# Properties

 Label 24.2.a.a.1.1 Level $24$ Weight $2$ Character 24.1 Self dual yes Analytic conductor $0.192$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [24,2,Mod(1,24)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(24, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("24.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$24 = 2^{3} \cdot 3$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 24.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.191640964851$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.1 Character $$\chi$$ $$=$$ 24.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{3} -2.00000 q^{5} +1.00000 q^{9} +O(q^{10})$$ $$q-1.00000 q^{3} -2.00000 q^{5} +1.00000 q^{9} +4.00000 q^{11} -2.00000 q^{13} +2.00000 q^{15} +2.00000 q^{17} -4.00000 q^{19} -8.00000 q^{23} -1.00000 q^{25} -1.00000 q^{27} +6.00000 q^{29} +8.00000 q^{31} -4.00000 q^{33} +6.00000 q^{37} +2.00000 q^{39} -6.00000 q^{41} +4.00000 q^{43} -2.00000 q^{45} -7.00000 q^{49} -2.00000 q^{51} -2.00000 q^{53} -8.00000 q^{55} +4.00000 q^{57} +4.00000 q^{59} -2.00000 q^{61} +4.00000 q^{65} -4.00000 q^{67} +8.00000 q^{69} +8.00000 q^{71} +10.0000 q^{73} +1.00000 q^{75} -8.00000 q^{79} +1.00000 q^{81} -4.00000 q^{83} -4.00000 q^{85} -6.00000 q^{87} -6.00000 q^{89} -8.00000 q^{93} +8.00000 q^{95} +2.00000 q^{97} +4.00000 q^{99} +O(q^{100})$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ −1.00000 −0.577350
$$4$$ 0 0
$$5$$ −2.00000 −0.894427 −0.447214 0.894427i $$-0.647584\pi$$
−0.447214 + 0.894427i $$0.647584\pi$$
$$6$$ 0 0
$$7$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$8$$ 0 0
$$9$$ 1.00000 0.333333
$$10$$ 0 0
$$11$$ 4.00000 1.20605 0.603023 0.797724i $$-0.293963\pi$$
0.603023 + 0.797724i $$0.293963\pi$$
$$12$$ 0 0
$$13$$ −2.00000 −0.554700 −0.277350 0.960769i $$-0.589456\pi$$
−0.277350 + 0.960769i $$0.589456\pi$$
$$14$$ 0 0
$$15$$ 2.00000 0.516398
$$16$$ 0 0
$$17$$ 2.00000 0.485071 0.242536 0.970143i $$-0.422021\pi$$
0.242536 + 0.970143i $$0.422021\pi$$
$$18$$ 0 0
$$19$$ −4.00000 −0.917663 −0.458831 0.888523i $$-0.651732\pi$$
−0.458831 + 0.888523i $$0.651732\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ −8.00000 −1.66812 −0.834058 0.551677i $$-0.813988\pi$$
−0.834058 + 0.551677i $$0.813988\pi$$
$$24$$ 0 0
$$25$$ −1.00000 −0.200000
$$26$$ 0 0
$$27$$ −1.00000 −0.192450
$$28$$ 0 0
$$29$$ 6.00000 1.11417 0.557086 0.830455i $$-0.311919\pi$$
0.557086 + 0.830455i $$0.311919\pi$$
$$30$$ 0 0
$$31$$ 8.00000 1.43684 0.718421 0.695608i $$-0.244865\pi$$
0.718421 + 0.695608i $$0.244865\pi$$
$$32$$ 0 0
$$33$$ −4.00000 −0.696311
$$34$$ 0 0
$$35$$ 0 0
$$36$$ 0 0
$$37$$ 6.00000 0.986394 0.493197 0.869918i $$-0.335828\pi$$
0.493197 + 0.869918i $$0.335828\pi$$
$$38$$ 0 0
$$39$$ 2.00000 0.320256
$$40$$ 0 0
$$41$$ −6.00000 −0.937043 −0.468521 0.883452i $$-0.655213\pi$$
−0.468521 + 0.883452i $$0.655213\pi$$
$$42$$ 0 0
$$43$$ 4.00000 0.609994 0.304997 0.952353i $$-0.401344\pi$$
0.304997 + 0.952353i $$0.401344\pi$$
$$44$$ 0 0
$$45$$ −2.00000 −0.298142
$$46$$ 0 0
$$47$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$48$$ 0 0
$$49$$ −7.00000 −1.00000
$$50$$ 0 0
$$51$$ −2.00000 −0.280056
$$52$$ 0 0
$$53$$ −2.00000 −0.274721 −0.137361 0.990521i $$-0.543862\pi$$
−0.137361 + 0.990521i $$0.543862\pi$$
$$54$$ 0 0
$$55$$ −8.00000 −1.07872
$$56$$ 0 0
$$57$$ 4.00000 0.529813
$$58$$ 0 0
$$59$$ 4.00000 0.520756 0.260378 0.965507i $$-0.416153\pi$$
0.260378 + 0.965507i $$0.416153\pi$$
$$60$$ 0 0
$$61$$ −2.00000 −0.256074 −0.128037 0.991769i $$-0.540868\pi$$
−0.128037 + 0.991769i $$0.540868\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ 4.00000 0.496139
$$66$$ 0 0
$$67$$ −4.00000 −0.488678 −0.244339 0.969690i $$-0.578571\pi$$
−0.244339 + 0.969690i $$0.578571\pi$$
$$68$$ 0 0
$$69$$ 8.00000 0.963087
$$70$$ 0 0
$$71$$ 8.00000 0.949425 0.474713 0.880141i $$-0.342552\pi$$
0.474713 + 0.880141i $$0.342552\pi$$
$$72$$ 0 0
$$73$$ 10.0000 1.17041 0.585206 0.810885i $$-0.301014\pi$$
0.585206 + 0.810885i $$0.301014\pi$$
$$74$$ 0 0
$$75$$ 1.00000 0.115470
$$76$$ 0 0
$$77$$ 0 0
$$78$$ 0 0
$$79$$ −8.00000 −0.900070 −0.450035 0.893011i $$-0.648589\pi$$
−0.450035 + 0.893011i $$0.648589\pi$$
$$80$$ 0 0
$$81$$ 1.00000 0.111111
$$82$$ 0 0
$$83$$ −4.00000 −0.439057 −0.219529 0.975606i $$-0.570452\pi$$
−0.219529 + 0.975606i $$0.570452\pi$$
$$84$$ 0 0
$$85$$ −4.00000 −0.433861
$$86$$ 0 0
$$87$$ −6.00000 −0.643268
$$88$$ 0 0
$$89$$ −6.00000 −0.635999 −0.317999 0.948091i $$-0.603011\pi$$
−0.317999 + 0.948091i $$0.603011\pi$$
$$90$$ 0 0
$$91$$ 0 0
$$92$$ 0 0
$$93$$ −8.00000 −0.829561
$$94$$ 0 0
$$95$$ 8.00000 0.820783
$$96$$ 0 0
$$97$$ 2.00000 0.203069 0.101535 0.994832i $$-0.467625\pi$$
0.101535 + 0.994832i $$0.467625\pi$$
$$98$$ 0 0
$$99$$ 4.00000 0.402015
$$100$$ 0 0
$$101$$ −18.0000 −1.79107 −0.895533 0.444994i $$-0.853206\pi$$
−0.895533 + 0.444994i $$0.853206\pi$$
$$102$$ 0 0
$$103$$ 16.0000 1.57653 0.788263 0.615338i $$-0.210980\pi$$
0.788263 + 0.615338i $$0.210980\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −12.0000 −1.16008 −0.580042 0.814587i $$-0.696964\pi$$
−0.580042 + 0.814587i $$0.696964\pi$$
$$108$$ 0 0
$$109$$ −2.00000 −0.191565 −0.0957826 0.995402i $$-0.530535\pi$$
−0.0957826 + 0.995402i $$0.530535\pi$$
$$110$$ 0 0
$$111$$ −6.00000 −0.569495
$$112$$ 0 0
$$113$$ 18.0000 1.69330 0.846649 0.532152i $$-0.178617\pi$$
0.846649 + 0.532152i $$0.178617\pi$$
$$114$$ 0 0
$$115$$ 16.0000 1.49201
$$116$$ 0 0
$$117$$ −2.00000 −0.184900
$$118$$ 0 0
$$119$$ 0 0
$$120$$ 0 0
$$121$$ 5.00000 0.454545
$$122$$ 0 0
$$123$$ 6.00000 0.541002
$$124$$ 0 0
$$125$$ 12.0000 1.07331
$$126$$ 0 0
$$127$$ −8.00000 −0.709885 −0.354943 0.934888i $$-0.615500\pi$$
−0.354943 + 0.934888i $$0.615500\pi$$
$$128$$ 0 0
$$129$$ −4.00000 −0.352180
$$130$$ 0 0
$$131$$ −4.00000 −0.349482 −0.174741 0.984614i $$-0.555909\pi$$
−0.174741 + 0.984614i $$0.555909\pi$$
$$132$$ 0 0
$$133$$ 0 0
$$134$$ 0 0
$$135$$ 2.00000 0.172133
$$136$$ 0 0
$$137$$ −6.00000 −0.512615 −0.256307 0.966595i $$-0.582506\pi$$
−0.256307 + 0.966595i $$0.582506\pi$$
$$138$$ 0 0
$$139$$ −12.0000 −1.01783 −0.508913 0.860818i $$-0.669953\pi$$
−0.508913 + 0.860818i $$0.669953\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ −8.00000 −0.668994
$$144$$ 0 0
$$145$$ −12.0000 −0.996546
$$146$$ 0 0
$$147$$ 7.00000 0.577350
$$148$$ 0 0
$$149$$ 14.0000 1.14692 0.573462 0.819232i $$-0.305600\pi$$
0.573462 + 0.819232i $$0.305600\pi$$
$$150$$ 0 0
$$151$$ −16.0000 −1.30206 −0.651031 0.759051i $$-0.725663\pi$$
−0.651031 + 0.759051i $$0.725663\pi$$
$$152$$ 0 0
$$153$$ 2.00000 0.161690
$$154$$ 0 0
$$155$$ −16.0000 −1.28515
$$156$$ 0 0
$$157$$ −2.00000 −0.159617 −0.0798087 0.996810i $$-0.525431\pi$$
−0.0798087 + 0.996810i $$0.525431\pi$$
$$158$$ 0 0
$$159$$ 2.00000 0.158610
$$160$$ 0 0
$$161$$ 0 0
$$162$$ 0 0
$$163$$ 12.0000 0.939913 0.469956 0.882690i $$-0.344270\pi$$
0.469956 + 0.882690i $$0.344270\pi$$
$$164$$ 0 0
$$165$$ 8.00000 0.622799
$$166$$ 0 0
$$167$$ 24.0000 1.85718 0.928588 0.371113i $$-0.121024\pi$$
0.928588 + 0.371113i $$0.121024\pi$$
$$168$$ 0 0
$$169$$ −9.00000 −0.692308
$$170$$ 0 0
$$171$$ −4.00000 −0.305888
$$172$$ 0 0
$$173$$ 6.00000 0.456172 0.228086 0.973641i $$-0.426753\pi$$
0.228086 + 0.973641i $$0.426753\pi$$
$$174$$ 0 0
$$175$$ 0 0
$$176$$ 0 0
$$177$$ −4.00000 −0.300658
$$178$$ 0 0
$$179$$ 12.0000 0.896922 0.448461 0.893802i $$-0.351972\pi$$
0.448461 + 0.893802i $$0.351972\pi$$
$$180$$ 0 0
$$181$$ 6.00000 0.445976 0.222988 0.974821i $$-0.428419\pi$$
0.222988 + 0.974821i $$0.428419\pi$$
$$182$$ 0 0
$$183$$ 2.00000 0.147844
$$184$$ 0 0
$$185$$ −12.0000 −0.882258
$$186$$ 0 0
$$187$$ 8.00000 0.585018
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$192$$ 0 0
$$193$$ 2.00000 0.143963 0.0719816 0.997406i $$-0.477068\pi$$
0.0719816 + 0.997406i $$0.477068\pi$$
$$194$$ 0 0
$$195$$ −4.00000 −0.286446
$$196$$ 0 0
$$197$$ −18.0000 −1.28245 −0.641223 0.767354i $$-0.721573\pi$$
−0.641223 + 0.767354i $$0.721573\pi$$
$$198$$ 0 0
$$199$$ 16.0000 1.13421 0.567105 0.823646i $$-0.308063\pi$$
0.567105 + 0.823646i $$0.308063\pi$$
$$200$$ 0 0
$$201$$ 4.00000 0.282138
$$202$$ 0 0
$$203$$ 0 0
$$204$$ 0 0
$$205$$ 12.0000 0.838116
$$206$$ 0 0
$$207$$ −8.00000 −0.556038
$$208$$ 0 0
$$209$$ −16.0000 −1.10674
$$210$$ 0 0
$$211$$ −20.0000 −1.37686 −0.688428 0.725304i $$-0.741699\pi$$
−0.688428 + 0.725304i $$0.741699\pi$$
$$212$$ 0 0
$$213$$ −8.00000 −0.548151
$$214$$ 0 0
$$215$$ −8.00000 −0.545595
$$216$$ 0 0
$$217$$ 0 0
$$218$$ 0 0
$$219$$ −10.0000 −0.675737
$$220$$ 0 0
$$221$$ −4.00000 −0.269069
$$222$$ 0 0
$$223$$ −8.00000 −0.535720 −0.267860 0.963458i $$-0.586316\pi$$
−0.267860 + 0.963458i $$0.586316\pi$$
$$224$$ 0 0
$$225$$ −1.00000 −0.0666667
$$226$$ 0 0
$$227$$ 12.0000 0.796468 0.398234 0.917284i $$-0.369623\pi$$
0.398234 + 0.917284i $$0.369623\pi$$
$$228$$ 0 0
$$229$$ 22.0000 1.45380 0.726900 0.686743i $$-0.240960\pi$$
0.726900 + 0.686743i $$0.240960\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ 10.0000 0.655122 0.327561 0.944830i $$-0.393773\pi$$
0.327561 + 0.944830i $$0.393773\pi$$
$$234$$ 0 0
$$235$$ 0 0
$$236$$ 0 0
$$237$$ 8.00000 0.519656
$$238$$ 0 0
$$239$$ −16.0000 −1.03495 −0.517477 0.855697i $$-0.673129\pi$$
−0.517477 + 0.855697i $$0.673129\pi$$
$$240$$ 0 0
$$241$$ 18.0000 1.15948 0.579741 0.814801i $$-0.303154\pi$$
0.579741 + 0.814801i $$0.303154\pi$$
$$242$$ 0 0
$$243$$ −1.00000 −0.0641500
$$244$$ 0 0
$$245$$ 14.0000 0.894427
$$246$$ 0 0
$$247$$ 8.00000 0.509028
$$248$$ 0 0
$$249$$ 4.00000 0.253490
$$250$$ 0 0
$$251$$ 20.0000 1.26239 0.631194 0.775625i $$-0.282565\pi$$
0.631194 + 0.775625i $$0.282565\pi$$
$$252$$ 0 0
$$253$$ −32.0000 −2.01182
$$254$$ 0 0
$$255$$ 4.00000 0.250490
$$256$$ 0 0
$$257$$ 2.00000 0.124757 0.0623783 0.998053i $$-0.480131\pi$$
0.0623783 + 0.998053i $$0.480131\pi$$
$$258$$ 0 0
$$259$$ 0 0
$$260$$ 0 0
$$261$$ 6.00000 0.371391
$$262$$ 0 0
$$263$$ −8.00000 −0.493301 −0.246651 0.969104i $$-0.579330\pi$$
−0.246651 + 0.969104i $$0.579330\pi$$
$$264$$ 0 0
$$265$$ 4.00000 0.245718
$$266$$ 0 0
$$267$$ 6.00000 0.367194
$$268$$ 0 0
$$269$$ −10.0000 −0.609711 −0.304855 0.952399i $$-0.598608\pi$$
−0.304855 + 0.952399i $$0.598608\pi$$
$$270$$ 0 0
$$271$$ 8.00000 0.485965 0.242983 0.970031i $$-0.421874\pi$$
0.242983 + 0.970031i $$0.421874\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ −4.00000 −0.241209
$$276$$ 0 0
$$277$$ −26.0000 −1.56219 −0.781094 0.624413i $$-0.785338\pi$$
−0.781094 + 0.624413i $$0.785338\pi$$
$$278$$ 0 0
$$279$$ 8.00000 0.478947
$$280$$ 0 0
$$281$$ 26.0000 1.55103 0.775515 0.631329i $$-0.217490\pi$$
0.775515 + 0.631329i $$0.217490\pi$$
$$282$$ 0 0
$$283$$ −28.0000 −1.66443 −0.832214 0.554455i $$-0.812927\pi$$
−0.832214 + 0.554455i $$0.812927\pi$$
$$284$$ 0 0
$$285$$ −8.00000 −0.473879
$$286$$ 0 0
$$287$$ 0 0
$$288$$ 0 0
$$289$$ −13.0000 −0.764706
$$290$$ 0 0
$$291$$ −2.00000 −0.117242
$$292$$ 0 0
$$293$$ −18.0000 −1.05157 −0.525786 0.850617i $$-0.676229\pi$$
−0.525786 + 0.850617i $$0.676229\pi$$
$$294$$ 0 0
$$295$$ −8.00000 −0.465778
$$296$$ 0 0
$$297$$ −4.00000 −0.232104
$$298$$ 0 0
$$299$$ 16.0000 0.925304
$$300$$ 0 0
$$301$$ 0 0
$$302$$ 0 0
$$303$$ 18.0000 1.03407
$$304$$ 0 0
$$305$$ 4.00000 0.229039
$$306$$ 0 0
$$307$$ 12.0000 0.684876 0.342438 0.939540i $$-0.388747\pi$$
0.342438 + 0.939540i $$0.388747\pi$$
$$308$$ 0 0
$$309$$ −16.0000 −0.910208
$$310$$ 0 0
$$311$$ −24.0000 −1.36092 −0.680458 0.732787i $$-0.738219\pi$$
−0.680458 + 0.732787i $$0.738219\pi$$
$$312$$ 0 0
$$313$$ −6.00000 −0.339140 −0.169570 0.985518i $$-0.554238\pi$$
−0.169570 + 0.985518i $$0.554238\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 6.00000 0.336994 0.168497 0.985702i $$-0.446109\pi$$
0.168497 + 0.985702i $$0.446109\pi$$
$$318$$ 0 0
$$319$$ 24.0000 1.34374
$$320$$ 0 0
$$321$$ 12.0000 0.669775
$$322$$ 0 0
$$323$$ −8.00000 −0.445132
$$324$$ 0 0
$$325$$ 2.00000 0.110940
$$326$$ 0 0
$$327$$ 2.00000 0.110600
$$328$$ 0 0
$$329$$ 0 0
$$330$$ 0 0
$$331$$ 20.0000 1.09930 0.549650 0.835395i $$-0.314761\pi$$
0.549650 + 0.835395i $$0.314761\pi$$
$$332$$ 0 0
$$333$$ 6.00000 0.328798
$$334$$ 0 0
$$335$$ 8.00000 0.437087
$$336$$ 0 0
$$337$$ 18.0000 0.980522 0.490261 0.871576i $$-0.336901\pi$$
0.490261 + 0.871576i $$0.336901\pi$$
$$338$$ 0 0
$$339$$ −18.0000 −0.977626
$$340$$ 0 0
$$341$$ 32.0000 1.73290
$$342$$ 0 0
$$343$$ 0 0
$$344$$ 0 0
$$345$$ −16.0000 −0.861411
$$346$$ 0 0
$$347$$ −12.0000 −0.644194 −0.322097 0.946707i $$-0.604388\pi$$
−0.322097 + 0.946707i $$0.604388\pi$$
$$348$$ 0 0
$$349$$ 30.0000 1.60586 0.802932 0.596071i $$-0.203272\pi$$
0.802932 + 0.596071i $$0.203272\pi$$
$$350$$ 0 0
$$351$$ 2.00000 0.106752
$$352$$ 0 0
$$353$$ 2.00000 0.106449 0.0532246 0.998583i $$-0.483050\pi$$
0.0532246 + 0.998583i $$0.483050\pi$$
$$354$$ 0 0
$$355$$ −16.0000 −0.849192
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 0 0
$$361$$ −3.00000 −0.157895
$$362$$ 0 0
$$363$$ −5.00000 −0.262432
$$364$$ 0 0
$$365$$ −20.0000 −1.04685
$$366$$ 0 0
$$367$$ −8.00000 −0.417597 −0.208798 0.977959i $$-0.566955\pi$$
−0.208798 + 0.977959i $$0.566955\pi$$
$$368$$ 0 0
$$369$$ −6.00000 −0.312348
$$370$$ 0 0
$$371$$ 0 0
$$372$$ 0 0
$$373$$ −10.0000 −0.517780 −0.258890 0.965907i $$-0.583357\pi$$
−0.258890 + 0.965907i $$0.583357\pi$$
$$374$$ 0 0
$$375$$ −12.0000 −0.619677
$$376$$ 0 0
$$377$$ −12.0000 −0.618031
$$378$$ 0 0
$$379$$ 20.0000 1.02733 0.513665 0.857991i $$-0.328287\pi$$
0.513665 + 0.857991i $$0.328287\pi$$
$$380$$ 0 0
$$381$$ 8.00000 0.409852
$$382$$ 0 0
$$383$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$384$$ 0 0
$$385$$ 0 0
$$386$$ 0 0
$$387$$ 4.00000 0.203331
$$388$$ 0 0
$$389$$ −2.00000 −0.101404 −0.0507020 0.998714i $$-0.516146\pi$$
−0.0507020 + 0.998714i $$0.516146\pi$$
$$390$$ 0 0
$$391$$ −16.0000 −0.809155
$$392$$ 0 0
$$393$$ 4.00000 0.201773
$$394$$ 0 0
$$395$$ 16.0000 0.805047
$$396$$ 0 0
$$397$$ 14.0000 0.702640 0.351320 0.936255i $$-0.385733\pi$$
0.351320 + 0.936255i $$0.385733\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ −30.0000 −1.49813 −0.749064 0.662497i $$-0.769497\pi$$
−0.749064 + 0.662497i $$0.769497\pi$$
$$402$$ 0 0
$$403$$ −16.0000 −0.797017
$$404$$ 0 0
$$405$$ −2.00000 −0.0993808
$$406$$ 0 0
$$407$$ 24.0000 1.18964
$$408$$ 0 0
$$409$$ −6.00000 −0.296681 −0.148340 0.988936i $$-0.547393\pi$$
−0.148340 + 0.988936i $$0.547393\pi$$
$$410$$ 0 0
$$411$$ 6.00000 0.295958
$$412$$ 0 0
$$413$$ 0 0
$$414$$ 0 0
$$415$$ 8.00000 0.392705
$$416$$ 0 0
$$417$$ 12.0000 0.587643
$$418$$ 0 0
$$419$$ 12.0000 0.586238 0.293119 0.956076i $$-0.405307\pi$$
0.293119 + 0.956076i $$0.405307\pi$$
$$420$$ 0 0
$$421$$ −10.0000 −0.487370 −0.243685 0.969854i $$-0.578356\pi$$
−0.243685 + 0.969854i $$0.578356\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −2.00000 −0.0970143
$$426$$ 0 0
$$427$$ 0 0
$$428$$ 0 0
$$429$$ 8.00000 0.386244
$$430$$ 0 0
$$431$$ 32.0000 1.54139 0.770693 0.637207i $$-0.219910\pi$$
0.770693 + 0.637207i $$0.219910\pi$$
$$432$$ 0 0
$$433$$ −14.0000 −0.672797 −0.336399 0.941720i $$-0.609209\pi$$
−0.336399 + 0.941720i $$0.609209\pi$$
$$434$$ 0 0
$$435$$ 12.0000 0.575356
$$436$$ 0 0
$$437$$ 32.0000 1.53077
$$438$$ 0 0
$$439$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$440$$ 0 0
$$441$$ −7.00000 −0.333333
$$442$$ 0 0
$$443$$ 20.0000 0.950229 0.475114 0.879924i $$-0.342407\pi$$
0.475114 + 0.879924i $$0.342407\pi$$
$$444$$ 0 0
$$445$$ 12.0000 0.568855
$$446$$ 0 0
$$447$$ −14.0000 −0.662177
$$448$$ 0 0
$$449$$ −14.0000 −0.660701 −0.330350 0.943858i $$-0.607167\pi$$
−0.330350 + 0.943858i $$0.607167\pi$$
$$450$$ 0 0
$$451$$ −24.0000 −1.13012
$$452$$ 0 0
$$453$$ 16.0000 0.751746
$$454$$ 0 0
$$455$$ 0 0
$$456$$ 0 0
$$457$$ −22.0000 −1.02912 −0.514558 0.857455i $$-0.672044\pi$$
−0.514558 + 0.857455i $$0.672044\pi$$
$$458$$ 0 0
$$459$$ −2.00000 −0.0933520
$$460$$ 0 0
$$461$$ −26.0000 −1.21094 −0.605470 0.795868i $$-0.707015\pi$$
−0.605470 + 0.795868i $$0.707015\pi$$
$$462$$ 0 0
$$463$$ 8.00000 0.371792 0.185896 0.982569i $$-0.440481\pi$$
0.185896 + 0.982569i $$0.440481\pi$$
$$464$$ 0 0
$$465$$ 16.0000 0.741982
$$466$$ 0 0
$$467$$ −36.0000 −1.66588 −0.832941 0.553362i $$-0.813345\pi$$
−0.832941 + 0.553362i $$0.813345\pi$$
$$468$$ 0 0
$$469$$ 0 0
$$470$$ 0 0
$$471$$ 2.00000 0.0921551
$$472$$ 0 0
$$473$$ 16.0000 0.735681
$$474$$ 0 0
$$475$$ 4.00000 0.183533
$$476$$ 0 0
$$477$$ −2.00000 −0.0915737
$$478$$ 0 0
$$479$$ −16.0000 −0.731059 −0.365529 0.930800i $$-0.619112\pi$$
−0.365529 + 0.930800i $$0.619112\pi$$
$$480$$ 0 0
$$481$$ −12.0000 −0.547153
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ −4.00000 −0.181631
$$486$$ 0 0
$$487$$ −32.0000 −1.45006 −0.725029 0.688718i $$-0.758174\pi$$
−0.725029 + 0.688718i $$0.758174\pi$$
$$488$$ 0 0
$$489$$ −12.0000 −0.542659
$$490$$ 0 0
$$491$$ −12.0000 −0.541552 −0.270776 0.962642i $$-0.587280\pi$$
−0.270776 + 0.962642i $$0.587280\pi$$
$$492$$ 0 0
$$493$$ 12.0000 0.540453
$$494$$ 0 0
$$495$$ −8.00000 −0.359573
$$496$$ 0 0
$$497$$ 0 0
$$498$$ 0 0
$$499$$ 12.0000 0.537194 0.268597 0.963253i $$-0.413440\pi$$
0.268597 + 0.963253i $$0.413440\pi$$
$$500$$ 0 0
$$501$$ −24.0000 −1.07224
$$502$$ 0 0
$$503$$ 24.0000 1.07011 0.535054 0.844818i $$-0.320291\pi$$
0.535054 + 0.844818i $$0.320291\pi$$
$$504$$ 0 0
$$505$$ 36.0000 1.60198
$$506$$ 0 0
$$507$$ 9.00000 0.399704
$$508$$ 0 0
$$509$$ 6.00000 0.265945 0.132973 0.991120i $$-0.457548\pi$$
0.132973 + 0.991120i $$0.457548\pi$$
$$510$$ 0 0
$$511$$ 0 0
$$512$$ 0 0
$$513$$ 4.00000 0.176604
$$514$$ 0 0
$$515$$ −32.0000 −1.41009
$$516$$ 0 0
$$517$$ 0 0
$$518$$ 0 0
$$519$$ −6.00000 −0.263371
$$520$$ 0 0
$$521$$ 26.0000 1.13908 0.569540 0.821963i $$-0.307121\pi$$
0.569540 + 0.821963i $$0.307121\pi$$
$$522$$ 0 0
$$523$$ 4.00000 0.174908 0.0874539 0.996169i $$-0.472127\pi$$
0.0874539 + 0.996169i $$0.472127\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ 16.0000 0.696971
$$528$$ 0 0
$$529$$ 41.0000 1.78261
$$530$$ 0 0
$$531$$ 4.00000 0.173585
$$532$$ 0 0
$$533$$ 12.0000 0.519778
$$534$$ 0 0
$$535$$ 24.0000 1.03761
$$536$$ 0 0
$$537$$ −12.0000 −0.517838
$$538$$ 0 0
$$539$$ −28.0000 −1.20605
$$540$$ 0 0
$$541$$ −18.0000 −0.773880 −0.386940 0.922105i $$-0.626468\pi$$
−0.386940 + 0.922105i $$0.626468\pi$$
$$542$$ 0 0
$$543$$ −6.00000 −0.257485
$$544$$ 0 0
$$545$$ 4.00000 0.171341
$$546$$ 0 0
$$547$$ 44.0000 1.88130 0.940652 0.339372i $$-0.110215\pi$$
0.940652 + 0.339372i $$0.110215\pi$$
$$548$$ 0 0
$$549$$ −2.00000 −0.0853579
$$550$$ 0 0
$$551$$ −24.0000 −1.02243
$$552$$ 0 0
$$553$$ 0 0
$$554$$ 0 0
$$555$$ 12.0000 0.509372
$$556$$ 0 0
$$557$$ −26.0000 −1.10166 −0.550828 0.834619i $$-0.685688\pi$$
−0.550828 + 0.834619i $$0.685688\pi$$
$$558$$ 0 0
$$559$$ −8.00000 −0.338364
$$560$$ 0 0
$$561$$ −8.00000 −0.337760
$$562$$ 0 0
$$563$$ 28.0000 1.18006 0.590030 0.807382i $$-0.299116\pi$$
0.590030 + 0.807382i $$0.299116\pi$$
$$564$$ 0 0
$$565$$ −36.0000 −1.51453
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 10.0000 0.419222 0.209611 0.977785i $$-0.432780\pi$$
0.209611 + 0.977785i $$0.432780\pi$$
$$570$$ 0 0
$$571$$ 36.0000 1.50655 0.753277 0.657704i $$-0.228472\pi$$
0.753277 + 0.657704i $$0.228472\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 8.00000 0.333623
$$576$$ 0 0
$$577$$ 2.00000 0.0832611 0.0416305 0.999133i $$-0.486745\pi$$
0.0416305 + 0.999133i $$0.486745\pi$$
$$578$$ 0 0
$$579$$ −2.00000 −0.0831172
$$580$$ 0 0
$$581$$ 0 0
$$582$$ 0 0
$$583$$ −8.00000 −0.331326
$$584$$ 0 0
$$585$$ 4.00000 0.165380
$$586$$ 0 0
$$587$$ −44.0000 −1.81607 −0.908037 0.418890i $$-0.862419\pi$$
−0.908037 + 0.418890i $$0.862419\pi$$
$$588$$ 0 0
$$589$$ −32.0000 −1.31854
$$590$$ 0 0
$$591$$ 18.0000 0.740421
$$592$$ 0 0
$$593$$ −14.0000 −0.574911 −0.287456 0.957794i $$-0.592809\pi$$
−0.287456 + 0.957794i $$0.592809\pi$$
$$594$$ 0 0
$$595$$ 0 0
$$596$$ 0 0
$$597$$ −16.0000 −0.654836
$$598$$ 0 0
$$599$$ 24.0000 0.980613 0.490307 0.871550i $$-0.336885\pi$$
0.490307 + 0.871550i $$0.336885\pi$$
$$600$$ 0 0
$$601$$ −38.0000 −1.55005 −0.775026 0.631929i $$-0.782263\pi$$
−0.775026 + 0.631929i $$0.782263\pi$$
$$602$$ 0 0
$$603$$ −4.00000 −0.162893
$$604$$ 0 0
$$605$$ −10.0000 −0.406558
$$606$$ 0 0
$$607$$ −40.0000 −1.62355 −0.811775 0.583970i $$-0.801498\pi$$
−0.811775 + 0.583970i $$0.801498\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ 0 0
$$612$$ 0 0
$$613$$ 38.0000 1.53481 0.767403 0.641165i $$-0.221549\pi$$
0.767403 + 0.641165i $$0.221549\pi$$
$$614$$ 0 0
$$615$$ −12.0000 −0.483887
$$616$$ 0 0
$$617$$ 42.0000 1.69086 0.845428 0.534089i $$-0.179345\pi$$
0.845428 + 0.534089i $$0.179345\pi$$
$$618$$ 0 0
$$619$$ −44.0000 −1.76851 −0.884255 0.467005i $$-0.845333\pi$$
−0.884255 + 0.467005i $$0.845333\pi$$
$$620$$ 0 0
$$621$$ 8.00000 0.321029
$$622$$ 0 0
$$623$$ 0 0
$$624$$ 0 0
$$625$$ −19.0000 −0.760000
$$626$$ 0 0
$$627$$ 16.0000 0.638978
$$628$$ 0 0
$$629$$ 12.0000 0.478471
$$630$$ 0 0
$$631$$ 16.0000 0.636950 0.318475 0.947931i $$-0.396829\pi$$
0.318475 + 0.947931i $$0.396829\pi$$
$$632$$ 0 0
$$633$$ 20.0000 0.794929
$$634$$ 0 0
$$635$$ 16.0000 0.634941
$$636$$ 0 0
$$637$$ 14.0000 0.554700
$$638$$ 0 0
$$639$$ 8.00000 0.316475
$$640$$ 0 0
$$641$$ −14.0000 −0.552967 −0.276483 0.961019i $$-0.589169\pi$$
−0.276483 + 0.961019i $$0.589169\pi$$
$$642$$ 0 0
$$643$$ 12.0000 0.473234 0.236617 0.971603i $$-0.423961\pi$$
0.236617 + 0.971603i $$0.423961\pi$$
$$644$$ 0 0
$$645$$ 8.00000 0.315000
$$646$$ 0 0
$$647$$ 8.00000 0.314512 0.157256 0.987558i $$-0.449735\pi$$
0.157256 + 0.987558i $$0.449735\pi$$
$$648$$ 0 0
$$649$$ 16.0000 0.628055
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ 6.00000 0.234798 0.117399 0.993085i $$-0.462544\pi$$
0.117399 + 0.993085i $$0.462544\pi$$
$$654$$ 0 0
$$655$$ 8.00000 0.312586
$$656$$ 0 0
$$657$$ 10.0000 0.390137
$$658$$ 0 0
$$659$$ 12.0000 0.467454 0.233727 0.972302i $$-0.424908\pi$$
0.233727 + 0.972302i $$0.424908\pi$$
$$660$$ 0 0
$$661$$ −10.0000 −0.388955 −0.194477 0.980907i $$-0.562301\pi$$
−0.194477 + 0.980907i $$0.562301\pi$$
$$662$$ 0 0
$$663$$ 4.00000 0.155347
$$664$$ 0 0
$$665$$ 0 0
$$666$$ 0 0
$$667$$ −48.0000 −1.85857
$$668$$ 0 0
$$669$$ 8.00000 0.309298
$$670$$ 0 0
$$671$$ −8.00000 −0.308837
$$672$$ 0 0
$$673$$ 34.0000 1.31060 0.655302 0.755367i $$-0.272541\pi$$
0.655302 + 0.755367i $$0.272541\pi$$
$$674$$ 0 0
$$675$$ 1.00000 0.0384900
$$676$$ 0 0
$$677$$ −2.00000 −0.0768662 −0.0384331 0.999261i $$-0.512237\pi$$
−0.0384331 + 0.999261i $$0.512237\pi$$
$$678$$ 0 0
$$679$$ 0 0
$$680$$ 0 0
$$681$$ −12.0000 −0.459841
$$682$$ 0 0
$$683$$ 4.00000 0.153056 0.0765279 0.997067i $$-0.475617\pi$$
0.0765279 + 0.997067i $$0.475617\pi$$
$$684$$ 0 0
$$685$$ 12.0000 0.458496
$$686$$ 0 0
$$687$$ −22.0000 −0.839352
$$688$$ 0 0
$$689$$ 4.00000 0.152388
$$690$$ 0 0
$$691$$ −4.00000 −0.152167 −0.0760836 0.997101i $$-0.524242\pi$$
−0.0760836 + 0.997101i $$0.524242\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ 24.0000 0.910372
$$696$$ 0 0
$$697$$ −12.0000 −0.454532
$$698$$ 0 0
$$699$$ −10.0000 −0.378235
$$700$$ 0 0
$$701$$ 6.00000 0.226617 0.113308 0.993560i $$-0.463855\pi$$
0.113308 + 0.993560i $$0.463855\pi$$
$$702$$ 0 0
$$703$$ −24.0000 −0.905177
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ 0 0
$$708$$ 0 0
$$709$$ −10.0000 −0.375558 −0.187779 0.982211i $$-0.560129\pi$$
−0.187779 + 0.982211i $$0.560129\pi$$
$$710$$ 0 0
$$711$$ −8.00000 −0.300023
$$712$$ 0 0
$$713$$ −64.0000 −2.39682
$$714$$ 0 0
$$715$$ 16.0000 0.598366
$$716$$ 0 0
$$717$$ 16.0000 0.597531
$$718$$ 0 0
$$719$$ −32.0000 −1.19340 −0.596699 0.802465i $$-0.703521\pi$$
−0.596699 + 0.802465i $$0.703521\pi$$
$$720$$ 0 0
$$721$$ 0 0
$$722$$ 0 0
$$723$$ −18.0000 −0.669427
$$724$$ 0 0
$$725$$ −6.00000 −0.222834
$$726$$ 0 0
$$727$$ 48.0000 1.78022 0.890111 0.455744i $$-0.150627\pi$$
0.890111 + 0.455744i $$0.150627\pi$$
$$728$$ 0 0
$$729$$ 1.00000 0.0370370
$$730$$ 0 0
$$731$$ 8.00000 0.295891
$$732$$ 0 0
$$733$$ 14.0000 0.517102 0.258551 0.965998i $$-0.416755\pi$$
0.258551 + 0.965998i $$0.416755\pi$$
$$734$$ 0 0
$$735$$ −14.0000 −0.516398
$$736$$ 0 0
$$737$$ −16.0000 −0.589368
$$738$$ 0 0
$$739$$ −4.00000 −0.147142 −0.0735712 0.997290i $$-0.523440\pi$$
−0.0735712 + 0.997290i $$0.523440\pi$$
$$740$$ 0 0
$$741$$ −8.00000 −0.293887
$$742$$ 0 0
$$743$$ −8.00000 −0.293492 −0.146746 0.989174i $$-0.546880\pi$$
−0.146746 + 0.989174i $$0.546880\pi$$
$$744$$ 0 0
$$745$$ −28.0000 −1.02584
$$746$$ 0 0
$$747$$ −4.00000 −0.146352
$$748$$ 0 0
$$749$$ 0 0
$$750$$ 0 0
$$751$$ 24.0000 0.875772 0.437886 0.899030i $$-0.355727\pi$$
0.437886 + 0.899030i $$0.355727\pi$$
$$752$$ 0 0
$$753$$ −20.0000 −0.728841
$$754$$ 0 0
$$755$$ 32.0000 1.16460
$$756$$ 0 0
$$757$$ 38.0000 1.38113 0.690567 0.723269i $$-0.257361\pi$$
0.690567 + 0.723269i $$0.257361\pi$$
$$758$$ 0 0
$$759$$ 32.0000 1.16153
$$760$$ 0 0
$$761$$ −22.0000 −0.797499 −0.398750 0.917060i $$-0.630556\pi$$
−0.398750 + 0.917060i $$0.630556\pi$$
$$762$$ 0 0
$$763$$ 0 0
$$764$$ 0 0
$$765$$ −4.00000 −0.144620
$$766$$ 0 0
$$767$$ −8.00000 −0.288863
$$768$$ 0 0
$$769$$ 2.00000 0.0721218 0.0360609 0.999350i $$-0.488519\pi$$
0.0360609 + 0.999350i $$0.488519\pi$$
$$770$$ 0 0
$$771$$ −2.00000 −0.0720282
$$772$$ 0 0
$$773$$ −18.0000 −0.647415 −0.323708 0.946157i $$-0.604929\pi$$
−0.323708 + 0.946157i $$0.604929\pi$$
$$774$$ 0 0
$$775$$ −8.00000 −0.287368
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 24.0000 0.859889
$$780$$ 0 0
$$781$$ 32.0000 1.14505
$$782$$ 0 0
$$783$$ −6.00000 −0.214423
$$784$$ 0 0
$$785$$ 4.00000 0.142766
$$786$$ 0 0
$$787$$ 28.0000 0.998092 0.499046 0.866575i $$-0.333684\pi$$
0.499046 + 0.866575i $$0.333684\pi$$
$$788$$ 0 0
$$789$$ 8.00000 0.284808
$$790$$ 0 0
$$791$$ 0 0
$$792$$ 0 0
$$793$$ 4.00000 0.142044
$$794$$ 0 0
$$795$$ −4.00000 −0.141865
$$796$$ 0 0
$$797$$ 22.0000 0.779280 0.389640 0.920967i $$-0.372599\pi$$
0.389640 + 0.920967i $$0.372599\pi$$
$$798$$ 0 0
$$799$$ 0 0
$$800$$ 0 0
$$801$$ −6.00000 −0.212000
$$802$$ 0 0
$$803$$ 40.0000 1.41157
$$804$$ 0 0
$$805$$ 0 0
$$806$$ 0 0
$$807$$ 10.0000 0.352017
$$808$$ 0 0
$$809$$ 26.0000 0.914111 0.457056 0.889438i $$-0.348904\pi$$
0.457056 + 0.889438i $$0.348904\pi$$
$$810$$ 0 0
$$811$$ 4.00000 0.140459 0.0702295 0.997531i $$-0.477627\pi$$
0.0702295 + 0.997531i $$0.477627\pi$$
$$812$$ 0 0
$$813$$ −8.00000 −0.280572
$$814$$ 0 0
$$815$$ −24.0000 −0.840683
$$816$$ 0 0
$$817$$ −16.0000 −0.559769
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ 30.0000 1.04701 0.523504 0.852023i $$-0.324625\pi$$
0.523504 + 0.852023i $$0.324625\pi$$
$$822$$ 0 0
$$823$$ −16.0000 −0.557725 −0.278862 0.960331i $$-0.589957\pi$$
−0.278862 + 0.960331i $$0.589957\pi$$
$$824$$ 0 0
$$825$$ 4.00000 0.139262
$$826$$ 0 0
$$827$$ −28.0000 −0.973655 −0.486828 0.873498i $$-0.661846\pi$$
−0.486828 + 0.873498i $$0.661846\pi$$
$$828$$ 0 0
$$829$$ −50.0000 −1.73657 −0.868286 0.496064i $$-0.834778\pi$$
−0.868286 + 0.496064i $$0.834778\pi$$
$$830$$ 0 0
$$831$$ 26.0000 0.901930
$$832$$ 0 0
$$833$$ −14.0000 −0.485071
$$834$$ 0 0
$$835$$ −48.0000 −1.66111
$$836$$ 0 0
$$837$$ −8.00000 −0.276520
$$838$$ 0 0
$$839$$ −24.0000 −0.828572 −0.414286 0.910147i $$-0.635969\pi$$
−0.414286 + 0.910147i $$0.635969\pi$$
$$840$$ 0 0
$$841$$ 7.00000 0.241379
$$842$$ 0 0
$$843$$ −26.0000 −0.895488
$$844$$ 0 0
$$845$$ 18.0000 0.619219
$$846$$ 0 0
$$847$$ 0 0
$$848$$ 0 0
$$849$$ 28.0000 0.960958
$$850$$ 0 0
$$851$$ −48.0000 −1.64542
$$852$$ 0 0
$$853$$ −10.0000 −0.342393 −0.171197 0.985237i $$-0.554763\pi$$
−0.171197 + 0.985237i $$0.554763\pi$$
$$854$$ 0 0
$$855$$ 8.00000 0.273594
$$856$$ 0 0
$$857$$ 42.0000 1.43469 0.717346 0.696717i $$-0.245357\pi$$
0.717346 + 0.696717i $$0.245357\pi$$
$$858$$ 0 0
$$859$$ −12.0000 −0.409435 −0.204717 0.978821i $$-0.565628\pi$$
−0.204717 + 0.978821i $$0.565628\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ −32.0000 −1.08929 −0.544646 0.838666i $$-0.683336\pi$$
−0.544646 + 0.838666i $$0.683336\pi$$
$$864$$ 0 0
$$865$$ −12.0000 −0.408012
$$866$$ 0 0
$$867$$ 13.0000 0.441503
$$868$$ 0 0
$$869$$ −32.0000 −1.08553
$$870$$ 0 0
$$871$$ 8.00000 0.271070
$$872$$ 0 0
$$873$$ 2.00000 0.0676897
$$874$$ 0 0
$$875$$ 0 0
$$876$$ 0 0
$$877$$ −18.0000 −0.607817 −0.303908 0.952701i $$-0.598292\pi$$
−0.303908 + 0.952701i $$0.598292\pi$$
$$878$$ 0 0
$$879$$ 18.0000 0.607125
$$880$$ 0 0
$$881$$ 50.0000 1.68454 0.842271 0.539054i $$-0.181218\pi$$
0.842271 + 0.539054i $$0.181218\pi$$
$$882$$ 0 0
$$883$$ −4.00000 −0.134611 −0.0673054 0.997732i $$-0.521440\pi$$
−0.0673054 + 0.997732i $$0.521440\pi$$
$$884$$ 0 0
$$885$$ 8.00000 0.268917
$$886$$ 0 0
$$887$$ 8.00000 0.268614 0.134307 0.990940i $$-0.457119\pi$$
0.134307 + 0.990940i $$0.457119\pi$$
$$888$$ 0 0
$$889$$ 0 0
$$890$$ 0 0
$$891$$ 4.00000 0.134005
$$892$$ 0 0
$$893$$ 0 0
$$894$$ 0 0
$$895$$ −24.0000 −0.802232
$$896$$ 0 0
$$897$$ −16.0000 −0.534224
$$898$$ 0 0
$$899$$ 48.0000 1.60089
$$900$$ 0 0
$$901$$ −4.00000 −0.133259
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ −12.0000 −0.398893
$$906$$ 0 0
$$907$$ 4.00000 0.132818 0.0664089 0.997792i $$-0.478846\pi$$
0.0664089 + 0.997792i $$0.478846\pi$$
$$908$$ 0 0
$$909$$ −18.0000 −0.597022
$$910$$ 0 0
$$911$$ 16.0000 0.530104 0.265052 0.964234i $$-0.414611\pi$$
0.265052 + 0.964234i $$0.414611\pi$$
$$912$$ 0 0
$$913$$ −16.0000 −0.529523
$$914$$ 0 0
$$915$$ −4.00000 −0.132236
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 16.0000 0.527791 0.263896 0.964551i $$-0.414993\pi$$
0.263896 + 0.964551i $$0.414993\pi$$
$$920$$ 0 0
$$921$$ −12.0000 −0.395413
$$922$$ 0 0
$$923$$ −16.0000 −0.526646
$$924$$ 0 0
$$925$$ −6.00000 −0.197279
$$926$$ 0 0
$$927$$ 16.0000 0.525509
$$928$$ 0 0
$$929$$ 50.0000 1.64045 0.820223 0.572043i $$-0.193849\pi$$
0.820223 + 0.572043i $$0.193849\pi$$
$$930$$ 0 0
$$931$$ 28.0000 0.917663
$$932$$ 0 0
$$933$$ 24.0000 0.785725
$$934$$ 0 0
$$935$$ −16.0000 −0.523256
$$936$$ 0 0
$$937$$ 42.0000 1.37208 0.686040 0.727564i $$-0.259347\pi$$
0.686040 + 0.727564i $$0.259347\pi$$
$$938$$ 0 0
$$939$$ 6.00000 0.195803
$$940$$ 0 0
$$941$$ 6.00000 0.195594 0.0977972 0.995206i $$-0.468820\pi$$
0.0977972 + 0.995206i $$0.468820\pi$$
$$942$$ 0 0
$$943$$ 48.0000 1.56310
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ 12.0000 0.389948 0.194974 0.980808i $$-0.437538\pi$$
0.194974 + 0.980808i $$0.437538\pi$$
$$948$$ 0 0
$$949$$ −20.0000 −0.649227
$$950$$ 0 0
$$951$$ −6.00000 −0.194563
$$952$$ 0 0
$$953$$ −54.0000 −1.74923 −0.874616 0.484817i $$-0.838886\pi$$
−0.874616 + 0.484817i $$0.838886\pi$$
$$954$$ 0 0
$$955$$ 0 0
$$956$$ 0 0
$$957$$ −24.0000 −0.775810
$$958$$ 0 0
$$959$$ 0 0
$$960$$ 0 0
$$961$$ 33.0000 1.06452
$$962$$ 0 0
$$963$$ −12.0000 −0.386695
$$964$$ 0 0
$$965$$ −4.00000 −0.128765
$$966$$ 0 0
$$967$$ −16.0000 −0.514525 −0.257263 0.966342i $$-0.582821\pi$$
−0.257263 + 0.966342i $$0.582821\pi$$
$$968$$ 0 0
$$969$$ 8.00000 0.256997
$$970$$ 0 0
$$971$$ 36.0000 1.15529 0.577647 0.816286i $$-0.303971\pi$$
0.577647 + 0.816286i $$0.303971\pi$$
$$972$$ 0 0
$$973$$ 0 0
$$974$$ 0 0
$$975$$ −2.00000 −0.0640513
$$976$$ 0 0
$$977$$ −30.0000 −0.959785 −0.479893 0.877327i $$-0.659324\pi$$
−0.479893 + 0.877327i $$0.659324\pi$$
$$978$$ 0 0
$$979$$ −24.0000 −0.767043
$$980$$ 0 0
$$981$$ −2.00000 −0.0638551
$$982$$ 0 0
$$983$$ −24.0000 −0.765481 −0.382741 0.923856i $$-0.625020\pi$$
−0.382741 + 0.923856i $$0.625020\pi$$
$$984$$ 0 0
$$985$$ 36.0000 1.14706
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ −32.0000 −1.01754
$$990$$ 0 0
$$991$$ 40.0000 1.27064 0.635321 0.772248i $$-0.280868\pi$$
0.635321 + 0.772248i $$0.280868\pi$$
$$992$$ 0 0
$$993$$ −20.0000 −0.634681
$$994$$ 0 0
$$995$$ −32.0000 −1.01447
$$996$$ 0 0
$$997$$ −26.0000 −0.823428 −0.411714 0.911313i $$-0.635070\pi$$
−0.411714 + 0.911313i $$0.635070\pi$$
$$998$$ 0 0
$$999$$ −6.00000 −0.189832
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 24.2.a.a.1.1 1
3.2 odd 2 72.2.a.a.1.1 1
4.3 odd 2 48.2.a.a.1.1 1
5.2 odd 4 600.2.f.e.49.2 2
5.3 odd 4 600.2.f.e.49.1 2
5.4 even 2 600.2.a.h.1.1 1
7.2 even 3 1176.2.q.i.361.1 2
7.3 odd 6 1176.2.q.a.961.1 2
7.4 even 3 1176.2.q.i.961.1 2
7.5 odd 6 1176.2.q.a.361.1 2
7.6 odd 2 1176.2.a.i.1.1 1
8.3 odd 2 192.2.a.b.1.1 1
8.5 even 2 192.2.a.d.1.1 1
9.2 odd 6 648.2.i.b.433.1 2
9.4 even 3 648.2.i.g.217.1 2
9.5 odd 6 648.2.i.b.217.1 2
9.7 even 3 648.2.i.g.433.1 2
11.10 odd 2 2904.2.a.c.1.1 1
12.11 even 2 144.2.a.b.1.1 1
13.5 odd 4 4056.2.c.e.337.2 2
13.8 odd 4 4056.2.c.e.337.1 2
13.12 even 2 4056.2.a.i.1.1 1
15.2 even 4 1800.2.f.c.649.2 2
15.8 even 4 1800.2.f.c.649.1 2
15.14 odd 2 1800.2.a.m.1.1 1
16.3 odd 4 768.2.d.d.385.2 2
16.5 even 4 768.2.d.e.385.2 2
16.11 odd 4 768.2.d.d.385.1 2
16.13 even 4 768.2.d.e.385.1 2
17.16 even 2 6936.2.a.p.1.1 1
19.18 odd 2 8664.2.a.j.1.1 1
20.3 even 4 1200.2.f.b.49.2 2
20.7 even 4 1200.2.f.b.49.1 2
20.19 odd 2 1200.2.a.d.1.1 1
21.2 odd 6 3528.2.s.j.361.1 2
21.5 even 6 3528.2.s.y.361.1 2
21.11 odd 6 3528.2.s.j.3313.1 2
21.17 even 6 3528.2.s.y.3313.1 2
21.20 even 2 3528.2.a.d.1.1 1
24.5 odd 2 576.2.a.d.1.1 1
24.11 even 2 576.2.a.b.1.1 1
28.3 even 6 2352.2.q.r.961.1 2
28.11 odd 6 2352.2.q.l.961.1 2
28.19 even 6 2352.2.q.r.1537.1 2
28.23 odd 6 2352.2.q.l.1537.1 2
28.27 even 2 2352.2.a.i.1.1 1
33.32 even 2 8712.2.a.u.1.1 1
36.7 odd 6 1296.2.i.m.433.1 2
36.11 even 6 1296.2.i.e.433.1 2
36.23 even 6 1296.2.i.e.865.1 2
36.31 odd 6 1296.2.i.m.865.1 2
40.3 even 4 4800.2.f.bg.3649.1 2
40.13 odd 4 4800.2.f.d.3649.2 2
40.19 odd 2 4800.2.a.cc.1.1 1
40.27 even 4 4800.2.f.bg.3649.2 2
40.29 even 2 4800.2.a.q.1.1 1
40.37 odd 4 4800.2.f.d.3649.1 2
44.43 even 2 5808.2.a.s.1.1 1
48.5 odd 4 2304.2.d.i.1153.2 2
48.11 even 4 2304.2.d.k.1153.2 2
48.29 odd 4 2304.2.d.i.1153.1 2
48.35 even 4 2304.2.d.k.1153.1 2
52.51 odd 2 8112.2.a.be.1.1 1
56.13 odd 2 9408.2.a.h.1.1 1
56.27 even 2 9408.2.a.cc.1.1 1
60.23 odd 4 3600.2.f.r.2449.1 2
60.47 odd 4 3600.2.f.r.2449.2 2
60.59 even 2 3600.2.a.v.1.1 1
84.83 odd 2 7056.2.a.q.1.1 1

By twisted newform
Twist Min Dim Char Parity Ord Type
24.2.a.a.1.1 1 1.1 even 1 trivial
48.2.a.a.1.1 1 4.3 odd 2
72.2.a.a.1.1 1 3.2 odd 2
144.2.a.b.1.1 1 12.11 even 2
192.2.a.b.1.1 1 8.3 odd 2
192.2.a.d.1.1 1 8.5 even 2
576.2.a.b.1.1 1 24.11 even 2
576.2.a.d.1.1 1 24.5 odd 2
600.2.a.h.1.1 1 5.4 even 2
600.2.f.e.49.1 2 5.3 odd 4
600.2.f.e.49.2 2 5.2 odd 4
648.2.i.b.217.1 2 9.5 odd 6
648.2.i.b.433.1 2 9.2 odd 6
648.2.i.g.217.1 2 9.4 even 3
648.2.i.g.433.1 2 9.7 even 3
768.2.d.d.385.1 2 16.11 odd 4
768.2.d.d.385.2 2 16.3 odd 4
768.2.d.e.385.1 2 16.13 even 4
768.2.d.e.385.2 2 16.5 even 4
1176.2.a.i.1.1 1 7.6 odd 2
1176.2.q.a.361.1 2 7.5 odd 6
1176.2.q.a.961.1 2 7.3 odd 6
1176.2.q.i.361.1 2 7.2 even 3
1176.2.q.i.961.1 2 7.4 even 3
1200.2.a.d.1.1 1 20.19 odd 2
1200.2.f.b.49.1 2 20.7 even 4
1200.2.f.b.49.2 2 20.3 even 4
1296.2.i.e.433.1 2 36.11 even 6
1296.2.i.e.865.1 2 36.23 even 6
1296.2.i.m.433.1 2 36.7 odd 6
1296.2.i.m.865.1 2 36.31 odd 6
1800.2.a.m.1.1 1 15.14 odd 2
1800.2.f.c.649.1 2 15.8 even 4
1800.2.f.c.649.2 2 15.2 even 4
2304.2.d.i.1153.1 2 48.29 odd 4
2304.2.d.i.1153.2 2 48.5 odd 4
2304.2.d.k.1153.1 2 48.35 even 4
2304.2.d.k.1153.2 2 48.11 even 4
2352.2.a.i.1.1 1 28.27 even 2
2352.2.q.l.961.1 2 28.11 odd 6
2352.2.q.l.1537.1 2 28.23 odd 6
2352.2.q.r.961.1 2 28.3 even 6
2352.2.q.r.1537.1 2 28.19 even 6
2904.2.a.c.1.1 1 11.10 odd 2
3528.2.a.d.1.1 1 21.20 even 2
3528.2.s.j.361.1 2 21.2 odd 6
3528.2.s.j.3313.1 2 21.11 odd 6
3528.2.s.y.361.1 2 21.5 even 6
3528.2.s.y.3313.1 2 21.17 even 6
3600.2.a.v.1.1 1 60.59 even 2
3600.2.f.r.2449.1 2 60.23 odd 4
3600.2.f.r.2449.2 2 60.47 odd 4
4056.2.a.i.1.1 1 13.12 even 2
4056.2.c.e.337.1 2 13.8 odd 4
4056.2.c.e.337.2 2 13.5 odd 4
4800.2.a.q.1.1 1 40.29 even 2
4800.2.a.cc.1.1 1 40.19 odd 2
4800.2.f.d.3649.1 2 40.37 odd 4
4800.2.f.d.3649.2 2 40.13 odd 4
4800.2.f.bg.3649.1 2 40.3 even 4
4800.2.f.bg.3649.2 2 40.27 even 4
5808.2.a.s.1.1 1 44.43 even 2
6936.2.a.p.1.1 1 17.16 even 2
7056.2.a.q.1.1 1 84.83 odd 2
8112.2.a.be.1.1 1 52.51 odd 2
8664.2.a.j.1.1 1 19.18 odd 2
8712.2.a.u.1.1 1 33.32 even 2
9408.2.a.h.1.1 1 56.13 odd 2
9408.2.a.cc.1.1 1 56.27 even 2