Properties

Label 357.2.a.g.1.3
Level $357$
Weight $2$
Character 357.1
Self dual yes
Analytic conductor $2.851$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Error: no document with id 271722290 found in table mf_hecke_traces.

Error: no document with id 265646810 found in table mf_hecke_traces.

Error: table True does not exist

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [357,2,Mod(1,357)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("357.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,1,3,3,2,1,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.34292\) of defining polynomial
Character \(\chi\) \(=\) 357.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.34292 q^{2} +1.00000 q^{3} +3.48929 q^{4} -1.34292 q^{5} +2.34292 q^{6} +1.00000 q^{7} +3.48929 q^{8} +1.00000 q^{9} -3.14637 q^{10} -0.489289 q^{11} +3.48929 q^{12} -3.63565 q^{13} +2.34292 q^{14} -1.34292 q^{15} +1.19656 q^{16} +1.00000 q^{17} +2.34292 q^{18} -3.34292 q^{19} -4.68585 q^{20} +1.00000 q^{21} -1.14637 q^{22} +4.48929 q^{23} +3.48929 q^{24} -3.19656 q^{25} -8.51806 q^{26} +1.00000 q^{27} +3.48929 q^{28} +6.97858 q^{29} -3.14637 q^{30} -5.14637 q^{31} -4.17513 q^{32} -0.489289 q^{33} +2.34292 q^{34} -1.34292 q^{35} +3.48929 q^{36} +4.12494 q^{37} -7.83221 q^{38} -3.63565 q^{39} -4.68585 q^{40} +2.65708 q^{41} +2.34292 q^{42} -4.88240 q^{43} -1.70727 q^{44} -1.34292 q^{45} +10.5181 q^{46} -8.22533 q^{47} +1.19656 q^{48} +1.00000 q^{49} -7.48929 q^{50} +1.00000 q^{51} -12.6858 q^{52} -3.73183 q^{53} +2.34292 q^{54} +0.657077 q^{55} +3.48929 q^{56} -3.34292 q^{57} +16.3503 q^{58} +8.81079 q^{59} -4.68585 q^{60} -2.56090 q^{61} -12.0575 q^{62} +1.00000 q^{63} -12.1751 q^{64} +4.88240 q^{65} -1.14637 q^{66} +16.0575 q^{67} +3.48929 q^{68} +4.48929 q^{69} -3.14637 q^{70} +2.10038 q^{71} +3.48929 q^{72} +1.66442 q^{73} +9.66442 q^{74} -3.19656 q^{75} -11.6644 q^{76} -0.489289 q^{77} -8.51806 q^{78} -3.83221 q^{79} -1.60688 q^{80} +1.00000 q^{81} +6.22533 q^{82} +12.9786 q^{83} +3.48929 q^{84} -1.34292 q^{85} -11.4391 q^{86} +6.97858 q^{87} -1.70727 q^{88} -9.27131 q^{89} -3.14637 q^{90} -3.63565 q^{91} +15.6644 q^{92} -5.14637 q^{93} -19.2713 q^{94} +4.48929 q^{95} -4.17513 q^{96} -6.97858 q^{97} +2.34292 q^{98} -0.489289 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + q^{2} + 3 q^{3} + 3 q^{4} + 2 q^{5} + q^{6} + 3 q^{7} + 3 q^{8} + 3 q^{9} - 8 q^{10} + 6 q^{11} + 3 q^{12} - 2 q^{13} + q^{14} + 2 q^{15} - q^{16} + 3 q^{17} + q^{18} - 4 q^{19} - 2 q^{20} + 3 q^{21}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.34292 1.65670 0.828348 0.560213i \(-0.189281\pi\)
0.828348 + 0.560213i \(0.189281\pi\)
\(3\) 1.00000 0.577350
\(4\) 3.48929 1.74464
\(5\) −1.34292 −0.600573 −0.300287 0.953849i \(-0.597082\pi\)
−0.300287 + 0.953849i \(0.597082\pi\)
\(6\) 2.34292 0.956494
\(7\) 1.00000 0.377964
\(8\) 3.48929 1.23365
\(9\) 1.00000 0.333333
\(10\) −3.14637 −0.994968
\(11\) −0.489289 −0.147526 −0.0737630 0.997276i \(-0.523501\pi\)
−0.0737630 + 0.997276i \(0.523501\pi\)
\(12\) 3.48929 1.00727
\(13\) −3.63565 −1.00835 −0.504175 0.863602i \(-0.668203\pi\)
−0.504175 + 0.863602i \(0.668203\pi\)
\(14\) 2.34292 0.626173
\(15\) −1.34292 −0.346741
\(16\) 1.19656 0.299139
\(17\) 1.00000 0.242536
\(18\) 2.34292 0.552232
\(19\) −3.34292 −0.766919 −0.383460 0.923558i \(-0.625267\pi\)
−0.383460 + 0.923558i \(0.625267\pi\)
\(20\) −4.68585 −1.04779
\(21\) 1.00000 0.218218
\(22\) −1.14637 −0.244406
\(23\) 4.48929 0.936081 0.468041 0.883707i \(-0.344960\pi\)
0.468041 + 0.883707i \(0.344960\pi\)
\(24\) 3.48929 0.712248
\(25\) −3.19656 −0.639312
\(26\) −8.51806 −1.67053
\(27\) 1.00000 0.192450
\(28\) 3.48929 0.659414
\(29\) 6.97858 1.29589 0.647945 0.761687i \(-0.275629\pi\)
0.647945 + 0.761687i \(0.275629\pi\)
\(30\) −3.14637 −0.574445
\(31\) −5.14637 −0.924315 −0.462157 0.886798i \(-0.652924\pi\)
−0.462157 + 0.886798i \(0.652924\pi\)
\(32\) −4.17513 −0.738067
\(33\) −0.489289 −0.0851742
\(34\) 2.34292 0.401808
\(35\) −1.34292 −0.226995
\(36\) 3.48929 0.581548
\(37\) 4.12494 0.678136 0.339068 0.940762i \(-0.389888\pi\)
0.339068 + 0.940762i \(0.389888\pi\)
\(38\) −7.83221 −1.27055
\(39\) −3.63565 −0.582171
\(40\) −4.68585 −0.740897
\(41\) 2.65708 0.414966 0.207483 0.978239i \(-0.433473\pi\)
0.207483 + 0.978239i \(0.433473\pi\)
\(42\) 2.34292 0.361521
\(43\) −4.88240 −0.744560 −0.372280 0.928121i \(-0.621424\pi\)
−0.372280 + 0.928121i \(0.621424\pi\)
\(44\) −1.70727 −0.257380
\(45\) −1.34292 −0.200191
\(46\) 10.5181 1.55080
\(47\) −8.22533 −1.19979 −0.599894 0.800080i \(-0.704790\pi\)
−0.599894 + 0.800080i \(0.704790\pi\)
\(48\) 1.19656 0.172708
\(49\) 1.00000 0.142857
\(50\) −7.48929 −1.05915
\(51\) 1.00000 0.140028
\(52\) −12.6858 −1.75921
\(53\) −3.73183 −0.512606 −0.256303 0.966596i \(-0.582504\pi\)
−0.256303 + 0.966596i \(0.582504\pi\)
\(54\) 2.34292 0.318831
\(55\) 0.657077 0.0886002
\(56\) 3.48929 0.466276
\(57\) −3.34292 −0.442781
\(58\) 16.3503 2.14690
\(59\) 8.81079 1.14707 0.573533 0.819182i \(-0.305572\pi\)
0.573533 + 0.819182i \(0.305572\pi\)
\(60\) −4.68585 −0.604940
\(61\) −2.56090 −0.327890 −0.163945 0.986469i \(-0.552422\pi\)
−0.163945 + 0.986469i \(0.552422\pi\)
\(62\) −12.0575 −1.53131
\(63\) 1.00000 0.125988
\(64\) −12.1751 −1.52189
\(65\) 4.88240 0.605588
\(66\) −1.14637 −0.141108
\(67\) 16.0575 1.96174 0.980870 0.194663i \(-0.0623612\pi\)
0.980870 + 0.194663i \(0.0623612\pi\)
\(68\) 3.48929 0.423138
\(69\) 4.48929 0.540447
\(70\) −3.14637 −0.376063
\(71\) 2.10038 0.249270 0.124635 0.992203i \(-0.460224\pi\)
0.124635 + 0.992203i \(0.460224\pi\)
\(72\) 3.48929 0.411217
\(73\) 1.66442 0.194806 0.0974030 0.995245i \(-0.468946\pi\)
0.0974030 + 0.995245i \(0.468946\pi\)
\(74\) 9.66442 1.12347
\(75\) −3.19656 −0.369107
\(76\) −11.6644 −1.33800
\(77\) −0.489289 −0.0557596
\(78\) −8.51806 −0.964480
\(79\) −3.83221 −0.431157 −0.215579 0.976486i \(-0.569164\pi\)
−0.215579 + 0.976486i \(0.569164\pi\)
\(80\) −1.60688 −0.179655
\(81\) 1.00000 0.111111
\(82\) 6.22533 0.687472
\(83\) 12.9786 1.42458 0.712292 0.701883i \(-0.247657\pi\)
0.712292 + 0.701883i \(0.247657\pi\)
\(84\) 3.48929 0.380713
\(85\) −1.34292 −0.145660
\(86\) −11.4391 −1.23351
\(87\) 6.97858 0.748182
\(88\) −1.70727 −0.181995
\(89\) −9.27131 −0.982757 −0.491378 0.870946i \(-0.663507\pi\)
−0.491378 + 0.870946i \(0.663507\pi\)
\(90\) −3.14637 −0.331656
\(91\) −3.63565 −0.381120
\(92\) 15.6644 1.63313
\(93\) −5.14637 −0.533653
\(94\) −19.2713 −1.98768
\(95\) 4.48929 0.460591
\(96\) −4.17513 −0.426123
\(97\) −6.97858 −0.708567 −0.354284 0.935138i \(-0.615275\pi\)
−0.354284 + 0.935138i \(0.615275\pi\)
\(98\) 2.34292 0.236671
\(99\) −0.489289 −0.0491754
\(100\) −11.1537 −1.11537
\(101\) 16.1825 1.61022 0.805109 0.593128i \(-0.202107\pi\)
0.805109 + 0.593128i \(0.202107\pi\)
\(102\) 2.34292 0.231984
\(103\) 2.61423 0.257588 0.128794 0.991671i \(-0.458889\pi\)
0.128794 + 0.991671i \(0.458889\pi\)
\(104\) −12.6858 −1.24395
\(105\) −1.34292 −0.131056
\(106\) −8.74338 −0.849233
\(107\) −4.88240 −0.472000 −0.236000 0.971753i \(-0.575837\pi\)
−0.236000 + 0.971753i \(0.575837\pi\)
\(108\) 3.48929 0.335757
\(109\) 9.49663 0.909613 0.454806 0.890590i \(-0.349708\pi\)
0.454806 + 0.890590i \(0.349708\pi\)
\(110\) 1.53948 0.146784
\(111\) 4.12494 0.391522
\(112\) 1.19656 0.113064
\(113\) 8.58967 0.808048 0.404024 0.914748i \(-0.367611\pi\)
0.404024 + 0.914748i \(0.367611\pi\)
\(114\) −7.83221 −0.733554
\(115\) −6.02877 −0.562186
\(116\) 24.3503 2.26087
\(117\) −3.63565 −0.336116
\(118\) 20.6430 1.90034
\(119\) 1.00000 0.0916698
\(120\) −4.68585 −0.427757
\(121\) −10.7606 −0.978236
\(122\) −6.00000 −0.543214
\(123\) 2.65708 0.239581
\(124\) −17.9572 −1.61260
\(125\) 11.0073 0.984527
\(126\) 2.34292 0.208724
\(127\) −14.2541 −1.26485 −0.632423 0.774623i \(-0.717940\pi\)
−0.632423 + 0.774623i \(0.717940\pi\)
\(128\) −20.1751 −1.78325
\(129\) −4.88240 −0.429872
\(130\) 11.4391 1.00328
\(131\) −0.0716150 −0.00625703 −0.00312851 0.999995i \(-0.500996\pi\)
−0.00312851 + 0.999995i \(0.500996\pi\)
\(132\) −1.70727 −0.148599
\(133\) −3.34292 −0.289868
\(134\) 37.6216 3.25001
\(135\) −1.34292 −0.115580
\(136\) 3.48929 0.299204
\(137\) 11.3963 0.973647 0.486824 0.873500i \(-0.338155\pi\)
0.486824 + 0.873500i \(0.338155\pi\)
\(138\) 10.5181 0.895357
\(139\) 21.4292 1.81760 0.908802 0.417228i \(-0.136998\pi\)
0.908802 + 0.417228i \(0.136998\pi\)
\(140\) −4.68585 −0.396026
\(141\) −8.22533 −0.692697
\(142\) 4.92104 0.412964
\(143\) 1.77888 0.148758
\(144\) 1.19656 0.0997131
\(145\) −9.37169 −0.778277
\(146\) 3.89962 0.322734
\(147\) 1.00000 0.0824786
\(148\) 14.3931 1.18311
\(149\) 0.292731 0.0239815 0.0119907 0.999928i \(-0.496183\pi\)
0.0119907 + 0.999928i \(0.496183\pi\)
\(150\) −7.48929 −0.611498
\(151\) −16.3074 −1.32708 −0.663540 0.748141i \(-0.730947\pi\)
−0.663540 + 0.748141i \(0.730947\pi\)
\(152\) −11.6644 −0.946110
\(153\) 1.00000 0.0808452
\(154\) −1.14637 −0.0923768
\(155\) 6.91117 0.555119
\(156\) −12.6858 −1.01568
\(157\) −3.44331 −0.274806 −0.137403 0.990515i \(-0.543876\pi\)
−0.137403 + 0.990515i \(0.543876\pi\)
\(158\) −8.97858 −0.714297
\(159\) −3.73183 −0.295953
\(160\) 5.60688 0.443263
\(161\) 4.48929 0.353806
\(162\) 2.34292 0.184077
\(163\) 8.39312 0.657400 0.328700 0.944434i \(-0.393390\pi\)
0.328700 + 0.944434i \(0.393390\pi\)
\(164\) 9.27131 0.723968
\(165\) 0.657077 0.0511534
\(166\) 30.4078 2.36010
\(167\) 5.05019 0.390796 0.195398 0.980724i \(-0.437400\pi\)
0.195398 + 0.980724i \(0.437400\pi\)
\(168\) 3.48929 0.269204
\(169\) 0.217980 0.0167677
\(170\) −3.14637 −0.241315
\(171\) −3.34292 −0.255640
\(172\) −17.0361 −1.29899
\(173\) −13.9284 −1.05896 −0.529478 0.848324i \(-0.677612\pi\)
−0.529478 + 0.848324i \(0.677612\pi\)
\(174\) 16.3503 1.23951
\(175\) −3.19656 −0.241637
\(176\) −0.585462 −0.0441309
\(177\) 8.81079 0.662259
\(178\) −21.7220 −1.62813
\(179\) 18.6858 1.39665 0.698323 0.715783i \(-0.253930\pi\)
0.698323 + 0.715783i \(0.253930\pi\)
\(180\) −4.68585 −0.349262
\(181\) −19.6216 −1.45846 −0.729230 0.684268i \(-0.760122\pi\)
−0.729230 + 0.684268i \(0.760122\pi\)
\(182\) −8.51806 −0.631400
\(183\) −2.56090 −0.189307
\(184\) 15.6644 1.15480
\(185\) −5.53948 −0.407271
\(186\) −12.0575 −0.884102
\(187\) −0.489289 −0.0357803
\(188\) −28.7005 −2.09320
\(189\) 1.00000 0.0727393
\(190\) 10.5181 0.763060
\(191\) −24.3074 −1.75882 −0.879412 0.476062i \(-0.842064\pi\)
−0.879412 + 0.476062i \(0.842064\pi\)
\(192\) −12.1751 −0.878665
\(193\) 4.51806 0.325217 0.162608 0.986691i \(-0.448009\pi\)
0.162608 + 0.986691i \(0.448009\pi\)
\(194\) −16.3503 −1.17388
\(195\) 4.88240 0.349636
\(196\) 3.48929 0.249235
\(197\) −17.2327 −1.22778 −0.613889 0.789393i \(-0.710396\pi\)
−0.613889 + 0.789393i \(0.710396\pi\)
\(198\) −1.14637 −0.0814686
\(199\) −3.04598 −0.215924 −0.107962 0.994155i \(-0.534432\pi\)
−0.107962 + 0.994155i \(0.534432\pi\)
\(200\) −11.1537 −0.788687
\(201\) 16.0575 1.13261
\(202\) 37.9143 2.66764
\(203\) 6.97858 0.489800
\(204\) 3.48929 0.244299
\(205\) −3.56825 −0.249217
\(206\) 6.12494 0.426745
\(207\) 4.48929 0.312027
\(208\) −4.35027 −0.301637
\(209\) 1.63565 0.113141
\(210\) −3.14637 −0.217120
\(211\) 16.6184 1.14406 0.572030 0.820232i \(-0.306156\pi\)
0.572030 + 0.820232i \(0.306156\pi\)
\(212\) −13.0214 −0.894315
\(213\) 2.10038 0.143916
\(214\) −11.4391 −0.781961
\(215\) 6.55669 0.447163
\(216\) 3.48929 0.237416
\(217\) −5.14637 −0.349358
\(218\) 22.2499 1.50695
\(219\) 1.66442 0.112471
\(220\) 2.29273 0.154576
\(221\) −3.63565 −0.244561
\(222\) 9.66442 0.648634
\(223\) 27.2572 1.82528 0.912640 0.408765i \(-0.134040\pi\)
0.912640 + 0.408765i \(0.134040\pi\)
\(224\) −4.17513 −0.278963
\(225\) −3.19656 −0.213104
\(226\) 20.1249 1.33869
\(227\) 26.0288 1.72759 0.863795 0.503843i \(-0.168081\pi\)
0.863795 + 0.503843i \(0.168081\pi\)
\(228\) −11.6644 −0.772495
\(229\) −3.64973 −0.241181 −0.120590 0.992702i \(-0.538479\pi\)
−0.120590 + 0.992702i \(0.538479\pi\)
\(230\) −14.1249 −0.931371
\(231\) −0.489289 −0.0321928
\(232\) 24.3503 1.59867
\(233\) −13.2327 −0.866901 −0.433451 0.901177i \(-0.642704\pi\)
−0.433451 + 0.901177i \(0.642704\pi\)
\(234\) −8.51806 −0.556843
\(235\) 11.0460 0.720560
\(236\) 30.7434 2.00122
\(237\) −3.83221 −0.248929
\(238\) 2.34292 0.151869
\(239\) −15.4391 −0.998672 −0.499336 0.866408i \(-0.666423\pi\)
−0.499336 + 0.866408i \(0.666423\pi\)
\(240\) −1.60688 −0.103724
\(241\) −5.02142 −0.323458 −0.161729 0.986835i \(-0.551707\pi\)
−0.161729 + 0.986835i \(0.551707\pi\)
\(242\) −25.2113 −1.62064
\(243\) 1.00000 0.0641500
\(244\) −8.93573 −0.572052
\(245\) −1.34292 −0.0857962
\(246\) 6.22533 0.396912
\(247\) 12.1537 0.773322
\(248\) −17.9572 −1.14028
\(249\) 12.9786 0.822484
\(250\) 25.7894 1.63106
\(251\) −4.75325 −0.300022 −0.150011 0.988684i \(-0.547931\pi\)
−0.150011 + 0.988684i \(0.547931\pi\)
\(252\) 3.48929 0.219805
\(253\) −2.19656 −0.138096
\(254\) −33.3963 −2.09547
\(255\) −1.34292 −0.0840971
\(256\) −22.9185 −1.43241
\(257\) −4.26817 −0.266241 −0.133121 0.991100i \(-0.542500\pi\)
−0.133121 + 0.991100i \(0.542500\pi\)
\(258\) −11.4391 −0.712167
\(259\) 4.12494 0.256311
\(260\) 17.0361 1.05654
\(261\) 6.97858 0.431963
\(262\) −0.167788 −0.0103660
\(263\) −9.12181 −0.562475 −0.281237 0.959638i \(-0.590745\pi\)
−0.281237 + 0.959638i \(0.590745\pi\)
\(264\) −1.70727 −0.105075
\(265\) 5.01156 0.307858
\(266\) −7.83221 −0.480224
\(267\) −9.27131 −0.567395
\(268\) 56.0294 3.42254
\(269\) −13.9284 −0.849229 −0.424614 0.905374i \(-0.639590\pi\)
−0.424614 + 0.905374i \(0.639590\pi\)
\(270\) −3.14637 −0.191482
\(271\) 16.7722 1.01884 0.509418 0.860519i \(-0.329861\pi\)
0.509418 + 0.860519i \(0.329861\pi\)
\(272\) 1.19656 0.0725520
\(273\) −3.63565 −0.220040
\(274\) 26.7005 1.61304
\(275\) 1.56404 0.0943151
\(276\) 15.6644 0.942887
\(277\) −26.8353 −1.61238 −0.806190 0.591657i \(-0.798474\pi\)
−0.806190 + 0.591657i \(0.798474\pi\)
\(278\) 50.2070 3.01122
\(279\) −5.14637 −0.308105
\(280\) −4.68585 −0.280033
\(281\) 24.0147 1.43260 0.716298 0.697794i \(-0.245835\pi\)
0.716298 + 0.697794i \(0.245835\pi\)
\(282\) −19.2713 −1.14759
\(283\) 30.5181 1.81411 0.907055 0.421012i \(-0.138325\pi\)
0.907055 + 0.421012i \(0.138325\pi\)
\(284\) 7.32885 0.434887
\(285\) 4.48929 0.265923
\(286\) 4.16779 0.246446
\(287\) 2.65708 0.156842
\(288\) −4.17513 −0.246022
\(289\) 1.00000 0.0588235
\(290\) −21.9572 −1.28937
\(291\) −6.97858 −0.409091
\(292\) 5.80765 0.339867
\(293\) 23.0937 1.34915 0.674573 0.738208i \(-0.264328\pi\)
0.674573 + 0.738208i \(0.264328\pi\)
\(294\) 2.34292 0.136642
\(295\) −11.8322 −0.688898
\(296\) 14.3931 0.836583
\(297\) −0.489289 −0.0283914
\(298\) 0.685846 0.0397300
\(299\) −16.3215 −0.943897
\(300\) −11.1537 −0.643960
\(301\) −4.88240 −0.281417
\(302\) −38.2070 −2.19857
\(303\) 16.1825 0.929659
\(304\) −4.00000 −0.229416
\(305\) 3.43910 0.196922
\(306\) 2.34292 0.133936
\(307\) −26.6577 −1.52143 −0.760717 0.649083i \(-0.775153\pi\)
−0.760717 + 0.649083i \(0.775153\pi\)
\(308\) −1.70727 −0.0972807
\(309\) 2.61423 0.148718
\(310\) 16.1923 0.919663
\(311\) 1.17092 0.0663970 0.0331985 0.999449i \(-0.489431\pi\)
0.0331985 + 0.999449i \(0.489431\pi\)
\(312\) −12.6858 −0.718195
\(313\) −23.3963 −1.32243 −0.661217 0.750195i \(-0.729960\pi\)
−0.661217 + 0.750195i \(0.729960\pi\)
\(314\) −8.06740 −0.455270
\(315\) −1.34292 −0.0756651
\(316\) −13.3717 −0.752216
\(317\) −24.1579 −1.35684 −0.678422 0.734672i \(-0.737336\pi\)
−0.678422 + 0.734672i \(0.737336\pi\)
\(318\) −8.74338 −0.490305
\(319\) −3.41454 −0.191177
\(320\) 16.3503 0.914008
\(321\) −4.88240 −0.272509
\(322\) 10.5181 0.586148
\(323\) −3.34292 −0.186005
\(324\) 3.48929 0.193849
\(325\) 11.6216 0.644649
\(326\) 19.6644 1.08911
\(327\) 9.49663 0.525165
\(328\) 9.27131 0.511922
\(329\) −8.22533 −0.453477
\(330\) 1.53948 0.0847456
\(331\) −30.5040 −1.67665 −0.838325 0.545170i \(-0.816465\pi\)
−0.838325 + 0.545170i \(0.816465\pi\)
\(332\) 45.2860 2.48539
\(333\) 4.12494 0.226045
\(334\) 11.8322 0.647430
\(335\) −21.5640 −1.17817
\(336\) 1.19656 0.0652776
\(337\) −29.2186 −1.59164 −0.795819 0.605534i \(-0.792959\pi\)
−0.795819 + 0.605534i \(0.792959\pi\)
\(338\) 0.510711 0.0277790
\(339\) 8.58967 0.466527
\(340\) −4.68585 −0.254126
\(341\) 2.51806 0.136360
\(342\) −7.83221 −0.423518
\(343\) 1.00000 0.0539949
\(344\) −17.0361 −0.918526
\(345\) −6.02877 −0.324578
\(346\) −32.6331 −1.75437
\(347\) −30.2646 −1.62469 −0.812344 0.583179i \(-0.801809\pi\)
−0.812344 + 0.583179i \(0.801809\pi\)
\(348\) 24.3503 1.30531
\(349\) −10.4647 −0.560164 −0.280082 0.959976i \(-0.590362\pi\)
−0.280082 + 0.959976i \(0.590362\pi\)
\(350\) −7.48929 −0.400319
\(351\) −3.63565 −0.194057
\(352\) 2.04285 0.108884
\(353\) −27.9044 −1.48520 −0.742602 0.669733i \(-0.766408\pi\)
−0.742602 + 0.669733i \(0.766408\pi\)
\(354\) 20.6430 1.09716
\(355\) −2.82065 −0.149705
\(356\) −32.3503 −1.71456
\(357\) 1.00000 0.0529256
\(358\) 43.7795 2.31382
\(359\) −9.01156 −0.475612 −0.237806 0.971313i \(-0.576428\pi\)
−0.237806 + 0.971313i \(0.576428\pi\)
\(360\) −4.68585 −0.246966
\(361\) −7.82487 −0.411835
\(362\) −45.9718 −2.41623
\(363\) −10.7606 −0.564785
\(364\) −12.6858 −0.664919
\(365\) −2.23519 −0.116995
\(366\) −6.00000 −0.313625
\(367\) 4.58546 0.239359 0.119680 0.992813i \(-0.461813\pi\)
0.119680 + 0.992813i \(0.461813\pi\)
\(368\) 5.37169 0.280019
\(369\) 2.65708 0.138322
\(370\) −12.9786 −0.674724
\(371\) −3.73183 −0.193747
\(372\) −17.9572 −0.931035
\(373\) −1.85677 −0.0961399 −0.0480700 0.998844i \(-0.515307\pi\)
−0.0480700 + 0.998844i \(0.515307\pi\)
\(374\) −1.14637 −0.0592771
\(375\) 11.0073 0.568417
\(376\) −28.7005 −1.48012
\(377\) −25.3717 −1.30671
\(378\) 2.34292 0.120507
\(379\) 23.1281 1.18801 0.594005 0.804462i \(-0.297546\pi\)
0.594005 + 0.804462i \(0.297546\pi\)
\(380\) 15.6644 0.803568
\(381\) −14.2541 −0.730259
\(382\) −56.9504 −2.91384
\(383\) 4.50337 0.230111 0.115056 0.993359i \(-0.463295\pi\)
0.115056 + 0.993359i \(0.463295\pi\)
\(384\) −20.1751 −1.02956
\(385\) 0.657077 0.0334877
\(386\) 10.5855 0.538786
\(387\) −4.88240 −0.248187
\(388\) −24.3503 −1.23620
\(389\) −33.1856 −1.68258 −0.841289 0.540586i \(-0.818203\pi\)
−0.841289 + 0.540586i \(0.818203\pi\)
\(390\) 11.4391 0.579241
\(391\) 4.48929 0.227033
\(392\) 3.48929 0.176236
\(393\) −0.0716150 −0.00361250
\(394\) −40.3748 −2.03405
\(395\) 5.14637 0.258942
\(396\) −1.70727 −0.0857935
\(397\) −9.77467 −0.490577 −0.245288 0.969450i \(-0.578883\pi\)
−0.245288 + 0.969450i \(0.578883\pi\)
\(398\) −7.13650 −0.357720
\(399\) −3.34292 −0.167355
\(400\) −3.82487 −0.191243
\(401\) 32.4464 1.62030 0.810149 0.586224i \(-0.199386\pi\)
0.810149 + 0.586224i \(0.199386\pi\)
\(402\) 37.6216 1.87639
\(403\) 18.7104 0.932032
\(404\) 56.4653 2.80926
\(405\) −1.34292 −0.0667304
\(406\) 16.3503 0.811450
\(407\) −2.01829 −0.100043
\(408\) 3.48929 0.172746
\(409\) −26.9070 −1.33046 −0.665232 0.746637i \(-0.731667\pi\)
−0.665232 + 0.746637i \(0.731667\pi\)
\(410\) −8.36014 −0.412878
\(411\) 11.3963 0.562136
\(412\) 9.12181 0.449399
\(413\) 8.81079 0.433551
\(414\) 10.5181 0.516934
\(415\) −17.4292 −0.855567
\(416\) 15.1793 0.744229
\(417\) 21.4292 1.04939
\(418\) 3.83221 0.187440
\(419\) 25.2285 1.23249 0.616246 0.787554i \(-0.288653\pi\)
0.616246 + 0.787554i \(0.288653\pi\)
\(420\) −4.68585 −0.228646
\(421\) −24.0617 −1.17270 −0.586349 0.810059i \(-0.699435\pi\)
−0.586349 + 0.810059i \(0.699435\pi\)
\(422\) 38.9357 1.89536
\(423\) −8.22533 −0.399929
\(424\) −13.0214 −0.632376
\(425\) −3.19656 −0.155056
\(426\) 4.92104 0.238425
\(427\) −2.56090 −0.123931
\(428\) −17.0361 −0.823472
\(429\) 1.77888 0.0858853
\(430\) 15.3618 0.740813
\(431\) 16.0000 0.770693 0.385346 0.922772i \(-0.374082\pi\)
0.385346 + 0.922772i \(0.374082\pi\)
\(432\) 1.19656 0.0575694
\(433\) −5.15058 −0.247521 −0.123760 0.992312i \(-0.539495\pi\)
−0.123760 + 0.992312i \(0.539495\pi\)
\(434\) −12.0575 −0.578780
\(435\) −9.37169 −0.449338
\(436\) 33.1365 1.58695
\(437\) −15.0073 −0.717899
\(438\) 3.89962 0.186331
\(439\) −23.6974 −1.13102 −0.565508 0.824743i \(-0.691320\pi\)
−0.565508 + 0.824743i \(0.691320\pi\)
\(440\) 2.29273 0.109302
\(441\) 1.00000 0.0476190
\(442\) −8.51806 −0.405163
\(443\) −1.67429 −0.0795479 −0.0397739 0.999209i \(-0.512664\pi\)
−0.0397739 + 0.999209i \(0.512664\pi\)
\(444\) 14.3931 0.683067
\(445\) 12.4507 0.590218
\(446\) 63.8616 3.02393
\(447\) 0.292731 0.0138457
\(448\) −12.1751 −0.575221
\(449\) 9.85677 0.465170 0.232585 0.972576i \(-0.425282\pi\)
0.232585 + 0.972576i \(0.425282\pi\)
\(450\) −7.48929 −0.353048
\(451\) −1.30008 −0.0612183
\(452\) 29.9718 1.40976
\(453\) −16.3074 −0.766190
\(454\) 60.9834 2.86209
\(455\) 4.88240 0.228891
\(456\) −11.6644 −0.546237
\(457\) 35.1898 1.64611 0.823055 0.567961i \(-0.192268\pi\)
0.823055 + 0.567961i \(0.192268\pi\)
\(458\) −8.55104 −0.399564
\(459\) 1.00000 0.0466760
\(460\) −21.0361 −0.980814
\(461\) 12.1249 0.564715 0.282357 0.959309i \(-0.408884\pi\)
0.282357 + 0.959309i \(0.408884\pi\)
\(462\) −1.14637 −0.0533337
\(463\) 17.7648 0.825601 0.412800 0.910822i \(-0.364551\pi\)
0.412800 + 0.910822i \(0.364551\pi\)
\(464\) 8.35027 0.387652
\(465\) 6.91117 0.320498
\(466\) −31.0031 −1.43619
\(467\) −39.7711 −1.84039 −0.920193 0.391465i \(-0.871968\pi\)
−0.920193 + 0.391465i \(0.871968\pi\)
\(468\) −12.6858 −0.586403
\(469\) 16.0575 0.741468
\(470\) 25.8799 1.19375
\(471\) −3.44331 −0.158659
\(472\) 30.7434 1.41508
\(473\) 2.38890 0.109842
\(474\) −8.97858 −0.412400
\(475\) 10.6858 0.490300
\(476\) 3.48929 0.159931
\(477\) −3.73183 −0.170869
\(478\) −36.1726 −1.65450
\(479\) 8.46473 0.386763 0.193382 0.981124i \(-0.438054\pi\)
0.193382 + 0.981124i \(0.438054\pi\)
\(480\) 5.60688 0.255918
\(481\) −14.9969 −0.683798
\(482\) −11.7648 −0.535872
\(483\) 4.48929 0.204270
\(484\) −37.5468 −1.70667
\(485\) 9.37169 0.425547
\(486\) 2.34292 0.106277
\(487\) 21.1793 0.959728 0.479864 0.877343i \(-0.340686\pi\)
0.479864 + 0.877343i \(0.340686\pi\)
\(488\) −8.93573 −0.404502
\(489\) 8.39312 0.379550
\(490\) −3.14637 −0.142138
\(491\) −17.1793 −0.775293 −0.387647 0.921808i \(-0.626712\pi\)
−0.387647 + 0.921808i \(0.626712\pi\)
\(492\) 9.27131 0.417983
\(493\) 6.97858 0.314299
\(494\) 28.4752 1.28116
\(495\) 0.657077 0.0295334
\(496\) −6.15792 −0.276499
\(497\) 2.10038 0.0942151
\(498\) 30.4078 1.36261
\(499\) 2.79610 0.125170 0.0625852 0.998040i \(-0.480065\pi\)
0.0625852 + 0.998040i \(0.480065\pi\)
\(500\) 38.4078 1.71765
\(501\) 5.05019 0.225626
\(502\) −11.1365 −0.497046
\(503\) 37.5008 1.67208 0.836040 0.548668i \(-0.184865\pi\)
0.836040 + 0.548668i \(0.184865\pi\)
\(504\) 3.48929 0.155425
\(505\) −21.7318 −0.967054
\(506\) −5.14637 −0.228784
\(507\) 0.217980 0.00968085
\(508\) −49.7367 −2.20671
\(509\) −6.39312 −0.283370 −0.141685 0.989912i \(-0.545252\pi\)
−0.141685 + 0.989912i \(0.545252\pi\)
\(510\) −3.14637 −0.139323
\(511\) 1.66442 0.0736298
\(512\) −13.3461 −0.589818
\(513\) −3.34292 −0.147594
\(514\) −10.0000 −0.441081
\(515\) −3.51071 −0.154700
\(516\) −17.0361 −0.749973
\(517\) 4.02456 0.177000
\(518\) 9.66442 0.424630
\(519\) −13.9284 −0.611388
\(520\) 17.0361 0.747083
\(521\) −5.39204 −0.236230 −0.118115 0.993000i \(-0.537685\pi\)
−0.118115 + 0.993000i \(0.537685\pi\)
\(522\) 16.3503 0.715632
\(523\) 41.8223 1.82876 0.914382 0.404853i \(-0.132677\pi\)
0.914382 + 0.404853i \(0.132677\pi\)
\(524\) −0.249885 −0.0109163
\(525\) −3.19656 −0.139509
\(526\) −21.3717 −0.931850
\(527\) −5.14637 −0.224179
\(528\) −0.585462 −0.0254790
\(529\) −2.84629 −0.123752
\(530\) 11.7417 0.510027
\(531\) 8.81079 0.382356
\(532\) −11.6644 −0.505717
\(533\) −9.66021 −0.418430
\(534\) −21.7220 −0.940001
\(535\) 6.55669 0.283471
\(536\) 56.0294 2.42010
\(537\) 18.6858 0.806354
\(538\) −32.6331 −1.40691
\(539\) −0.489289 −0.0210752
\(540\) −4.68585 −0.201647
\(541\) −17.9718 −0.772670 −0.386335 0.922359i \(-0.626259\pi\)
−0.386335 + 0.922359i \(0.626259\pi\)
\(542\) 39.2959 1.68790
\(543\) −19.6216 −0.842042
\(544\) −4.17513 −0.179007
\(545\) −12.7533 −0.546289
\(546\) −8.51806 −0.364539
\(547\) −16.4752 −0.704429 −0.352215 0.935919i \(-0.614571\pi\)
−0.352215 + 0.935919i \(0.614571\pi\)
\(548\) 39.7648 1.69867
\(549\) −2.56090 −0.109297
\(550\) 3.66442 0.156252
\(551\) −23.3288 −0.993842
\(552\) 15.6644 0.666722
\(553\) −3.83221 −0.162962
\(554\) −62.8732 −2.67122
\(555\) −5.53948 −0.235138
\(556\) 74.7728 3.17107
\(557\) 6.61002 0.280076 0.140038 0.990146i \(-0.455278\pi\)
0.140038 + 0.990146i \(0.455278\pi\)
\(558\) −12.0575 −0.510436
\(559\) 17.7507 0.750776
\(560\) −1.60688 −0.0679033
\(561\) −0.489289 −0.0206578
\(562\) 56.2646 2.37338
\(563\) 11.4721 0.483490 0.241745 0.970340i \(-0.422280\pi\)
0.241745 + 0.970340i \(0.422280\pi\)
\(564\) −28.7005 −1.20851
\(565\) −11.5353 −0.485292
\(566\) 71.5015 3.00543
\(567\) 1.00000 0.0419961
\(568\) 7.32885 0.307512
\(569\) 26.6430 1.11693 0.558466 0.829527i \(-0.311390\pi\)
0.558466 + 0.829527i \(0.311390\pi\)
\(570\) 10.5181 0.440553
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 6.20704 0.259529
\(573\) −24.3074 −1.01546
\(574\) 6.22533 0.259840
\(575\) −14.3503 −0.598448
\(576\) −12.1751 −0.507297
\(577\) 22.2640 0.926861 0.463430 0.886133i \(-0.346618\pi\)
0.463430 + 0.886133i \(0.346618\pi\)
\(578\) 2.34292 0.0974528
\(579\) 4.51806 0.187764
\(580\) −32.7005 −1.35782
\(581\) 12.9786 0.538442
\(582\) −16.3503 −0.677740
\(583\) 1.82594 0.0756227
\(584\) 5.80765 0.240322
\(585\) 4.88240 0.201863
\(586\) 54.1067 2.23513
\(587\) −4.08210 −0.168486 −0.0842431 0.996445i \(-0.526847\pi\)
−0.0842431 + 0.996445i \(0.526847\pi\)
\(588\) 3.48929 0.143896
\(589\) 17.2039 0.708875
\(590\) −27.7220 −1.14130
\(591\) −17.2327 −0.708857
\(592\) 4.93573 0.202857
\(593\) 19.8751 0.816171 0.408085 0.912944i \(-0.366197\pi\)
0.408085 + 0.912944i \(0.366197\pi\)
\(594\) −1.14637 −0.0470359
\(595\) −1.34292 −0.0550545
\(596\) 1.02142 0.0418391
\(597\) −3.04598 −0.124664
\(598\) −38.2400 −1.56375
\(599\) 7.13650 0.291589 0.145795 0.989315i \(-0.453426\pi\)
0.145795 + 0.989315i \(0.453426\pi\)
\(600\) −11.1537 −0.455348
\(601\) −5.91790 −0.241396 −0.120698 0.992689i \(-0.538513\pi\)
−0.120698 + 0.992689i \(0.538513\pi\)
\(602\) −11.4391 −0.466223
\(603\) 16.0575 0.653914
\(604\) −56.9013 −2.31528
\(605\) 14.4507 0.587503
\(606\) 37.9143 1.54016
\(607\) −31.8898 −1.29437 −0.647183 0.762335i \(-0.724053\pi\)
−0.647183 + 0.762335i \(0.724053\pi\)
\(608\) 13.9572 0.566037
\(609\) 6.97858 0.282786
\(610\) 8.05754 0.326240
\(611\) 29.9044 1.20980
\(612\) 3.48929 0.141046
\(613\) 38.8543 1.56931 0.784654 0.619934i \(-0.212841\pi\)
0.784654 + 0.619934i \(0.212841\pi\)
\(614\) −62.4569 −2.52056
\(615\) −3.56825 −0.143886
\(616\) −1.70727 −0.0687878
\(617\) −41.4355 −1.66813 −0.834065 0.551666i \(-0.813992\pi\)
−0.834065 + 0.551666i \(0.813992\pi\)
\(618\) 6.12494 0.246381
\(619\) 40.1396 1.61335 0.806674 0.590997i \(-0.201265\pi\)
0.806674 + 0.590997i \(0.201265\pi\)
\(620\) 24.1151 0.968485
\(621\) 4.48929 0.180149
\(622\) 2.74338 0.110000
\(623\) −9.27131 −0.371447
\(624\) −4.35027 −0.174150
\(625\) 1.20077 0.0480307
\(626\) −54.8156 −2.19087
\(627\) 1.63565 0.0653217
\(628\) −12.0147 −0.479438
\(629\) 4.12494 0.164472
\(630\) −3.14637 −0.125354
\(631\) 25.3331 1.00849 0.504247 0.863560i \(-0.331770\pi\)
0.504247 + 0.863560i \(0.331770\pi\)
\(632\) −13.3717 −0.531897
\(633\) 16.6184 0.660524
\(634\) −56.6002 −2.24788
\(635\) 19.1422 0.759633
\(636\) −13.0214 −0.516333
\(637\) −3.63565 −0.144050
\(638\) −8.00000 −0.316723
\(639\) 2.10038 0.0830899
\(640\) 27.0937 1.07097
\(641\) −10.2969 −0.406705 −0.203352 0.979106i \(-0.565184\pi\)
−0.203352 + 0.979106i \(0.565184\pi\)
\(642\) −11.4391 −0.451465
\(643\) −13.5725 −0.535246 −0.267623 0.963524i \(-0.586238\pi\)
−0.267623 + 0.963524i \(0.586238\pi\)
\(644\) 15.6644 0.617265
\(645\) 6.55669 0.258170
\(646\) −7.83221 −0.308154
\(647\) 33.1428 1.30298 0.651488 0.758659i \(-0.274145\pi\)
0.651488 + 0.758659i \(0.274145\pi\)
\(648\) 3.48929 0.137072
\(649\) −4.31102 −0.169222
\(650\) 27.2285 1.06799
\(651\) −5.14637 −0.201702
\(652\) 29.2860 1.14693
\(653\) 32.1966 1.25995 0.629974 0.776616i \(-0.283065\pi\)
0.629974 + 0.776616i \(0.283065\pi\)
\(654\) 22.2499 0.870039
\(655\) 0.0961734 0.00375781
\(656\) 3.17935 0.124133
\(657\) 1.66442 0.0649353
\(658\) −19.2713 −0.751274
\(659\) −38.4408 −1.49744 −0.748720 0.662886i \(-0.769331\pi\)
−0.748720 + 0.662886i \(0.769331\pi\)
\(660\) 2.29273 0.0892444
\(661\) 21.1997 0.824572 0.412286 0.911054i \(-0.364730\pi\)
0.412286 + 0.911054i \(0.364730\pi\)
\(662\) −71.4685 −2.77770
\(663\) −3.63565 −0.141197
\(664\) 45.2860 1.75744
\(665\) 4.48929 0.174087
\(666\) 9.66442 0.374489
\(667\) 31.3288 1.21306
\(668\) 17.6216 0.681799
\(669\) 27.2572 1.05383
\(670\) −50.5229 −1.95187
\(671\) 1.25302 0.0483723
\(672\) −4.17513 −0.161059
\(673\) 37.9143 1.46149 0.730745 0.682651i \(-0.239173\pi\)
0.730745 + 0.682651i \(0.239173\pi\)
\(674\) −68.4569 −2.63686
\(675\) −3.19656 −0.123036
\(676\) 0.760597 0.0292537
\(677\) 39.6075 1.52224 0.761120 0.648611i \(-0.224650\pi\)
0.761120 + 0.648611i \(0.224650\pi\)
\(678\) 20.1249 0.772894
\(679\) −6.97858 −0.267813
\(680\) −4.68585 −0.179694
\(681\) 26.0288 0.997425
\(682\) 5.89962 0.225908
\(683\) 0.374212 0.0143188 0.00715940 0.999974i \(-0.497721\pi\)
0.00715940 + 0.999974i \(0.497721\pi\)
\(684\) −11.6644 −0.446000
\(685\) −15.3043 −0.584747
\(686\) 2.34292 0.0894532
\(687\) −3.64973 −0.139246
\(688\) −5.84208 −0.222727
\(689\) 13.5676 0.516886
\(690\) −14.1249 −0.537727
\(691\) −41.9044 −1.59412 −0.797060 0.603900i \(-0.793613\pi\)
−0.797060 + 0.603900i \(0.793613\pi\)
\(692\) −48.6002 −1.84750
\(693\) −0.489289 −0.0185865
\(694\) −70.9076 −2.69161
\(695\) −28.7778 −1.09160
\(696\) 24.3503 0.922995
\(697\) 2.65708 0.100644
\(698\) −24.5181 −0.928022
\(699\) −13.2327 −0.500506
\(700\) −11.1537 −0.421571
\(701\) 10.4422 0.394398 0.197199 0.980364i \(-0.436816\pi\)
0.197199 + 0.980364i \(0.436816\pi\)
\(702\) −8.51806 −0.321493
\(703\) −13.7894 −0.520076
\(704\) 5.95715 0.224519
\(705\) 11.0460 0.416016
\(706\) −65.3780 −2.46053
\(707\) 16.1825 0.608605
\(708\) 30.7434 1.15541
\(709\) 41.9143 1.57412 0.787062 0.616873i \(-0.211601\pi\)
0.787062 + 0.616873i \(0.211601\pi\)
\(710\) −6.60858 −0.248015
\(711\) −3.83221 −0.143719
\(712\) −32.3503 −1.21238
\(713\) −23.1035 −0.865234
\(714\) 2.34292 0.0876817
\(715\) −2.38890 −0.0893400
\(716\) 65.2003 2.43665
\(717\) −15.4391 −0.576584
\(718\) −21.1134 −0.787945
\(719\) −40.4366 −1.50803 −0.754015 0.656857i \(-0.771885\pi\)
−0.754015 + 0.656857i \(0.771885\pi\)
\(720\) −1.60688 −0.0598851
\(721\) 2.61423 0.0973591
\(722\) −18.3331 −0.682286
\(723\) −5.02142 −0.186749
\(724\) −68.4653 −2.54449
\(725\) −22.3074 −0.828477
\(726\) −25.2113 −0.935677
\(727\) 6.49350 0.240831 0.120415 0.992724i \(-0.461577\pi\)
0.120415 + 0.992724i \(0.461577\pi\)
\(728\) −12.6858 −0.470169
\(729\) 1.00000 0.0370370
\(730\) −5.23688 −0.193826
\(731\) −4.88240 −0.180582
\(732\) −8.93573 −0.330274
\(733\) −24.9933 −0.923147 −0.461574 0.887102i \(-0.652715\pi\)
−0.461574 + 0.887102i \(0.652715\pi\)
\(734\) 10.7434 0.396546
\(735\) −1.34292 −0.0495345
\(736\) −18.7434 −0.690890
\(737\) −7.85677 −0.289408
\(738\) 6.22533 0.229157
\(739\) 8.18186 0.300975 0.150487 0.988612i \(-0.451916\pi\)
0.150487 + 0.988612i \(0.451916\pi\)
\(740\) −19.3288 −0.710543
\(741\) 12.1537 0.446478
\(742\) −8.74338 −0.320980
\(743\) −1.64973 −0.0605227 −0.0302614 0.999542i \(-0.509634\pi\)
−0.0302614 + 0.999542i \(0.509634\pi\)
\(744\) −17.9572 −0.658341
\(745\) −0.393115 −0.0144026
\(746\) −4.35027 −0.159275
\(747\) 12.9786 0.474861
\(748\) −1.70727 −0.0624239
\(749\) −4.88240 −0.178399
\(750\) 25.7894 0.941694
\(751\) −10.2106 −0.372591 −0.186296 0.982494i \(-0.559648\pi\)
−0.186296 + 0.982494i \(0.559648\pi\)
\(752\) −9.84208 −0.358904
\(753\) −4.75325 −0.173218
\(754\) −59.4439 −2.16482
\(755\) 21.8996 0.797009
\(756\) 3.48929 0.126904
\(757\) 31.4763 1.14403 0.572013 0.820245i \(-0.306163\pi\)
0.572013 + 0.820245i \(0.306163\pi\)
\(758\) 54.1873 1.96817
\(759\) −2.19656 −0.0797300
\(760\) 15.6644 0.568208
\(761\) 18.1151 0.656671 0.328336 0.944561i \(-0.393512\pi\)
0.328336 + 0.944561i \(0.393512\pi\)
\(762\) −33.3963 −1.20982
\(763\) 9.49663 0.343801
\(764\) −84.8156 −3.06852
\(765\) −1.34292 −0.0485535
\(766\) 10.5510 0.381224
\(767\) −32.0330 −1.15664
\(768\) −22.9185 −0.827001
\(769\) −10.1207 −0.364963 −0.182481 0.983209i \(-0.558413\pi\)
−0.182481 + 0.983209i \(0.558413\pi\)
\(770\) 1.53948 0.0554790
\(771\) −4.26817 −0.153714
\(772\) 15.7648 0.567388
\(773\) −9.05440 −0.325664 −0.162832 0.986654i \(-0.552063\pi\)
−0.162832 + 0.986654i \(0.552063\pi\)
\(774\) −11.4391 −0.411170
\(775\) 16.4507 0.590925
\(776\) −24.3503 −0.874124
\(777\) 4.12494 0.147981
\(778\) −77.7513 −2.78752
\(779\) −8.88240 −0.318245
\(780\) 17.0361 0.609991
\(781\) −1.02769 −0.0367738
\(782\) 10.5181 0.376125
\(783\) 6.97858 0.249394
\(784\) 1.19656 0.0427342
\(785\) 4.62410 0.165041
\(786\) −0.167788 −0.00598481
\(787\) 17.7402 0.632372 0.316186 0.948697i \(-0.397598\pi\)
0.316186 + 0.948697i \(0.397598\pi\)
\(788\) −60.1298 −2.14203
\(789\) −9.12181 −0.324745
\(790\) 12.0575 0.428988
\(791\) 8.58967 0.305414
\(792\) −1.70727 −0.0606652
\(793\) 9.31056 0.330628
\(794\) −22.9013 −0.812737
\(795\) 5.01156 0.177742
\(796\) −10.6283 −0.376710
\(797\) −9.02142 −0.319555 −0.159778 0.987153i \(-0.551078\pi\)
−0.159778 + 0.987153i \(0.551078\pi\)
\(798\) −7.83221 −0.277257
\(799\) −8.22533 −0.290991
\(800\) 13.3461 0.471854
\(801\) −9.27131 −0.327586
\(802\) 76.0195 2.68434
\(803\) −0.814383 −0.0287390
\(804\) 56.0294 1.97600
\(805\) −6.02877 −0.212486
\(806\) 43.8370 1.54409
\(807\) −13.9284 −0.490302
\(808\) 56.4653 1.98644
\(809\) −31.8328 −1.11918 −0.559591 0.828769i \(-0.689042\pi\)
−0.559591 + 0.828769i \(0.689042\pi\)
\(810\) −3.14637 −0.110552
\(811\) −39.7220 −1.39483 −0.697413 0.716669i \(-0.745666\pi\)
−0.697413 + 0.716669i \(0.745666\pi\)
\(812\) 24.3503 0.854527
\(813\) 16.7722 0.588225
\(814\) −4.72869 −0.165741
\(815\) −11.2713 −0.394817
\(816\) 1.19656 0.0418879
\(817\) 16.3215 0.571017
\(818\) −63.0409 −2.20417
\(819\) −3.63565 −0.127040
\(820\) −12.4507 −0.434796
\(821\) −19.8328 −0.692170 −0.346085 0.938203i \(-0.612489\pi\)
−0.346085 + 0.938203i \(0.612489\pi\)
\(822\) 26.7005 0.931288
\(823\) 6.31729 0.220207 0.110103 0.993920i \(-0.464882\pi\)
0.110103 + 0.993920i \(0.464882\pi\)
\(824\) 9.12181 0.317773
\(825\) 1.56404 0.0544529
\(826\) 20.6430 0.718262
\(827\) 46.8114 1.62779 0.813896 0.581011i \(-0.197343\pi\)
0.813896 + 0.581011i \(0.197343\pi\)
\(828\) 15.6644 0.544376
\(829\) −11.1709 −0.387982 −0.193991 0.981003i \(-0.562143\pi\)
−0.193991 + 0.981003i \(0.562143\pi\)
\(830\) −40.8353 −1.41742
\(831\) −26.8353 −0.930908
\(832\) 44.2646 1.53460
\(833\) 1.00000 0.0346479
\(834\) 50.2070 1.73853
\(835\) −6.78202 −0.234701
\(836\) 5.70727 0.197390
\(837\) −5.14637 −0.177884
\(838\) 59.1083 2.04186
\(839\) −0.849424 −0.0293254 −0.0146627 0.999892i \(-0.504667\pi\)
−0.0146627 + 0.999892i \(0.504667\pi\)
\(840\) −4.68585 −0.161677
\(841\) 19.7005 0.679329
\(842\) −56.3748 −1.94280
\(843\) 24.0147 0.827110
\(844\) 57.9865 1.99598
\(845\) −0.292731 −0.0100703
\(846\) −19.2713 −0.662561
\(847\) −10.7606 −0.369738
\(848\) −4.46535 −0.153341
\(849\) 30.5181 1.04738
\(850\) −7.48929 −0.256880
\(851\) 18.5181 0.634791
\(852\) 7.32885 0.251082
\(853\) −39.4538 −1.35087 −0.675436 0.737419i \(-0.736045\pi\)
−0.675436 + 0.737419i \(0.736045\pi\)
\(854\) −6.00000 −0.205316
\(855\) 4.48929 0.153530
\(856\) −17.0361 −0.582282
\(857\) 31.4208 1.07331 0.536657 0.843800i \(-0.319687\pi\)
0.536657 + 0.843800i \(0.319687\pi\)
\(858\) 4.16779 0.142286
\(859\) 13.5065 0.460836 0.230418 0.973092i \(-0.425991\pi\)
0.230418 + 0.973092i \(0.425991\pi\)
\(860\) 22.8782 0.780140
\(861\) 2.65708 0.0905529
\(862\) 37.4868 1.27680
\(863\) 29.7121 1.01141 0.505706 0.862706i \(-0.331232\pi\)
0.505706 + 0.862706i \(0.331232\pi\)
\(864\) −4.17513 −0.142041
\(865\) 18.7047 0.635981
\(866\) −12.0674 −0.410067
\(867\) 1.00000 0.0339618
\(868\) −17.9572 −0.609506
\(869\) 1.87506 0.0636070
\(870\) −21.9572 −0.744417
\(871\) −58.3797 −1.97812
\(872\) 33.1365 1.12214
\(873\) −6.97858 −0.236189
\(874\) −35.1611 −1.18934
\(875\) 11.0073 0.372116
\(876\) 5.80765 0.196222
\(877\) 37.1035 1.25290 0.626448 0.779463i \(-0.284508\pi\)
0.626448 + 0.779463i \(0.284508\pi\)
\(878\) −55.5212 −1.87375
\(879\) 23.0937 0.778930
\(880\) 0.786230 0.0265038
\(881\) −16.7925 −0.565754 −0.282877 0.959156i \(-0.591289\pi\)
−0.282877 + 0.959156i \(0.591289\pi\)
\(882\) 2.34292 0.0788903
\(883\) 47.8181 1.60921 0.804604 0.593812i \(-0.202378\pi\)
0.804604 + 0.593812i \(0.202378\pi\)
\(884\) −12.6858 −0.426671
\(885\) −11.8322 −0.397735
\(886\) −3.92273 −0.131787
\(887\) 4.85785 0.163110 0.0815552 0.996669i \(-0.474011\pi\)
0.0815552 + 0.996669i \(0.474011\pi\)
\(888\) 14.3931 0.483001
\(889\) −14.2541 −0.478067
\(890\) 29.1709 0.977812
\(891\) −0.489289 −0.0163918
\(892\) 95.1083 3.18446
\(893\) 27.4966 0.920140
\(894\) 0.685846 0.0229381
\(895\) −25.0937 −0.838788
\(896\) −20.1751 −0.674004
\(897\) −16.3215 −0.544959
\(898\) 23.0937 0.770645
\(899\) −35.9143 −1.19781
\(900\) −11.1537 −0.371790
\(901\) −3.73183 −0.124325
\(902\) −3.04598 −0.101420
\(903\) −4.88240 −0.162476
\(904\) 29.9718 0.996849
\(905\) 26.3503 0.875913
\(906\) −38.2070 −1.26934
\(907\) 59.9718 1.99133 0.995666 0.0929985i \(-0.0296452\pi\)
0.995666 + 0.0929985i \(0.0296452\pi\)
\(908\) 90.8219 3.01403
\(909\) 16.1825 0.536739
\(910\) 11.4391 0.379202
\(911\) −5.49602 −0.182091 −0.0910456 0.995847i \(-0.529021\pi\)
−0.0910456 + 0.995847i \(0.529021\pi\)
\(912\) −4.00000 −0.132453
\(913\) −6.35027 −0.210163
\(914\) 82.4471 2.72711
\(915\) 3.43910 0.113693
\(916\) −12.7350 −0.420775
\(917\) −0.0716150 −0.00236493
\(918\) 2.34292 0.0773280
\(919\) −12.6044 −0.415780 −0.207890 0.978152i \(-0.566660\pi\)
−0.207890 + 0.978152i \(0.566660\pi\)
\(920\) −21.0361 −0.693540
\(921\) −26.6577 −0.878401
\(922\) 28.4078 0.935561
\(923\) −7.63627 −0.251351
\(924\) −1.70727 −0.0561650
\(925\) −13.1856 −0.433540
\(926\) 41.6216 1.36777
\(927\) 2.61423 0.0858626
\(928\) −29.1365 −0.956452
\(929\) 27.6848 0.908308 0.454154 0.890923i \(-0.349942\pi\)
0.454154 + 0.890923i \(0.349942\pi\)
\(930\) 16.1923 0.530968
\(931\) −3.34292 −0.109560
\(932\) −46.1726 −1.51243
\(933\) 1.17092 0.0383343
\(934\) −93.1806 −3.04896
\(935\) 0.657077 0.0214887
\(936\) −12.6858 −0.414650
\(937\) 7.85050 0.256465 0.128232 0.991744i \(-0.459070\pi\)
0.128232 + 0.991744i \(0.459070\pi\)
\(938\) 37.6216 1.22839
\(939\) −23.3963 −0.763508
\(940\) 38.5426 1.25712
\(941\) −45.1281 −1.47113 −0.735567 0.677452i \(-0.763084\pi\)
−0.735567 + 0.677452i \(0.763084\pi\)
\(942\) −8.06740 −0.262850
\(943\) 11.9284 0.388442
\(944\) 10.5426 0.343133
\(945\) −1.34292 −0.0436853
\(946\) 5.59702 0.181975
\(947\) 28.3074 0.919868 0.459934 0.887953i \(-0.347873\pi\)
0.459934 + 0.887953i \(0.347873\pi\)
\(948\) −13.3717 −0.434292
\(949\) −6.05127 −0.196432
\(950\) 25.0361 0.812279
\(951\) −24.1579 −0.783374
\(952\) 3.48929 0.113088
\(953\) 22.6184 0.732683 0.366342 0.930480i \(-0.380610\pi\)
0.366342 + 0.930480i \(0.380610\pi\)
\(954\) −8.74338 −0.283078
\(955\) 32.6430 1.05630
\(956\) −53.8715 −1.74233
\(957\) −3.41454 −0.110376
\(958\) 19.8322 0.640750
\(959\) 11.3963 0.368004
\(960\) 16.3503 0.527703
\(961\) −4.51492 −0.145643
\(962\) −35.1365 −1.13285
\(963\) −4.88240 −0.157333
\(964\) −17.5212 −0.564320
\(965\) −6.06740 −0.195317
\(966\) 10.5181 0.338413
\(967\) 18.5040 0.595048 0.297524 0.954714i \(-0.403839\pi\)
0.297524 + 0.954714i \(0.403839\pi\)
\(968\) −37.5468 −1.20680
\(969\) −3.34292 −0.107390
\(970\) 21.9572 0.705002
\(971\) −28.3074 −0.908428 −0.454214 0.890892i \(-0.650080\pi\)
−0.454214 + 0.890892i \(0.650080\pi\)
\(972\) 3.48929 0.111919
\(973\) 21.4292 0.686990
\(974\) 49.6216 1.58998
\(975\) 11.6216 0.372188
\(976\) −3.06427 −0.0980848
\(977\) −34.3650 −1.09943 −0.549716 0.835351i \(-0.685264\pi\)
−0.549716 + 0.835351i \(0.685264\pi\)
\(978\) 19.6644 0.628799
\(979\) 4.53635 0.144982
\(980\) −4.68585 −0.149684
\(981\) 9.49663 0.303204
\(982\) −40.2499 −1.28443
\(983\) −11.4286 −0.364516 −0.182258 0.983251i \(-0.558341\pi\)
−0.182258 + 0.983251i \(0.558341\pi\)
\(984\) 9.27131 0.295559
\(985\) 23.1422 0.737370
\(986\) 16.3503 0.520699
\(987\) −8.22533 −0.261815
\(988\) 42.4078 1.34917
\(989\) −21.9185 −0.696968
\(990\) 1.53948 0.0489279
\(991\) 53.8715 1.71128 0.855642 0.517569i \(-0.173163\pi\)
0.855642 + 0.517569i \(0.173163\pi\)
\(992\) 21.4868 0.682206
\(993\) −30.5040 −0.968015
\(994\) 4.92104 0.156086
\(995\) 4.09052 0.129678
\(996\) 45.2860 1.43494
\(997\) −16.5426 −0.523910 −0.261955 0.965080i \(-0.584367\pi\)
−0.261955 + 0.965080i \(0.584367\pi\)
\(998\) 6.55104 0.207369
\(999\) 4.12494 0.130507
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.a.g.1.3 3
3.2 odd 2 1071.2.a.h.1.1 3
4.3 odd 2 5712.2.a.bt.1.1 3
5.4 even 2 8925.2.a.bm.1.1 3
7.6 odd 2 2499.2.a.s.1.3 3
17.16 even 2 6069.2.a.r.1.3 3
21.20 even 2 7497.2.a.ba.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.a.g.1.3 3 1.1 even 1 trivial
1071.2.a.h.1.1 3 3.2 odd 2
2499.2.a.s.1.3 3 7.6 odd 2
5712.2.a.bt.1.1 3 4.3 odd 2
6069.2.a.r.1.3 3 17.16 even 2
7497.2.a.ba.1.1 3 21.20 even 2
8925.2.a.bm.1.1 3 5.4 even 2