# Properties

 Label 3528.2.s.j.3313.1 Level $3528$ Weight $2$ Character 3528.3313 Analytic conductor $28.171$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$3528 = 2^{3} \cdot 3^{2} \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 3528.s (of order $$3$$, degree $$2$$, not minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$28.1712218331$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, \ldots, a_{25}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 24) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 3313.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 3528.3313 Dual form 3528.2.s.j.361.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.00000 + 1.73205i) q^{5} +O(q^{10})$$ $$q+(-1.00000 + 1.73205i) q^{5} +(2.00000 + 3.46410i) q^{11} -2.00000 q^{13} +(1.00000 + 1.73205i) q^{17} +(2.00000 - 3.46410i) q^{19} +(-4.00000 + 6.92820i) q^{23} +(0.500000 + 0.866025i) q^{25} -6.00000 q^{29} +(-4.00000 - 6.92820i) q^{31} +(-3.00000 + 5.19615i) q^{37} +6.00000 q^{41} +4.00000 q^{43} +(-1.00000 - 1.73205i) q^{53} -8.00000 q^{55} +(2.00000 + 3.46410i) q^{59} +(1.00000 - 1.73205i) q^{61} +(2.00000 - 3.46410i) q^{65} +(2.00000 + 3.46410i) q^{67} -8.00000 q^{71} +(-5.00000 - 8.66025i) q^{73} +(4.00000 - 6.92820i) q^{79} +4.00000 q^{83} -4.00000 q^{85} +(-3.00000 + 5.19615i) q^{89} +(4.00000 + 6.92820i) q^{95} +2.00000 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q - 2q^{5} + O(q^{10})$$ $$2q - 2q^{5} + 4q^{11} - 4q^{13} + 2q^{17} + 4q^{19} - 8q^{23} + q^{25} - 12q^{29} - 8q^{31} - 6q^{37} + 12q^{41} + 8q^{43} - 2q^{53} - 16q^{55} + 4q^{59} + 2q^{61} + 4q^{65} + 4q^{67} - 16q^{71} - 10q^{73} + 8q^{79} + 8q^{83} - 8q^{85} - 6q^{89} + 8q^{95} + 4q^{97} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times$$.

 $$n$$ $$785$$ $$1081$$ $$1765$$ $$2647$$ $$\chi(n)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$1$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.00000 + 1.73205i −0.447214 + 0.774597i −0.998203 0.0599153i $$-0.980917\pi$$
0.550990 + 0.834512i $$0.314250\pi$$
$$6$$ 0 0
$$7$$ 0 0
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 2.00000 + 3.46410i 0.603023 + 1.04447i 0.992361 + 0.123371i $$0.0393705\pi$$
−0.389338 + 0.921095i $$0.627296\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i $$-0.0886875\pi$$
−0.718900 + 0.695113i $$0.755354\pi$$
$$18$$ 0 0
$$19$$ 2.00000 3.46410i 0.458831 0.794719i −0.540068 0.841621i $$-0.681602\pi$$
0.998899 + 0.0469020i $$0.0149348\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −4.00000 + 6.92820i −0.834058 + 1.44463i 0.0607377 + 0.998154i $$0.480655\pi$$
−0.894795 + 0.446476i $$0.852679\pi$$
$$24$$ 0 0
$$25$$ 0.500000 + 0.866025i 0.100000 + 0.173205i
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ −6.00000 −1.11417 −0.557086 0.830455i $$-0.688081\pi$$
−0.557086 + 0.830455i $$0.688081\pi$$
$$30$$ 0 0
$$31$$ −4.00000 6.92820i −0.718421 1.24434i −0.961625 0.274367i $$-0.911532\pi$$
0.243204 0.969975i $$-0.421802\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ −3.00000 + 5.19615i −0.493197 + 0.854242i −0.999969 0.00783774i $$-0.997505\pi$$
0.506772 + 0.862080i $$0.330838\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ 6.00000 0.937043 0.468521 0.883452i $$-0.344787\pi$$
0.468521 + 0.883452i $$0.344787\pi$$
$$42$$ 0 0
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$48$$ 0 0
$$49$$ 0 0
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ −1.00000 1.73205i −0.137361 0.237915i 0.789136 0.614218i $$-0.210529\pi$$
−0.926497 + 0.376303i $$0.877195\pi$$
$$54$$ 0 0
$$55$$ −8.00000 −1.07872
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i $$-0.0828195\pi$$
−0.705965 + 0.708247i $$0.749486\pi$$
$$60$$ 0 0
$$61$$ 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i $$-0.792466\pi$$
0.922916 + 0.385002i $$0.125799\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 2.00000 3.46410i 0.248069 0.429669i
$$66$$ 0 0
$$67$$ 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i $$-0.0880957\pi$$
−0.717607 + 0.696449i $$0.754762\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −8.00000 −0.949425 −0.474713 0.880141i $$-0.657448\pi$$
−0.474713 + 0.880141i $$0.657448\pi$$
$$72$$ 0 0
$$73$$ −5.00000 8.66025i −0.585206 1.01361i −0.994850 0.101361i $$-0.967680\pi$$
0.409644 0.912245i $$-0.365653\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ 4.00000 6.92820i 0.450035 0.779484i −0.548352 0.836247i $$-0.684745\pi$$
0.998388 + 0.0567635i $$0.0180781\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 4.00000 0.439057 0.219529 0.975606i $$-0.429548\pi$$
0.219529 + 0.975606i $$0.429548\pi$$
$$84$$ 0 0
$$85$$ −4.00000 −0.433861
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i $$-0.936344\pi$$
0.662071 + 0.749441i $$0.269678\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 4.00000 + 6.92820i 0.410391 + 0.710819i
$$96$$ 0 0
$$97$$ 2.00000 0.203069 0.101535 0.994832i $$-0.467625\pi$$
0.101535 + 0.994832i $$0.467625\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −9.00000 15.5885i −0.895533 1.55111i −0.833143 0.553058i $$-0.813461\pi$$
−0.0623905 0.998052i $$-0.519872\pi$$
$$102$$ 0 0
$$103$$ −8.00000 + 13.8564i −0.788263 + 1.36531i 0.138767 + 0.990325i $$0.455686\pi$$
−0.927030 + 0.374987i $$0.877647\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −6.00000 + 10.3923i −0.580042 + 1.00466i 0.415432 + 0.909624i $$0.363630\pi$$
−0.995474 + 0.0950377i $$0.969703\pi$$
$$108$$ 0 0
$$109$$ 1.00000 + 1.73205i 0.0957826 + 0.165900i 0.909935 0.414751i $$-0.136131\pi$$
−0.814152 + 0.580651i $$0.802798\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −18.0000 −1.69330 −0.846649 0.532152i $$-0.821383\pi$$
−0.846649 + 0.532152i $$0.821383\pi$$
$$114$$ 0 0
$$115$$ −8.00000 13.8564i −0.746004 1.29212i
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ −2.50000 + 4.33013i −0.227273 + 0.393648i
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −12.0000 −1.07331
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ −2.00000 + 3.46410i −0.174741 + 0.302660i −0.940072 0.340977i $$-0.889242\pi$$
0.765331 + 0.643637i $$0.222575\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −3.00000 5.19615i −0.256307 0.443937i 0.708942 0.705266i $$-0.249173\pi$$
−0.965250 + 0.261329i $$0.915839\pi$$
$$138$$ 0 0
$$139$$ −12.0000 −1.01783 −0.508913 0.860818i $$-0.669953\pi$$
−0.508913 + 0.860818i $$0.669953\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −4.00000 6.92820i −0.334497 0.579365i
$$144$$ 0 0
$$145$$ 6.00000 10.3923i 0.498273 0.863034i
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 7.00000 12.1244i 0.573462 0.993266i −0.422744 0.906249i $$-0.638933\pi$$
0.996207 0.0870170i $$-0.0277334\pi$$
$$150$$ 0 0
$$151$$ 8.00000 + 13.8564i 0.651031 + 1.12762i 0.982873 + 0.184284i $$0.0589965\pi$$
−0.331842 + 0.943335i $$0.607670\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ 16.0000 1.28515
$$156$$ 0 0
$$157$$ 1.00000 + 1.73205i 0.0798087 + 0.138233i 0.903167 0.429289i $$-0.141236\pi$$
−0.823359 + 0.567521i $$0.807902\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ −6.00000 + 10.3923i −0.469956 + 0.813988i −0.999410 0.0343508i $$-0.989064\pi$$
0.529454 + 0.848339i $$0.322397\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −24.0000 −1.85718 −0.928588 0.371113i $$-0.878976\pi$$
−0.928588 + 0.371113i $$0.878976\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i $$-0.760087\pi$$
0.957241 + 0.289292i $$0.0934200\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ 6.00000 + 10.3923i 0.448461 + 0.776757i 0.998286 0.0585225i $$-0.0186389\pi$$
−0.549825 + 0.835280i $$0.685306\pi$$
$$180$$ 0 0
$$181$$ 6.00000 0.445976 0.222988 0.974821i $$-0.428419\pi$$
0.222988 + 0.974821i $$0.428419\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −6.00000 10.3923i −0.441129 0.764057i
$$186$$ 0 0
$$187$$ −4.00000 + 6.92820i −0.292509 + 0.506640i
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$192$$ 0 0
$$193$$ −1.00000 1.73205i −0.0719816 0.124676i 0.827788 0.561041i $$-0.189599\pi$$
−0.899770 + 0.436365i $$0.856266\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ 18.0000 1.28245 0.641223 0.767354i $$-0.278427\pi$$
0.641223 + 0.767354i $$0.278427\pi$$
$$198$$ 0 0
$$199$$ −8.00000 13.8564i −0.567105 0.982255i −0.996850 0.0793045i $$-0.974730\pi$$
0.429745 0.902950i $$-0.358603\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ −6.00000 + 10.3923i −0.419058 + 0.725830i
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ 16.0000 1.10674
$$210$$ 0 0
$$211$$ −20.0000 −1.37686 −0.688428 0.725304i $$-0.741699\pi$$
−0.688428 + 0.725304i $$0.741699\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −4.00000 + 6.92820i −0.272798 + 0.472500i
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −2.00000 3.46410i −0.134535 0.233021i
$$222$$ 0 0
$$223$$ −8.00000 −0.535720 −0.267860 0.963458i $$-0.586316\pi$$
−0.267860 + 0.963458i $$0.586316\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ 6.00000 + 10.3923i 0.398234 + 0.689761i 0.993508 0.113761i $$-0.0362899\pi$$
−0.595274 + 0.803523i $$0.702957\pi$$
$$228$$ 0 0
$$229$$ −11.0000 + 19.0526i −0.726900 + 1.25903i 0.231287 + 0.972886i $$0.425707\pi$$
−0.958187 + 0.286143i $$0.907627\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 5.00000 8.66025i 0.327561 0.567352i −0.654466 0.756091i $$-0.727107\pi$$
0.982027 + 0.188739i $$0.0604400\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ 16.0000 1.03495 0.517477 0.855697i $$-0.326871\pi$$
0.517477 + 0.855697i $$0.326871\pi$$
$$240$$ 0 0
$$241$$ −9.00000 15.5885i −0.579741 1.00414i −0.995509 0.0946700i $$-0.969820\pi$$
0.415768 0.909471i $$-0.363513\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0 0
$$246$$ 0 0
$$247$$ −4.00000 + 6.92820i −0.254514 + 0.440831i
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −20.0000 −1.26239 −0.631194 0.775625i $$-0.717435\pi$$
−0.631194 + 0.775625i $$0.717435\pi$$
$$252$$ 0 0
$$253$$ −32.0000 −2.01182
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 1.00000 1.73205i 0.0623783 0.108042i −0.833150 0.553047i $$-0.813465\pi$$
0.895528 + 0.445005i $$0.146798\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ −4.00000 6.92820i −0.246651 0.427211i 0.715944 0.698158i $$-0.245997\pi$$
−0.962594 + 0.270947i $$0.912663\pi$$
$$264$$ 0 0
$$265$$ 4.00000 0.245718
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −5.00000 8.66025i −0.304855 0.528025i 0.672374 0.740212i $$-0.265275\pi$$
−0.977229 + 0.212187i $$0.931941\pi$$
$$270$$ 0 0
$$271$$ −4.00000 + 6.92820i −0.242983 + 0.420858i −0.961563 0.274586i $$-0.911459\pi$$
0.718580 + 0.695444i $$0.244792\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −2.00000 + 3.46410i −0.120605 + 0.208893i
$$276$$ 0 0
$$277$$ 13.0000 + 22.5167i 0.781094 + 1.35290i 0.931305 + 0.364241i $$0.118672\pi$$
−0.150210 + 0.988654i $$0.547995\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ −26.0000 −1.55103 −0.775515 0.631329i $$-0.782510\pi$$
−0.775515 + 0.631329i $$0.782510\pi$$
$$282$$ 0 0
$$283$$ 14.0000 + 24.2487i 0.832214 + 1.44144i 0.896279 + 0.443491i $$0.146260\pi$$
−0.0640654 + 0.997946i $$0.520407\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ 6.50000 11.2583i 0.382353 0.662255i
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 18.0000 1.05157 0.525786 0.850617i $$-0.323771\pi$$
0.525786 + 0.850617i $$0.323771\pi$$
$$294$$ 0 0
$$295$$ −8.00000 −0.465778
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 8.00000 13.8564i 0.462652 0.801337i
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ 2.00000 + 3.46410i 0.114520 + 0.198354i
$$306$$ 0 0
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −12.0000 20.7846i −0.680458 1.17859i −0.974841 0.222900i $$-0.928448\pi$$
0.294384 0.955687i $$-0.404886\pi$$
$$312$$ 0 0
$$313$$ 3.00000 5.19615i 0.169570 0.293704i −0.768699 0.639611i $$-0.779095\pi$$
0.938269 + 0.345907i $$0.112429\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 3.00000 5.19615i 0.168497 0.291845i −0.769395 0.638774i $$-0.779442\pi$$
0.937892 + 0.346929i $$0.112775\pi$$
$$318$$ 0 0
$$319$$ −12.0000 20.7846i −0.671871 1.16371i
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 8.00000 0.445132
$$324$$ 0 0
$$325$$ −1.00000 1.73205i −0.0554700 0.0960769i
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i $$0.351905\pi$$
−0.998298 + 0.0583130i $$0.981428\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −8.00000 −0.437087
$$336$$ 0 0
$$337$$ 18.0000 0.980522 0.490261 0.871576i $$-0.336901\pi$$
0.490261 + 0.871576i $$0.336901\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 16.0000 27.7128i 0.866449 1.50073i
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i $$-0.271054\pi$$
−0.980921 + 0.194409i $$0.937721\pi$$
$$348$$ 0 0
$$349$$ 30.0000 1.60586 0.802932 0.596071i $$-0.203272\pi$$
0.802932 + 0.596071i $$0.203272\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 1.00000 + 1.73205i 0.0532246 + 0.0921878i 0.891410 0.453197i $$-0.149717\pi$$
−0.838186 + 0.545385i $$0.816383\pi$$
$$354$$ 0 0
$$355$$ 8.00000 13.8564i 0.424596 0.735422i
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −12.0000 + 20.7846i −0.633336 + 1.09697i 0.353529 + 0.935423i $$0.384981\pi$$
−0.986865 + 0.161546i $$0.948352\pi$$
$$360$$ 0 0
$$361$$ 1.50000 + 2.59808i 0.0789474 + 0.136741i
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 20.0000 1.04685
$$366$$ 0 0
$$367$$ 4.00000 + 6.92820i 0.208798 + 0.361649i 0.951336 0.308155i $$-0.0997115\pi$$
−0.742538 + 0.669804i $$0.766378\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ 5.00000 8.66025i 0.258890 0.448411i −0.707055 0.707159i $$-0.749977\pi$$
0.965945 + 0.258748i $$0.0833099\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 12.0000 0.618031
$$378$$ 0 0
$$379$$ 20.0000 1.02733 0.513665 0.857991i $$-0.328287\pi$$
0.513665 + 0.857991i $$0.328287\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ −1.00000 1.73205i −0.0507020 0.0878185i 0.839561 0.543266i $$-0.182813\pi$$
−0.890263 + 0.455448i $$0.849479\pi$$
$$390$$ 0 0
$$391$$ −16.0000 −0.809155
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ 8.00000 + 13.8564i 0.402524 + 0.697191i
$$396$$ 0 0
$$397$$ −7.00000 + 12.1244i −0.351320 + 0.608504i −0.986481 0.163876i $$-0.947600\pi$$
0.635161 + 0.772380i $$0.280934\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −15.0000 + 25.9808i −0.749064 + 1.29742i 0.199207 + 0.979957i $$0.436163\pi$$
−0.948272 + 0.317460i $$0.897170\pi$$
$$402$$ 0 0
$$403$$ 8.00000 + 13.8564i 0.398508 + 0.690237i
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ −24.0000 −1.18964
$$408$$ 0 0
$$409$$ 3.00000 + 5.19615i 0.148340 + 0.256933i 0.930614 0.366002i $$-0.119274\pi$$
−0.782274 + 0.622935i $$0.785940\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ −4.00000 + 6.92820i −0.196352 + 0.340092i
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ −12.0000 −0.586238 −0.293119 0.956076i $$-0.594693\pi$$
−0.293119 + 0.956076i $$0.594693\pi$$
$$420$$ 0 0
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −1.00000 + 1.73205i −0.0485071 + 0.0840168i
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ 16.0000 + 27.7128i 0.770693 + 1.33488i 0.937184 + 0.348836i $$0.113423\pi$$
−0.166491 + 0.986043i $$0.553244\pi$$
$$432$$ 0 0
$$433$$ −14.0000 −0.672797 −0.336399 0.941720i $$-0.609209\pi$$
−0.336399 + 0.941720i $$0.609209\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ 16.0000 + 27.7128i 0.765384 + 1.32568i
$$438$$ 0 0
$$439$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 10.0000 17.3205i 0.475114 0.822922i −0.524479 0.851423i $$-0.675740\pi$$
0.999594 + 0.0285009i $$0.00907336\pi$$
$$444$$ 0 0
$$445$$ −6.00000 10.3923i −0.284427 0.492642i
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 14.0000 0.660701 0.330350 0.943858i $$-0.392833\pi$$
0.330350 + 0.943858i $$0.392833\pi$$
$$450$$ 0 0
$$451$$ 12.0000 + 20.7846i 0.565058 + 0.978709i
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ 11.0000 19.0526i 0.514558 0.891241i −0.485299 0.874348i $$-0.661289\pi$$
0.999857 0.0168929i $$-0.00537742\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 26.0000 1.21094 0.605470 0.795868i $$-0.292985\pi$$
0.605470 + 0.795868i $$0.292985\pi$$
$$462$$ 0 0
$$463$$ 8.00000 0.371792 0.185896 0.982569i $$-0.440481\pi$$
0.185896 + 0.982569i $$0.440481\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ −18.0000 + 31.1769i −0.832941 + 1.44270i 0.0627555 + 0.998029i $$0.480011\pi$$
−0.895696 + 0.444667i $$0.853322\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 8.00000 + 13.8564i 0.367840 + 0.637118i
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −8.00000 13.8564i −0.365529 0.633115i 0.623332 0.781958i $$-0.285779\pi$$
−0.988861 + 0.148842i $$0.952445\pi$$
$$480$$ 0 0
$$481$$ 6.00000 10.3923i 0.273576 0.473848i
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −2.00000 + 3.46410i −0.0908153 + 0.157297i
$$486$$ 0 0
$$487$$ 16.0000 + 27.7128i 0.725029 + 1.25579i 0.958962 + 0.283535i $$0.0915071\pi$$
−0.233933 + 0.972253i $$0.575160\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 12.0000 0.541552 0.270776 0.962642i $$-0.412720\pi$$
0.270776 + 0.962642i $$0.412720\pi$$
$$492$$ 0 0
$$493$$ −6.00000 10.3923i −0.270226 0.468046i
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ −6.00000 + 10.3923i −0.268597 + 0.465223i −0.968500 0.249015i $$-0.919893\pi$$
0.699903 + 0.714238i $$0.253227\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ −24.0000 −1.07011 −0.535054 0.844818i $$-0.679709\pi$$
−0.535054 + 0.844818i $$0.679709\pi$$
$$504$$ 0 0
$$505$$ 36.0000 1.60198
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ 3.00000 5.19615i 0.132973 0.230315i −0.791849 0.610718i $$-0.790881\pi$$
0.924821 + 0.380402i $$0.124214\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −16.0000 27.7128i −0.705044 1.22117i
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ 13.0000 + 22.5167i 0.569540 + 0.986473i 0.996611 + 0.0822547i $$0.0262121\pi$$
−0.427071 + 0.904218i $$0.640455\pi$$
$$522$$ 0 0
$$523$$ −2.00000 + 3.46410i −0.0874539 + 0.151475i −0.906434 0.422347i $$-0.861206\pi$$
0.818980 + 0.573822i $$0.194540\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 8.00000 13.8564i 0.348485 0.603595i
$$528$$ 0 0
$$529$$ −20.5000 35.5070i −0.891304 1.54378i
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −12.0000 −0.519778
$$534$$ 0 0
$$535$$ −12.0000 20.7846i −0.518805 0.898597i
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ 0 0
$$540$$ 0 0
$$541$$ 9.00000 15.5885i 0.386940 0.670200i −0.605096 0.796152i $$-0.706865\pi$$
0.992036 + 0.125952i $$0.0401986\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ −4.00000 −0.171341
$$546$$ 0 0
$$547$$ 44.0000 1.88130 0.940652 0.339372i $$-0.110215\pi$$
0.940652 + 0.339372i $$0.110215\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −12.0000 + 20.7846i −0.511217 + 0.885454i
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ −13.0000 22.5167i −0.550828 0.954062i −0.998215 0.0597213i $$-0.980979\pi$$
0.447387 0.894340i $$-0.352355\pi$$
$$558$$ 0 0
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ 14.0000 + 24.2487i 0.590030 + 1.02196i 0.994228 + 0.107290i $$0.0342173\pi$$
−0.404198 + 0.914671i $$0.632449\pi$$
$$564$$ 0 0
$$565$$ 18.0000 31.1769i 0.757266 1.31162i
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 5.00000 8.66025i 0.209611 0.363057i −0.741981 0.670421i $$-0.766114\pi$$
0.951592 + 0.307364i $$0.0994469\pi$$
$$570$$ 0 0
$$571$$ −18.0000 31.1769i −0.753277 1.30471i −0.946227 0.323505i $$-0.895139\pi$$
0.192950 0.981209i $$-0.438194\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ −8.00000 −0.333623
$$576$$ 0 0
$$577$$ −1.00000 1.73205i −0.0416305 0.0721062i 0.844459 0.535620i $$-0.179922\pi$$
−0.886090 + 0.463513i $$0.846589\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ 4.00000 6.92820i 0.165663 0.286937i
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ 44.0000 1.81607 0.908037 0.418890i $$-0.137581\pi$$
0.908037 + 0.418890i $$0.137581\pi$$
$$588$$ 0 0
$$589$$ −32.0000 −1.31854
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −7.00000 + 12.1244i −0.287456 + 0.497888i −0.973202 0.229953i $$-0.926143\pi$$
0.685746 + 0.727841i $$0.259476\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ 12.0000 + 20.7846i 0.490307 + 0.849236i 0.999938 0.0111569i $$-0.00355143\pi$$
−0.509631 + 0.860393i $$0.670218\pi$$
$$600$$ 0 0
$$601$$ −38.0000 −1.55005 −0.775026 0.631929i $$-0.782263\pi$$
−0.775026 + 0.631929i $$0.782263\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −5.00000 8.66025i −0.203279 0.352089i
$$606$$ 0 0
$$607$$ 20.0000 34.6410i 0.811775 1.40604i −0.0998457 0.995003i $$-0.531835\pi$$
0.911621 0.411033i $$-0.134832\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ −19.0000 32.9090i −0.767403 1.32918i −0.938967 0.344008i $$-0.888215\pi$$
0.171564 0.985173i $$-0.445118\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −42.0000 −1.69086 −0.845428 0.534089i $$-0.820655\pi$$
−0.845428 + 0.534089i $$0.820655\pi$$
$$618$$ 0 0
$$619$$ 22.0000 + 38.1051i 0.884255 + 1.53157i 0.846566 + 0.532284i $$0.178666\pi$$
0.0376891 + 0.999290i $$0.488000\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ 9.50000 16.4545i 0.380000 0.658179i
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −12.0000 −0.478471
$$630$$ 0 0
$$631$$ 16.0000 0.636950 0.318475 0.947931i $$-0.396829\pi$$
0.318475 + 0.947931i $$0.396829\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 8.00000 13.8564i 0.317470 0.549875i
$$636$$ 0 0
$$637$$ 0 0
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ −7.00000 12.1244i −0.276483 0.478883i 0.694025 0.719951i $$-0.255836\pi$$
−0.970508 + 0.241068i $$0.922502\pi$$
$$642$$ 0 0
$$643$$ 12.0000 0.473234 0.236617 0.971603i $$-0.423961\pi$$
0.236617 + 0.971603i $$0.423961\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ 4.00000 + 6.92820i 0.157256 + 0.272376i 0.933878 0.357591i $$-0.116402\pi$$
−0.776622 + 0.629967i $$0.783068\pi$$
$$648$$ 0 0
$$649$$ −8.00000 + 13.8564i −0.314027 + 0.543912i
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 3.00000 5.19615i 0.117399 0.203341i −0.801337 0.598213i $$-0.795878\pi$$
0.918736 + 0.394872i $$0.129211\pi$$
$$654$$ 0 0
$$655$$ −4.00000 6.92820i −0.156293 0.270707i
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ −12.0000 −0.467454 −0.233727 0.972302i $$-0.575092\pi$$
−0.233727 + 0.972302i $$0.575092\pi$$
$$660$$ 0 0
$$661$$ 5.00000 + 8.66025i 0.194477 + 0.336845i 0.946729 0.322031i $$-0.104366\pi$$
−0.752252 + 0.658876i $$0.771032\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ 24.0000 41.5692i 0.929284 1.60957i
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 8.00000 0.308837
$$672$$ 0 0
$$673$$ 34.0000 1.31060 0.655302 0.755367i $$-0.272541\pi$$
0.655302 + 0.755367i $$0.272541\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −1.00000 + 1.73205i −0.0384331 + 0.0665681i −0.884602 0.466347i $$-0.845570\pi$$
0.846169 + 0.532915i $$0.178903\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 2.00000 + 3.46410i 0.0765279 + 0.132550i 0.901750 0.432259i $$-0.142283\pi$$
−0.825222 + 0.564809i $$0.808950\pi$$
$$684$$ 0 0
$$685$$ 12.0000 0.458496
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 2.00000 + 3.46410i 0.0761939 + 0.131972i
$$690$$ 0 0
$$691$$ 2.00000 3.46410i 0.0760836 0.131781i −0.825473 0.564441i $$-0.809092\pi$$
0.901557 + 0.432660i $$0.142425\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 12.0000 20.7846i 0.455186 0.788405i
$$696$$ 0 0
$$697$$ 6.00000 + 10.3923i 0.227266 + 0.393637i
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ −6.00000 −0.226617 −0.113308 0.993560i $$-0.536145\pi$$
−0.113308 + 0.993560i $$0.536145\pi$$
$$702$$ 0 0
$$703$$ 12.0000 + 20.7846i 0.452589 + 0.783906i
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i $$-0.773204\pi$$
0.944509 + 0.328484i $$0.106538\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 64.0000 2.39682
$$714$$ 0 0
$$715$$ 16.0000 0.598366
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ −16.0000 + 27.7128i −0.596699 + 1.03351i 0.396605 + 0.917989i $$0.370188\pi$$
−0.993305 + 0.115524i $$0.963145\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ −3.00000 5.19615i −0.111417 0.192980i
$$726$$ 0 0
$$727$$ 48.0000 1.78022 0.890111 0.455744i $$-0.150627\pi$$
0.890111 + 0.455744i $$0.150627\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ 4.00000 + 6.92820i 0.147945 + 0.256249i
$$732$$ 0 0
$$733$$ −7.00000 + 12.1244i −0.258551 + 0.447823i −0.965854 0.259087i $$-0.916578\pi$$
0.707303 + 0.706910i $$0.249912\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ −8.00000 + 13.8564i −0.294684 + 0.510407i
$$738$$ 0 0
$$739$$ 2.00000 + 3.46410i 0.0735712 + 0.127429i 0.900464 0.434930i $$-0.143227\pi$$
−0.826893 + 0.562360i $$0.809894\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ 8.00000 0.293492 0.146746 0.989174i $$-0.453120\pi$$
0.146746 + 0.989174i $$0.453120\pi$$
$$744$$ 0 0
$$745$$ 14.0000 + 24.2487i 0.512920 + 0.888404i
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ −12.0000 + 20.7846i −0.437886 + 0.758441i −0.997526 0.0702946i $$-0.977606\pi$$
0.559640 + 0.828736i $$0.310939\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ −32.0000 −1.16460
$$756$$ 0 0
$$757$$ 38.0000 1.38113 0.690567 0.723269i $$-0.257361\pi$$
0.690567 + 0.723269i $$0.257361\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ −11.0000 + 19.0526i −0.398750 + 0.690655i −0.993572 0.113203i $$-0.963889\pi$$
0.594822 + 0.803857i $$0.297222\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ −4.00000 6.92820i −0.144432 0.250163i
$$768$$ 0 0
$$769$$ 2.00000 0.0721218 0.0360609 0.999350i $$-0.488519\pi$$
0.0360609 + 0.999350i $$0.488519\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ −9.00000 15.5885i −0.323708 0.560678i 0.657542 0.753418i $$-0.271596\pi$$
−0.981250 + 0.192740i $$0.938263\pi$$
$$774$$ 0 0
$$775$$ 4.00000 6.92820i 0.143684 0.248868i
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 12.0000 20.7846i 0.429945 0.744686i
$$780$$ 0 0
$$781$$ −16.0000 27.7128i −0.572525 0.991642i
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −4.00000 −0.142766
$$786$$ 0 0
$$787$$ −14.0000 24.2487i −0.499046 0.864373i 0.500953 0.865474i $$-0.332983\pi$$
−0.999999 + 0.00110111i $$0.999650\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ −2.00000 + 3.46410i −0.0710221 + 0.123014i
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ −22.0000 −0.779280 −0.389640 0.920967i $$-0.627401\pi$$
−0.389640 + 0.920967i $$0.627401\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ 20.0000 34.6410i 0.705785 1.22245i
$$804$$ 0 0
$$805$$ 0 0