Properties

Label 3528.2.s.j
Level $3528$
Weight $2$
Character orbit 3528.s
Analytic conductor $28.171$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3528,2,Mod(361,3528)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3528, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3528.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.s (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 24)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \zeta_{6} q^{5} +O(q^{10}) \) Copy content Toggle raw display \( q - 2 \zeta_{6} q^{5} + ( - 4 \zeta_{6} + 4) q^{11} - 2 q^{13} + ( - 2 \zeta_{6} + 2) q^{17} + 4 \zeta_{6} q^{19} - 8 \zeta_{6} q^{23} + ( - \zeta_{6} + 1) q^{25} - 6 q^{29} + (8 \zeta_{6} - 8) q^{31} - 6 \zeta_{6} q^{37} + 6 q^{41} + 4 q^{43} + (2 \zeta_{6} - 2) q^{53} - 8 q^{55} + ( - 4 \zeta_{6} + 4) q^{59} + 2 \zeta_{6} q^{61} + 4 \zeta_{6} q^{65} + ( - 4 \zeta_{6} + 4) q^{67} - 8 q^{71} + (10 \zeta_{6} - 10) q^{73} + 8 \zeta_{6} q^{79} + 4 q^{83} - 4 q^{85} - 6 \zeta_{6} q^{89} + ( - 8 \zeta_{6} + 8) q^{95} + 2 q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{5} + 4 q^{11} - 4 q^{13} + 2 q^{17} + 4 q^{19} - 8 q^{23} + q^{25} - 12 q^{29} - 8 q^{31} - 6 q^{37} + 12 q^{41} + 8 q^{43} - 2 q^{53} - 16 q^{55} + 4 q^{59} + 2 q^{61} + 4 q^{65} + 4 q^{67} - 16 q^{71} - 10 q^{73} + 8 q^{79} + 8 q^{83} - 8 q^{85} - 6 q^{89} + 8 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
0.500000 + 0.866025i
0.500000 0.866025i
0 0 0 −1.00000 1.73205i 0 0 0 0 0
3313.1 0 0 0 −1.00000 + 1.73205i 0 0 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3528.2.s.j 2
3.b odd 2 1 1176.2.q.i 2
7.b odd 2 1 3528.2.s.y 2
7.c even 3 1 72.2.a.a 1
7.c even 3 1 inner 3528.2.s.j 2
7.d odd 6 1 3528.2.a.d 1
7.d odd 6 1 3528.2.s.y 2
12.b even 2 1 2352.2.q.l 2
21.c even 2 1 1176.2.q.a 2
21.g even 6 1 1176.2.a.i 1
21.g even 6 1 1176.2.q.a 2
21.h odd 6 1 24.2.a.a 1
21.h odd 6 1 1176.2.q.i 2
28.f even 6 1 7056.2.a.q 1
28.g odd 6 1 144.2.a.b 1
35.j even 6 1 1800.2.a.m 1
35.l odd 12 2 1800.2.f.c 2
56.k odd 6 1 576.2.a.b 1
56.p even 6 1 576.2.a.d 1
63.g even 3 1 648.2.i.b 2
63.h even 3 1 648.2.i.b 2
63.j odd 6 1 648.2.i.g 2
63.n odd 6 1 648.2.i.g 2
77.h odd 6 1 8712.2.a.u 1
84.h odd 2 1 2352.2.q.r 2
84.j odd 6 1 2352.2.a.i 1
84.j odd 6 1 2352.2.q.r 2
84.n even 6 1 48.2.a.a 1
84.n even 6 1 2352.2.q.l 2
105.o odd 6 1 600.2.a.h 1
105.x even 12 2 600.2.f.e 2
112.u odd 12 2 2304.2.d.k 2
112.w even 12 2 2304.2.d.i 2
140.p odd 6 1 3600.2.a.v 1
140.w even 12 2 3600.2.f.r 2
168.s odd 6 1 192.2.a.d 1
168.v even 6 1 192.2.a.b 1
168.ba even 6 1 9408.2.a.h 1
168.be odd 6 1 9408.2.a.cc 1
231.l even 6 1 2904.2.a.c 1
252.o even 6 1 1296.2.i.m 2
252.u odd 6 1 1296.2.i.e 2
252.bb even 6 1 1296.2.i.m 2
252.bl odd 6 1 1296.2.i.e 2
273.w odd 6 1 4056.2.a.i 1
273.cd even 12 2 4056.2.c.e 2
336.bt odd 12 2 768.2.d.e 2
336.bu even 12 2 768.2.d.d 2
357.q odd 6 1 6936.2.a.p 1
399.w even 6 1 8664.2.a.j 1
420.ba even 6 1 1200.2.a.d 1
420.bp odd 12 2 1200.2.f.b 2
840.cg odd 6 1 4800.2.a.q 1
840.cv even 6 1 4800.2.a.cc 1
840.dc even 12 2 4800.2.f.d 2
840.dp odd 12 2 4800.2.f.bg 2
924.z odd 6 1 5808.2.a.s 1
1092.by even 6 1 8112.2.a.be 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
24.2.a.a 1 21.h odd 6 1
48.2.a.a 1 84.n even 6 1
72.2.a.a 1 7.c even 3 1
144.2.a.b 1 28.g odd 6 1
192.2.a.b 1 168.v even 6 1
192.2.a.d 1 168.s odd 6 1
576.2.a.b 1 56.k odd 6 1
576.2.a.d 1 56.p even 6 1
600.2.a.h 1 105.o odd 6 1
600.2.f.e 2 105.x even 12 2
648.2.i.b 2 63.g even 3 1
648.2.i.b 2 63.h even 3 1
648.2.i.g 2 63.j odd 6 1
648.2.i.g 2 63.n odd 6 1
768.2.d.d 2 336.bu even 12 2
768.2.d.e 2 336.bt odd 12 2
1176.2.a.i 1 21.g even 6 1
1176.2.q.a 2 21.c even 2 1
1176.2.q.a 2 21.g even 6 1
1176.2.q.i 2 3.b odd 2 1
1176.2.q.i 2 21.h odd 6 1
1200.2.a.d 1 420.ba even 6 1
1200.2.f.b 2 420.bp odd 12 2
1296.2.i.e 2 252.u odd 6 1
1296.2.i.e 2 252.bl odd 6 1
1296.2.i.m 2 252.o even 6 1
1296.2.i.m 2 252.bb even 6 1
1800.2.a.m 1 35.j even 6 1
1800.2.f.c 2 35.l odd 12 2
2304.2.d.i 2 112.w even 12 2
2304.2.d.k 2 112.u odd 12 2
2352.2.a.i 1 84.j odd 6 1
2352.2.q.l 2 12.b even 2 1
2352.2.q.l 2 84.n even 6 1
2352.2.q.r 2 84.h odd 2 1
2352.2.q.r 2 84.j odd 6 1
2904.2.a.c 1 231.l even 6 1
3528.2.a.d 1 7.d odd 6 1
3528.2.s.j 2 1.a even 1 1 trivial
3528.2.s.j 2 7.c even 3 1 inner
3528.2.s.y 2 7.b odd 2 1
3528.2.s.y 2 7.d odd 6 1
3600.2.a.v 1 140.p odd 6 1
3600.2.f.r 2 140.w even 12 2
4056.2.a.i 1 273.w odd 6 1
4056.2.c.e 2 273.cd even 12 2
4800.2.a.q 1 840.cg odd 6 1
4800.2.a.cc 1 840.cv even 6 1
4800.2.f.d 2 840.dc even 12 2
4800.2.f.bg 2 840.dp odd 12 2
5808.2.a.s 1 924.z odd 6 1
6936.2.a.p 1 357.q odd 6 1
7056.2.a.q 1 28.f even 6 1
8112.2.a.be 1 1092.by even 6 1
8664.2.a.j 1 399.w even 6 1
8712.2.a.u 1 77.h odd 6 1
9408.2.a.h 1 168.ba even 6 1
9408.2.a.cc 1 168.be odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3528, [\chi])\):

\( T_{5}^{2} + 2T_{5} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} + 16 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display
\( T_{23}^{2} + 8T_{23} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$13$ \( (T + 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$19$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$23$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$37$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$41$ \( (T - 6)^{2} \) Copy content Toggle raw display
$43$ \( (T - 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$59$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$67$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$71$ \( (T + 8)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 10T + 100 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$83$ \( (T - 4)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 6T + 36 \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less