −0.724686
561561 3.57461 0.150920
562562 3.88670 0.163951
563563 29.9645 1.26285 0.631427 0.775435i 0.282469π-0.282469\pi
0.631427 + 0.775435i 0.282469π0.282469\pi
564564 7.00324 0.294890
565565 −41.6275 −1.75128
566566 −28.7613 −1.20893
567567 1.00000 0.0419961
568568 4.34108 0.182148
569569 −13.3556 −0.559898 −0.279949 0.960015i 0.590318π-0.590318\pi
−0.279949 + 0.960015i 0.590318π0.590318\pi
570570 −24.0166 −1.00594
571571 27.5347 1.15229 0.576146 0.817347i 0.304556π-0.304556\pi
0.576146 + 0.817347i 0.304556π0.304556\pi
572572 −9.08064 −0.379681
573573 23.0391 0.962474
574574 −11.4670 −0.478622
575575 56.4001 2.35205
576576 3.33873 0.139114
577577 29.0928 1.21115 0.605574 0.795789i 0.292944π-0.292944\pi
0.605574 + 0.795789i 0.292944π0.292944\pi
578578 1.65222 0.0687234
579579 6.51494 0.270752
580580 −8.39435 −0.348556
581581 8.54032 0.354312
582582 −16.0686 −0.666064
583583 −12.8528 −0.532307
584584 −21.9379 −0.907797
585585 −12.1149 −0.500890
586586 −26.3223 −1.08736
587587 −9.08837 −0.375117 −0.187559 0.982253i 0.560057π-0.560057\pi
−0.187559 + 0.982253i 0.560057π0.560057\pi
588588 −0.729840 −0.0300981
589589 −40.0731 −1.65118
590590 −54.1017 −2.22733
591591 −0.622568 −0.0256090
592592 34.7613 1.42868
593593 1.06730 0.0438289 0.0219145 0.999760i 0.493024π-0.493024\pi
0.0219145 + 0.999760i 0.493024π0.493024\pi
594594 −5.90604 −0.242328
595595 −3.48065 −0.142693
596596 10.6427 0.435943
597597 −5.05526 −0.206898
598598 −45.5867 −1.86418
599599 13.2537 0.541531 0.270765 0.962645i 0.412723π-0.412723\pi
0.270765 + 0.962645i 0.412723π0.412723\pi
600600 14.9313 0.609567
601601 −18.6855 −0.762196 −0.381098 0.924535i 0.624454π-0.624454\pi
−0.381098 + 0.924535i 0.624454π0.624454\pi
602602 8.20447 0.334389
603603 8.54032 0.347789
604604 7.21131 0.293424
605605 6.18791 0.251574
606606 17.6835 0.718343
607607 36.2376 1.47084 0.735419 0.677613i 0.236985π-0.236985\pi
0.735419 + 0.677613i 0.236985π0.236985\pi
608608 −16.4682 −0.667875
609609 3.30445 0.133903
610610 −69.9976 −2.83412
611611 33.3988 1.35117
612612 −0.729840 −0.0295021
613613 −16.9835 −0.685958 −0.342979 0.939343i 0.611436π-0.611436\pi
−0.342979 + 0.939343i 0.611436π0.611436\pi
614614 −19.1318 −0.772098
615615 24.1569 0.974099
616616 −7.50162 −0.302249
617617 −18.6182 −0.749539 −0.374769 0.927118i 0.622278π-0.622278\pi
−0.374769 + 0.927118i 0.622278π0.622278\pi
618618 −31.9992 −1.28720
619619 42.3989 1.70415 0.852077 0.523417i 0.175343π-0.175343\pi
0.852077 + 0.523417i 0.175343π0.175343\pi
620620 −24.3758 −0.978957
621621 −7.92701 −0.318100
622622 −2.52502 −0.101244
623623 0.961300 0.0385137
624624 −17.1492 −0.686518
625625 −9.95247 −0.398099
626626 25.0419 1.00088
627627 −14.9283 −0.596178
628628 −3.07181 −0.122579
629629 7.05526 0.281311
630630 5.75081 0.229118
631631 −31.2134 −1.24258 −0.621292 0.783579i 0.713392π-0.713392\pi
−0.621292 + 0.783579i 0.713392π0.713392\pi
632632 −0.341078 −0.0135674
633633 10.6343 0.422674
634634 21.2718 0.844810
635635 −13.6686 −0.542420
636636 2.62420 0.104056
637637 −3.48065 −0.137908
638638 −19.5162 −0.772654
639639 −2.06857 −0.0818315
640640 46.6513 1.84405
641641 −14.6677 −0.579340 −0.289670 0.957127i 0.593546π-0.593546\pi
−0.289670 + 0.957127i 0.593546π0.593546\pi
642642 −17.9206 −0.707271
643643 −18.3823 −0.724927 −0.362464 0.931998i 0.618064π-0.618064\pi
−0.362464 + 0.931998i 0.618064π0.618064\pi
644644 5.78546 0.227979
645645 −17.2839 −0.680553
646646 −6.90002 −0.271478
647647 −24.4363 −0.960689 −0.480345 0.877080i 0.659488π-0.659488\pi
−0.480345 + 0.877080i 0.659488π0.659488\pi
648648 −2.09859 −0.0824403
649649 −33.6287 −1.32004
650650 −40.9166 −1.60488
651651 9.59557 0.376080
652652 0.394347 0.0154438
653653 0.595215 0.0232926 0.0116463 0.999932i 0.496293π-0.496293\pi
0.0116463 + 0.999932i 0.496293π0.496293\pi
654654 −5.87140 −0.229590
655655 −58.4553 −2.28404
656656 34.1951 1.33509
657657 10.4537 0.407836
658658 −15.8540 −0.618054
659659 32.6493 1.27184 0.635918 0.771757i 0.280622π-0.280622\pi
0.635918 + 0.771757i 0.280622π0.280622\pi
660660 −9.08064 −0.353463
661661 4.89517 0.190400 0.0952000 0.995458i 0.469651π-0.469651\pi
0.0952000 + 0.995458i 0.469651π0.469651\pi
662662 40.1150 1.55911
663663 −3.48065 −0.135177
664664 −17.9226 −0.695532
665665 14.5359 0.563678
666666 −11.6569 −0.451694
667667 −26.1944 −1.01425
668668 −2.98471 −0.115482
669669 17.9109 0.692475
670670 49.1137 1.89743
671671 −43.5093 −1.67966
672672 3.94335 0.152118
673673 −2.77017 −0.106782 −0.0533911 0.998574i 0.517003π-0.517003\pi
−0.0533911 + 0.998574i 0.517003π0.517003\pi
674674 −7.89803 −0.304221
675675 −7.11492 −0.273854
676676 −0.645964 −0.0248448
677677 26.9315 1.03506 0.517531 0.855665i 0.326851π-0.326851\pi
0.517531 + 0.855665i 0.326851π0.326851\pi
678678 19.7601 0.758881
679679 9.72543 0.373228
680680 7.30445 0.280113
681681 −5.97903 −0.229117
682682 −56.6719 −2.17008
683683 19.8762 0.760543 0.380272 0.924875i 0.375830π-0.375830\pi
0.380272 + 0.924875i 0.375830π0.375830\pi
684684 3.04796 0.116542
685685 18.0109 0.688163
686686 1.65222 0.0630822
687687 −5.27177 −0.201131
688688 −24.4661 −0.932763
689689 12.5149 0.476781
690690 −45.5867 −1.73546
691691 −20.4915 −0.779534 −0.389767 0.920913i 0.627445π-0.627445\pi
−0.389767 + 0.920913i 0.627445π0.627445\pi
692692 11.0718 0.420887
693693 3.57461 0.135788
694694 37.4242 1.42060
695695 48.3137 1.83264
696696 −6.93467 −0.262858
697697 6.94033 0.262884
698698 35.1218 1.32938
699699 25.5065 0.964743
700700 5.19276 0.196268
701701 −1.19998 −0.0453225 −0.0226612 0.999743i 0.507214π-0.507214\pi
−0.0226612 + 0.999743i 0.507214π0.507214\pi
702702 5.75081 0.217050
703703 −29.4642 −1.11126
704704 11.9346 0.449804
705705 33.3988 1.25787
706706 5.87140 0.220973
707707 −10.7028 −0.402522
708708 6.86609 0.258044
709709 37.0032 1.38969 0.694843 0.719162i 0.255474π-0.255474\pi
0.694843 + 0.719162i 0.255474π0.255474\pi
710710 −11.8960 −0.446448
711711 0.162528 0.00609527
712712 −2.01737 −0.0756042
713713 −76.0643 −2.84863
714714 1.65222 0.0618329
715715 −43.3061 −1.61956
716716 8.69484 0.324941
717717 −11.5629 −0.431824
718718 −27.8093 −1.03783
719719 −26.1347 −0.974660 −0.487330 0.873218i 0.662029π-0.662029\pi
−0.487330 + 0.873218i 0.662029π0.662029\pi
720720 −17.1492 −0.639113
721721 19.3674 0.721278
722722 −2.57634 −0.0958815
723723 −24.7287 −0.919669
724724 4.71014 0.175051
725725 −23.5109 −0.873172
726726 −2.93733 −0.109014
727727 21.4689 0.796239 0.398120 0.917334i 0.369663π-0.369663\pi
0.398120 + 0.917334i 0.369663π0.369663\pi
728728 7.30445 0.270721
729729 1.00000 0.0370370
730730 60.1170 2.22503
731731 −4.96571 −0.183664
732732 8.88346 0.328342
733733 50.1703 1.85308 0.926540 0.376195i 0.122768π-0.122768\pi
0.926540 + 0.376195i 0.122768π0.122768\pi
734734 0 0
735735 −3.48065 −0.128386
736736 −31.2590 −1.15222
737737 30.5283 1.12452
738738 −11.4670 −0.422105
739739 −12.4166 −0.456751 −0.228375 0.973573i 0.573341π-0.573341\pi
−0.228375 + 0.973573i 0.573341π0.573341\pi
740740 −17.9226 −0.658848
741741 14.5359 0.533990
742742 −5.94069 −0.218090
743743 −28.4363 −1.04323 −0.521613 0.853182i 0.674670π-0.674670\pi
−0.521613 + 0.853182i 0.674670π0.674670\pi
744744 −20.1371 −0.738264
745745 50.7557 1.85955
746746 −1.89875 −0.0695183
747747 8.54032 0.312474
748748 −2.60889 −0.0953905
749749 10.8464 0.396318
750750 −12.1625 −0.444113
751751 22.1359 0.807750 0.403875 0.914814i 0.367663π-0.367663\pi
0.403875 + 0.914814i 0.367663π0.367663\pi
752752 47.2775 1.72403
753753 4.86734 0.177376
754754 19.0032 0.692057
755755 34.3911 1.25162
756756 −0.729840 −0.0265440
757757 −22.3028 −0.810610 −0.405305 0.914181i 0.632835π-0.632835\pi
−0.405305 + 0.914181i 0.632835π0.632835\pi
758758 −57.8332 −2.10059
759759 −28.3359 −1.02853
760760 −30.5049 −1.10653
761761 −1.29518 −0.0469503 −0.0234752 0.999724i 0.507473π-0.507473\pi
−0.0234752 + 0.999724i 0.507473π0.507473\pi
762762 6.48830 0.235046
763763 3.55364 0.128650
764764 −16.8149 −0.608341
765765 −3.48065 −0.125843
766766 −26.0832 −0.942423
767767 32.7448 1.18235
768768 −15.4673 −0.558129
769769 −6.42342 −0.231635 −0.115817 0.993271i 0.536949π-0.536949\pi
−0.115817 + 0.993271i 0.536949π0.536949\pi
770770 20.5569 0.740818
771771 −26.7867 −0.964700
772772 −4.75486 −0.171131
773773 13.7061 0.492974 0.246487 0.969146i 0.420724π-0.420724\pi
0.246487 + 0.969146i 0.420724π0.420724\pi
774774 8.20447 0.294903
775775 −68.2718 −2.45239
776776 −20.4097 −0.732664
777777 7.05526 0.253106
778778 −14.2931 −0.512432
779779 −28.9842 −1.03847
780780 8.84196 0.316593
781781 −7.39433 −0.264590
782782 −13.0972 −0.468355
783783 3.30445 0.118091
784784 −4.92701 −0.175965
785785 −14.6496 −0.522868
786786 27.7480 0.989739
787787 48.3328 1.72288 0.861439 0.507861i 0.169564π-0.169564\pi
0.861439 + 0.507861i 0.169564π0.169564\pi
788788 0.454375 0.0161865
789789 −30.6867 −1.09248
790790 0.934666 0.0332539
791791 −11.9597 −0.425238
792792 −7.50162 −0.266558
793793 42.3657 1.50445
794794 −33.0419 −1.17261
795795 12.5149 0.443859
796796 3.68953 0.130772
797797 −32.9105 −1.16575 −0.582875 0.812562i 0.698072π-0.698072\pi
−0.582875 + 0.812562i 0.698072π0.698072\pi
798798 −6.90002 −0.244258
799799 9.59557 0.339467
800800 −28.0566 −0.991952
801801 0.961300 0.0339659
802802 −59.0884 −2.08648
803803 37.3677 1.31868
804804 −6.23307 −0.219823
805805 27.5912 0.972461
806806 55.1823 1.94371
807807 −5.59116 −0.196818
808808 22.4609 0.790170
809809 28.1807 0.990781 0.495391 0.868670i 0.335025π-0.335025\pi
0.495391 + 0.868670i 0.335025π0.335025\pi
810810 5.75081 0.202063
811811 20.9347 0.735116 0.367558 0.930001i 0.380194π-0.380194\pi
0.367558 + 0.930001i 0.380194π0.380194\pi
812812 −2.41172 −0.0846347
813813 −8.88102 −0.311471
814814 −41.6687 −1.46049
815815 1.88066 0.0658767
816816 −4.92701 −0.172480
817817 20.7378 0.725525
818818 25.3509 0.886373
819819 −3.48065 −0.121624
820820 −17.6307 −0.615689
821821 −53.9896 −1.88425 −0.942125 0.335263i 0.891175π-0.891175\pi
−0.942125 + 0.335263i 0.891175π0.891175\pi
822822 −8.54958 −0.298201
823823 −25.9714 −0.905306 −0.452653 0.891687i 0.649522π-0.649522\pi
−0.452653 + 0.891687i 0.649522π0.649522\pi
824824 −40.6441 −1.41590
825825 −25.4330 −0.885465
826826 −15.5436 −0.540830
827827 7.78987 0.270880 0.135440 0.990786i 0.456755π-0.456755\pi
0.135440 + 0.990786i 0.456755π0.456755\pi
828828 5.78546 0.201058
829829 −8.09593 −0.281183 −0.140592 0.990068i 0.544900π-0.544900\pi
−0.140592 + 0.990068i 0.544900π0.544900\pi
830830 49.1137 1.70476
831831 1.50162 0.0520906
832832 −11.6210 −0.402884
833833 −1.00000 −0.0346479
834834 −22.9339 −0.794138
835835 −14.2343 −0.492597
836836 10.8953 0.376821
837837 9.59557 0.331672
838838 −2.05724 −0.0710663
839839 15.0743 0.520421 0.260211 0.965552i 0.416208π-0.416208\pi
0.260211 + 0.965552i 0.416208π0.416208\pi
840840 7.30445 0.252027
841841 −18.0806 −0.623470
842842 60.0791 2.07046
843843 −2.35241 −0.0810213
844844 −7.76132 −0.267156
845845 −3.08064 −0.105977
846846 −15.8540 −0.545073
847847 1.77780 0.0610860
848848 17.7154 0.608351
849849 17.4077 0.597429
850850 −11.7554 −0.403208
851851 −55.9271 −1.91716
852852 1.50973 0.0517224
853853 12.0581 0.412860 0.206430 0.978461i 0.433815π-0.433815\pi
0.206430 + 0.978461i 0.433815π0.433815\pi
854854 −20.1105 −0.688168
855855 14.5359 0.497117
856856 −22.7621 −0.777991
857857 40.3677 1.37893 0.689467 0.724317i 0.257845π-0.257845\pi
0.689467 + 0.724317i 0.257845π0.257845\pi
858858 20.5569 0.701800
859859 41.9110 1.42998 0.714992 0.699132i 0.246430π-0.246430\pi
0.714992 + 0.699132i 0.246430π0.246430\pi
860860 12.6145 0.430151
861861 6.94033 0.236526
862862 −24.1371 −0.822114
863863 −51.0258 −1.73694 −0.868470 0.495742i 0.834896π-0.834896\pi
−0.868470 + 0.495742i 0.834896π0.834896\pi
864864 3.94335 0.134156
865865 52.8021 1.79532
866866 −33.9572 −1.15391
867867 −1.00000 −0.0339618
868868 −7.00324 −0.237705
869869 0.580972 0.0197081
870870 19.0032 0.644270
871871 −29.7259 −1.00722
872872 −7.45761 −0.252547
873873 9.72543 0.329156
874874 54.6966 1.85014
875875 7.36131 0.248858
876876 −7.62950 −0.257777
877877 −29.8286 −1.00724 −0.503621 0.863925i 0.667999π-0.667999\pi
−0.503621 + 0.863925i 0.667999π0.667999\pi
878878 −24.0952 −0.813174
879879 15.9314 0.537354
880880 −61.3017 −2.06648
881881 −24.2477 −0.816924 −0.408462 0.912775i 0.633935π-0.633935\pi
−0.408462 + 0.912775i 0.633935π0.633935\pi
882882 1.65222 0.0556332
883883 17.7569 0.597568 0.298784 0.954321i 0.403419π-0.403419\pi
0.298784 + 0.954321i 0.403419π0.403419\pi
884884 2.54032 0.0854402
885885 32.7448 1.10070
886886 56.2182 1.88869
887887 6.57587 0.220796 0.110398 0.993887i 0.464787π-0.464787\pi
0.110398 + 0.993887i 0.464787π0.464787\pi
888888 −14.8061 −0.496859
889889 −3.92701 −0.131708
890890 5.52825 0.185307
891891 3.57461 0.119754
892892 −13.0721 −0.437686
893893 −40.0731 −1.34099
894894 −24.0931 −0.805795
895895 41.4662 1.38606
896896 13.4030 0.447764
897897 27.5912 0.921242
898898 −56.9944 −1.90193
899899 31.7081 1.05752
900900 5.19276 0.173092
901901 3.59557 0.119786
902902 −40.9899 −1.36481
903903 −4.96571 −0.165249
904904 25.0984 0.834762
905905 22.4629 0.746693
906906 −16.3251 −0.542364
907907 −38.4122 −1.27545 −0.637727 0.770262i 0.720125π-0.720125\pi
−0.637727 + 0.770262i 0.720125π0.720125\pi
908908 4.36374 0.144816
909909 −10.7028 −0.354991
910910 −20.0166 −0.663542
911911 40.0674 1.32749 0.663746 0.747958i 0.268965π-0.268965\pi
0.663746 + 0.747958i 0.268965π0.268965\pi
912912 20.5762 0.681347
913913 30.5283 1.01034
914914 −4.96931 −0.164370
915915 42.3657 1.40057
916916 3.84755 0.127127
917917 −16.7944 −0.554599
918918 1.65222 0.0545315
919919 −42.4940 −1.40175 −0.700873 0.713286i 0.747206π-0.747206\pi
−0.700873 + 0.713286i 0.747206π0.747206\pi
920920 −57.9024 −1.90899
921921 11.5795 0.381556
922922 0.427022 0.0140632
923923 7.19998 0.236990
924924 −2.60889 −0.0858262
925925 −50.1976 −1.65049
926926 33.9919 1.11704
927927 19.3674 0.636107
928928 13.0306 0.427750
929929 45.0001 1.47640 0.738202 0.674579i 0.235675π-0.235675\pi
0.738202 + 0.674579i 0.235675π0.235675\pi
930930 55.1823 1.80950
931931 4.17620 0.136870
932932 −18.6157 −0.609776
933933 1.52825 0.0500328
934934 −19.7880 −0.647483
935935 −12.4420 −0.406895
936936 7.30445 0.238753
937937 17.0267 0.556236 0.278118 0.960547i 0.410289π-0.410289\pi
0.278118 + 0.960547i 0.410289π0.410289\pi
938938 14.1105 0.460725
939939 −15.1565 −0.494614
940940 −24.3758 −0.795052
941941 28.2452 0.920766 0.460383 0.887720i 0.347712π-0.347712\pi
0.460383 + 0.887720i 0.347712π0.347712\pi
942942 6.95401 0.226574
943943 −55.0161 −1.79157
944944 46.3517 1.50862
945945 −3.48065 −0.113226
946946 29.3277 0.953527
947947 54.8065 1.78097 0.890486 0.455011i 0.150365π-0.150365\pi
0.890486 + 0.455011i 0.150365π0.150365\pi
948948 −0.118619 −0.00385258
949949 −36.3855 −1.18112
950950 49.0931 1.59279
951951 −12.8746 −0.417489
952952 2.09859 0.0680156
953953 32.4609 1.05151 0.525757 0.850635i 0.323782π-0.323782\pi
0.525757 + 0.850635i 0.323782π0.323782\pi
954954 −5.94069 −0.192337
955955 −80.1912 −2.59493
956956 8.43907 0.272939
957957 11.8121 0.381831
958958 −4.23182 −0.136724
959959 5.17459 0.167096
960960 −11.6210 −0.375065
961961 61.0750 1.97016
962962 40.5734 1.30814
963963 10.8464 0.349520
964964 18.0480 0.581286
965965 −22.6762 −0.729973
966966 −13.0972 −0.421395
967967 20.6279 0.663348 0.331674 0.943394i 0.392387π-0.392387\pi
0.331674 + 0.943394i 0.392387π0.392387\pi
968968 −3.73087 −0.119915
969969 4.17620 0.134159
970970 55.9291 1.79577
971971 31.6992 1.01728 0.508638 0.860980i 0.330149π-0.330149\pi
0.508638 + 0.860980i 0.330149π0.330149\pi
972972 −0.729840 −0.0234096
973973 13.8807 0.444994
974974 21.8839 0.701206
975975 24.7646 0.793101
976976 59.9706 1.91961
977977 −2.82093 −0.0902497 −0.0451248 0.998981i 0.514369π-0.514369\pi
−0.0451248 + 0.998981i 0.514369π0.514369\pi
978978 −0.892728 −0.0285463
979979 3.43627 0.109824
980980 2.54032 0.0811475
981981 3.55364 0.113459
982982 53.5820 1.70987
983983 36.7557 1.17232 0.586162 0.810194i 0.300638π-0.300638\pi
0.586162 + 0.810194i 0.300638π0.300638\pi
984984 −14.5649 −0.464312
985985 2.16694 0.0690445
986986 5.45968 0.173872
987987 9.59557 0.305430
988988 −10.6089 −0.337514
989989 39.3633 1.25168
990990 20.5569 0.653340
991991 −49.0630 −1.55854 −0.779269 0.626690i 0.784409π-0.784409\pi
−0.779269 + 0.626690i 0.784409π0.784409\pi
992992 37.8387 1.20138
993993 −24.2794 −0.770484
994994 −3.41774 −0.108404
995995 17.5956 0.557817
996996 −6.23307 −0.197502
997997 −49.3343 −1.56243 −0.781217 0.624260i 0.785401π-0.785401\pi
−0.781217 + 0.624260i 0.785401π0.785401\pi
998998 −59.8033 −1.89304
999999 7.05526 0.223218
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.a.h.1.3 4
3.2 odd 2 1071.2.a.j.1.2 4
4.3 odd 2 5712.2.a.bx.1.4 4
5.4 even 2 8925.2.a.bs.1.2 4
7.6 odd 2 2499.2.a.z.1.3 4
17.16 even 2 6069.2.a.s.1.3 4
21.20 even 2 7497.2.a.be.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.a.h.1.3 4 1.1 even 1 trivial
1071.2.a.j.1.2 4 3.2 odd 2
2499.2.a.z.1.3 4 7.6 odd 2
5712.2.a.bx.1.4 4 4.3 odd 2
6069.2.a.s.1.3 4 17.16 even 2
7497.2.a.be.1.2 4 21.20 even 2
8925.2.a.bs.1.2 4 5.4 even 2