Properties

Label 3528.2.k.b.881.12
Level $3528$
Weight $2$
Character 3528.881
Analytic conductor $28.171$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3528,2,Mod(881,3528)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3528.881"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3528, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3528 = 2^{3} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3528.k (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.1712218331\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{14} + 61x^{12} + 266x^{10} + 852x^{8} + 1438x^{6} + 1933x^{4} + 3038x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{18} \)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 881.12
Root \(1.45333 + 1.51725i\) of defining polynomial
Character \(\chi\) \(=\) 3528.881
Dual form 3528.2.k.b.881.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.17462 q^{5} +1.67114i q^{11} -1.14525i q^{13} -4.15218 q^{17} +2.11833i q^{19} -4.87721i q^{23} -3.62028 q^{25} -8.32591i q^{29} -8.29219i q^{31} +4.39993 q^{37} +2.67577 q^{41} +4.08536 q^{43} -3.50563 q^{47} -1.84480i q^{53} +1.96295i q^{55} +5.97333 q^{59} -14.7814i q^{61} -1.34523i q^{65} +8.44871 q^{67} +5.48320i q^{71} -0.977702i q^{73} +11.1219 q^{79} +10.2258 q^{83} -4.87721 q^{85} -12.5997 q^{89} +2.48823i q^{95} +9.52049i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 24 q^{25} - 8 q^{37} + 8 q^{43} + 56 q^{67} + 64 q^{79} - 32 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3528\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(1765\) \(2647\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.17462 0.525304 0.262652 0.964891i \(-0.415403\pi\)
0.262652 + 0.964891i \(0.415403\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.67114i 0.503868i 0.967744 + 0.251934i \(0.0810666\pi\)
−0.967744 + 0.251934i \(0.918933\pi\)
\(12\) 0 0
\(13\) − 1.14525i − 0.317635i −0.987308 0.158818i \(-0.949232\pi\)
0.987308 0.158818i \(-0.0507682\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −4.15218 −1.00705 −0.503525 0.863981i \(-0.667964\pi\)
−0.503525 + 0.863981i \(0.667964\pi\)
\(18\) 0 0
\(19\) 2.11833i 0.485979i 0.970029 + 0.242989i \(0.0781280\pi\)
−0.970029 + 0.242989i \(0.921872\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.87721i − 1.01697i −0.861071 0.508484i \(-0.830206\pi\)
0.861071 0.508484i \(-0.169794\pi\)
\(24\) 0 0
\(25\) −3.62028 −0.724056
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 8.32591i − 1.54608i −0.634355 0.773042i \(-0.718734\pi\)
0.634355 0.773042i \(-0.281266\pi\)
\(30\) 0 0
\(31\) − 8.29219i − 1.48932i −0.667444 0.744660i \(-0.732611\pi\)
0.667444 0.744660i \(-0.267389\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4.39993 0.723343 0.361672 0.932306i \(-0.382206\pi\)
0.361672 + 0.932306i \(0.382206\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.67577 0.417885 0.208942 0.977928i \(-0.432998\pi\)
0.208942 + 0.977928i \(0.432998\pi\)
\(42\) 0 0
\(43\) 4.08536 0.623011 0.311505 0.950244i \(-0.399167\pi\)
0.311505 + 0.950244i \(0.399167\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.50563 −0.511349 −0.255674 0.966763i \(-0.582297\pi\)
−0.255674 + 0.966763i \(0.582297\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 1.84480i − 0.253402i −0.991941 0.126701i \(-0.959561\pi\)
0.991941 0.126701i \(-0.0404389\pi\)
\(54\) 0 0
\(55\) 1.96295i 0.264684i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 5.97333 0.777662 0.388831 0.921309i \(-0.372879\pi\)
0.388831 + 0.921309i \(0.372879\pi\)
\(60\) 0 0
\(61\) − 14.7814i − 1.89257i −0.323337 0.946284i \(-0.604805\pi\)
0.323337 0.946284i \(-0.395195\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) − 1.34523i − 0.166855i
\(66\) 0 0
\(67\) 8.44871 1.03217 0.516087 0.856536i \(-0.327388\pi\)
0.516087 + 0.856536i \(0.327388\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.48320i 0.650736i 0.945587 + 0.325368i \(0.105488\pi\)
−0.945587 + 0.325368i \(0.894512\pi\)
\(72\) 0 0
\(73\) − 0.977702i − 0.114431i −0.998362 0.0572157i \(-0.981778\pi\)
0.998362 0.0572157i \(-0.0182223\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 11.1219 1.25131 0.625657 0.780098i \(-0.284831\pi\)
0.625657 + 0.780098i \(0.284831\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 10.2258 1.12242 0.561212 0.827672i \(-0.310335\pi\)
0.561212 + 0.827672i \(0.310335\pi\)
\(84\) 0 0
\(85\) −4.87721 −0.529007
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −12.5997 −1.33557 −0.667785 0.744354i \(-0.732758\pi\)
−0.667785 + 0.744354i \(0.732758\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.48823i 0.255287i
\(96\) 0 0
\(97\) 9.52049i 0.966660i 0.875438 + 0.483330i \(0.160573\pi\)
−0.875438 + 0.483330i \(0.839427\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −19.3189 −1.92230 −0.961150 0.276027i \(-0.910982\pi\)
−0.961150 + 0.276027i \(0.910982\pi\)
\(102\) 0 0
\(103\) − 15.0954i − 1.48739i −0.668518 0.743696i \(-0.733071\pi\)
0.668518 0.743696i \(-0.266929\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 10.9349i − 1.05711i −0.848898 0.528556i \(-0.822734\pi\)
0.848898 0.528556i \(-0.177266\pi\)
\(108\) 0 0
\(109\) 6.51769 0.624282 0.312141 0.950036i \(-0.398954\pi\)
0.312141 + 0.950036i \(0.398954\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.8743i 1.02296i 0.859294 + 0.511482i \(0.170903\pi\)
−0.859294 + 0.511482i \(0.829097\pi\)
\(114\) 0 0
\(115\) − 5.72884i − 0.534217i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 8.20729 0.746117
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −10.1255 −0.905653
\(126\) 0 0
\(127\) −1.56264 −0.138662 −0.0693308 0.997594i \(-0.522086\pi\)
−0.0693308 + 0.997594i \(0.522086\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −20.5937 −1.79928 −0.899642 0.436628i \(-0.856173\pi\)
−0.899642 + 0.436628i \(0.856173\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 21.2810i − 1.81816i −0.416626 0.909078i \(-0.636788\pi\)
0.416626 0.909078i \(-0.363212\pi\)
\(138\) 0 0
\(139\) 6.50746i 0.551955i 0.961164 + 0.275978i \(0.0890016\pi\)
−0.961164 + 0.275978i \(0.910998\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.91387 0.160046
\(144\) 0 0
\(145\) − 9.77974i − 0.812164i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 14.3836i − 1.17835i −0.808007 0.589173i \(-0.799453\pi\)
0.808007 0.589173i \(-0.200547\pi\)
\(150\) 0 0
\(151\) 10.2569 0.834697 0.417348 0.908747i \(-0.362959\pi\)
0.417348 + 0.908747i \(0.362959\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 9.74013i − 0.782346i
\(156\) 0 0
\(157\) − 0.461795i − 0.0368552i −0.999830 0.0184276i \(-0.994134\pi\)
0.999830 0.0184276i \(-0.00586603\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 22.3289 1.74893 0.874467 0.485085i \(-0.161212\pi\)
0.874467 + 0.485085i \(0.161212\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.42604 0.419879 0.209940 0.977714i \(-0.432673\pi\)
0.209940 + 0.977714i \(0.432673\pi\)
\(168\) 0 0
\(169\) 11.6884 0.899108
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.51438 0.723365 0.361683 0.932301i \(-0.382202\pi\)
0.361683 + 0.932301i \(0.382202\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.26285i 0.169133i 0.996418 + 0.0845665i \(0.0269506\pi\)
−0.996418 + 0.0845665i \(0.973049\pi\)
\(180\) 0 0
\(181\) 21.7987i 1.62029i 0.586231 + 0.810144i \(0.300611\pi\)
−0.586231 + 0.810144i \(0.699389\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.16822 0.379975
\(186\) 0 0
\(187\) − 6.93887i − 0.507421i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 21.7431i 1.57328i 0.617415 + 0.786638i \(0.288180\pi\)
−0.617415 + 0.786638i \(0.711820\pi\)
\(192\) 0 0
\(193\) −21.6518 −1.55853 −0.779266 0.626693i \(-0.784408\pi\)
−0.779266 + 0.626693i \(0.784408\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 5.58787i − 0.398119i −0.979987 0.199060i \(-0.936211\pi\)
0.979987 0.199060i \(-0.0637887\pi\)
\(198\) 0 0
\(199\) − 16.4062i − 1.16300i −0.813546 0.581501i \(-0.802466\pi\)
0.813546 0.581501i \(-0.197534\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 3.14300 0.219516
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.54003 −0.244869
\(210\) 0 0
\(211\) 8.11777 0.558850 0.279425 0.960168i \(-0.409856\pi\)
0.279425 + 0.960168i \(0.409856\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.79872 0.327270
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.75528i 0.319875i
\(222\) 0 0
\(223\) − 21.1486i − 1.41621i −0.706105 0.708107i \(-0.749549\pi\)
0.706105 0.708107i \(-0.250451\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −23.5981 −1.56626 −0.783130 0.621858i \(-0.786378\pi\)
−0.783130 + 0.621858i \(0.786378\pi\)
\(228\) 0 0
\(229\) − 1.11949i − 0.0739780i −0.999316 0.0369890i \(-0.988223\pi\)
0.999316 0.0369890i \(-0.0117767\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 24.1678i − 1.58328i −0.610986 0.791642i \(-0.709227\pi\)
0.610986 0.791642i \(-0.290773\pi\)
\(234\) 0 0
\(235\) −4.11777 −0.268613
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 0.484062i − 0.0313114i −0.999877 0.0156557i \(-0.995016\pi\)
0.999877 0.0156557i \(-0.00498356\pi\)
\(240\) 0 0
\(241\) − 13.1385i − 0.846324i −0.906054 0.423162i \(-0.860920\pi\)
0.906054 0.423162i \(-0.139080\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.42602 0.154364
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.4221 0.847193 0.423597 0.905851i \(-0.360767\pi\)
0.423597 + 0.905851i \(0.360767\pi\)
\(252\) 0 0
\(253\) 8.15051 0.512418
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −10.4596 −0.652452 −0.326226 0.945292i \(-0.605777\pi\)
−0.326226 + 0.945292i \(0.605777\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.6712i 1.45963i 0.683646 + 0.729813i \(0.260393\pi\)
−0.683646 + 0.729813i \(0.739607\pi\)
\(264\) 0 0
\(265\) − 2.16693i − 0.133113i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −18.1013 −1.10366 −0.551828 0.833958i \(-0.686069\pi\)
−0.551828 + 0.833958i \(0.686069\pi\)
\(270\) 0 0
\(271\) 6.68574i 0.406130i 0.979165 + 0.203065i \(0.0650902\pi\)
−0.979165 + 0.203065i \(0.934910\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 6.05000i − 0.364829i
\(276\) 0 0
\(277\) −3.44957 −0.207265 −0.103632 0.994616i \(-0.533047\pi\)
−0.103632 + 0.994616i \(0.533047\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 9.58198i − 0.571613i −0.958287 0.285807i \(-0.907739\pi\)
0.958287 0.285807i \(-0.0922615\pi\)
\(282\) 0 0
\(283\) − 8.10786i − 0.481962i −0.970530 0.240981i \(-0.922531\pi\)
0.970530 0.240981i \(-0.0774692\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.240559 0.0141505
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.9122 −0.754339 −0.377170 0.926144i \(-0.623103\pi\)
−0.377170 + 0.926144i \(0.623103\pi\)
\(294\) 0 0
\(295\) 7.01637 0.408509
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.58562 −0.323025
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 17.3625i − 0.994173i
\(306\) 0 0
\(307\) − 11.9163i − 0.680099i −0.940408 0.340049i \(-0.889556\pi\)
0.940408 0.340049i \(-0.110444\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 30.6591 1.73852 0.869259 0.494357i \(-0.164596\pi\)
0.869259 + 0.494357i \(0.164596\pi\)
\(312\) 0 0
\(313\) 9.40849i 0.531799i 0.964001 + 0.265900i \(0.0856690\pi\)
−0.964001 + 0.265900i \(0.914331\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1.42850i − 0.0802326i −0.999195 0.0401163i \(-0.987227\pi\)
0.999195 0.0401163i \(-0.0127728\pi\)
\(318\) 0 0
\(319\) 13.9138 0.779022
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 8.79569i − 0.489405i
\(324\) 0 0
\(325\) 4.14612i 0.229986i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −14.4160 −0.792373 −0.396187 0.918170i \(-0.629667\pi\)
−0.396187 + 0.918170i \(0.629667\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 9.92398 0.542205
\(336\) 0 0
\(337\) 3.62914 0.197692 0.0988460 0.995103i \(-0.468485\pi\)
0.0988460 + 0.995103i \(0.468485\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 13.8574 0.750421
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 29.7258i 1.59577i 0.602812 + 0.797883i \(0.294047\pi\)
−0.602812 + 0.797883i \(0.705953\pi\)
\(348\) 0 0
\(349\) 5.41027i 0.289605i 0.989461 + 0.144802i \(0.0462547\pi\)
−0.989461 + 0.144802i \(0.953745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.0504 −0.747827 −0.373914 0.927464i \(-0.621984\pi\)
−0.373914 + 0.927464i \(0.621984\pi\)
\(354\) 0 0
\(355\) 6.44065i 0.341834i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 7.73000i 0.407974i 0.978974 + 0.203987i \(0.0653900\pi\)
−0.978974 + 0.203987i \(0.934610\pi\)
\(360\) 0 0
\(361\) 14.5127 0.763825
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 1.14842i − 0.0601112i
\(366\) 0 0
\(367\) − 7.85472i − 0.410013i −0.978761 0.205006i \(-0.934278\pi\)
0.978761 0.205006i \(-0.0657216\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 7.88855 0.408454 0.204227 0.978924i \(-0.434532\pi\)
0.204227 + 0.978924i \(0.434532\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −9.53525 −0.491090
\(378\) 0 0
\(379\) −11.9349 −0.613052 −0.306526 0.951862i \(-0.599167\pi\)
−0.306526 + 0.951862i \(0.599167\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −2.71873 −0.138921 −0.0694603 0.997585i \(-0.522128\pi\)
−0.0694603 + 0.997585i \(0.522128\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 19.9197i − 1.00997i −0.863128 0.504984i \(-0.831498\pi\)
0.863128 0.504984i \(-0.168502\pi\)
\(390\) 0 0
\(391\) 20.2510i 1.02414i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 13.0640 0.657321
\(396\) 0 0
\(397\) − 16.8046i − 0.843399i −0.906736 0.421699i \(-0.861434\pi\)
0.906736 0.421699i \(-0.138566\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.44487i 0.421717i 0.977517 + 0.210858i \(0.0676259\pi\)
−0.977517 + 0.210858i \(0.932374\pi\)
\(402\) 0 0
\(403\) −9.49662 −0.473061
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 7.35290i 0.364470i
\(408\) 0 0
\(409\) 24.9367i 1.23304i 0.787339 + 0.616521i \(0.211458\pi\)
−0.787339 + 0.616521i \(0.788542\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 12.0113 0.589614
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.2386 1.57496 0.787480 0.616340i \(-0.211385\pi\)
0.787480 + 0.616340i \(0.211385\pi\)
\(420\) 0 0
\(421\) −36.4958 −1.77869 −0.889347 0.457232i \(-0.848841\pi\)
−0.889347 + 0.457232i \(0.848841\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 15.0320 0.729161
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 18.6708i − 0.899341i −0.893194 0.449671i \(-0.851541\pi\)
0.893194 0.449671i \(-0.148459\pi\)
\(432\) 0 0
\(433\) − 12.4261i − 0.597163i −0.954384 0.298581i \(-0.903487\pi\)
0.954384 0.298581i \(-0.0965134\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.3315 0.494225
\(438\) 0 0
\(439\) − 19.9386i − 0.951615i −0.879549 0.475808i \(-0.842156\pi\)
0.879549 0.475808i \(-0.157844\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 29.3125i − 1.39268i −0.717712 0.696340i \(-0.754811\pi\)
0.717712 0.696340i \(-0.245189\pi\)
\(444\) 0 0
\(445\) −14.7999 −0.701580
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 3.58492i 0.169183i 0.996416 + 0.0845915i \(0.0269585\pi\)
−0.996416 + 0.0845915i \(0.973041\pi\)
\(450\) 0 0
\(451\) 4.47159i 0.210559i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −16.7948 −0.785629 −0.392814 0.919618i \(-0.628499\pi\)
−0.392814 + 0.919618i \(0.628499\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 11.3775 0.529903 0.264951 0.964262i \(-0.414644\pi\)
0.264951 + 0.964262i \(0.414644\pi\)
\(462\) 0 0
\(463\) 2.48145 0.115323 0.0576613 0.998336i \(-0.481636\pi\)
0.0576613 + 0.998336i \(0.481636\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −23.9678 −1.10910 −0.554550 0.832151i \(-0.687109\pi\)
−0.554550 + 0.832151i \(0.687109\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 6.82721i 0.313915i
\(474\) 0 0
\(475\) − 7.66896i − 0.351876i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.4894 1.02757 0.513784 0.857920i \(-0.328243\pi\)
0.513784 + 0.857920i \(0.328243\pi\)
\(480\) 0 0
\(481\) − 5.03901i − 0.229759i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 11.1829i 0.507790i
\(486\) 0 0
\(487\) 21.9135 0.992993 0.496497 0.868039i \(-0.334619\pi\)
0.496497 + 0.868039i \(0.334619\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 22.5875i 1.01936i 0.860364 + 0.509681i \(0.170236\pi\)
−0.860364 + 0.509681i \(0.829764\pi\)
\(492\) 0 0
\(493\) 34.5707i 1.55698i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −28.6598 −1.28299 −0.641495 0.767127i \(-0.721686\pi\)
−0.641495 + 0.767127i \(0.721686\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −39.4762 −1.76016 −0.880078 0.474830i \(-0.842510\pi\)
−0.880078 + 0.474830i \(0.842510\pi\)
\(504\) 0 0
\(505\) −22.6922 −1.00979
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −5.47001 −0.242454 −0.121227 0.992625i \(-0.538683\pi\)
−0.121227 + 0.992625i \(0.538683\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) − 17.7313i − 0.781333i
\(516\) 0 0
\(517\) − 5.85841i − 0.257652i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −30.3592 −1.33006 −0.665029 0.746817i \(-0.731581\pi\)
−0.665029 + 0.746817i \(0.731581\pi\)
\(522\) 0 0
\(523\) 37.5168i 1.64050i 0.572008 + 0.820248i \(0.306165\pi\)
−0.572008 + 0.820248i \(0.693835\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 34.4306i 1.49982i
\(528\) 0 0
\(529\) −0.787154 −0.0342241
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 3.06442i − 0.132735i
\(534\) 0 0
\(535\) − 12.8442i − 0.555305i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −21.0518 −0.905086 −0.452543 0.891743i \(-0.649483\pi\)
−0.452543 + 0.891743i \(0.649483\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 7.65578 0.327938
\(546\) 0 0
\(547\) 2.57620 0.110150 0.0550751 0.998482i \(-0.482460\pi\)
0.0550751 + 0.998482i \(0.482460\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17.6371 0.751364
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 22.7612i − 0.964423i −0.876055 0.482211i \(-0.839834\pi\)
0.876055 0.482211i \(-0.160166\pi\)
\(558\) 0 0
\(559\) − 4.67875i − 0.197890i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 26.4809 1.11604 0.558018 0.829829i \(-0.311562\pi\)
0.558018 + 0.829829i \(0.311562\pi\)
\(564\) 0 0
\(565\) 12.7731i 0.537367i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 17.5808i 0.737024i 0.929623 + 0.368512i \(0.120133\pi\)
−0.929623 + 0.368512i \(0.879867\pi\)
\(570\) 0 0
\(571\) 24.2233 1.01371 0.506857 0.862030i \(-0.330807\pi\)
0.506857 + 0.862030i \(0.330807\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 17.6569i 0.736342i
\(576\) 0 0
\(577\) 21.4698i 0.893798i 0.894584 + 0.446899i \(0.147472\pi\)
−0.894584 + 0.446899i \(0.852528\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.08292 0.127681
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −30.2492 −1.24852 −0.624260 0.781217i \(-0.714599\pi\)
−0.624260 + 0.781217i \(0.714599\pi\)
\(588\) 0 0
\(589\) 17.5656 0.723778
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 33.8046 1.38819 0.694095 0.719884i \(-0.255805\pi\)
0.694095 + 0.719884i \(0.255805\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 38.1707i 1.55961i 0.626021 + 0.779806i \(0.284683\pi\)
−0.626021 + 0.779806i \(0.715317\pi\)
\(600\) 0 0
\(601\) 37.6195i 1.53453i 0.641329 + 0.767266i \(0.278384\pi\)
−0.641329 + 0.767266i \(0.721616\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 9.64040 0.391938
\(606\) 0 0
\(607\) − 0.865759i − 0.0351401i −0.999846 0.0175700i \(-0.994407\pi\)
0.999846 0.0175700i \(-0.00559301\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.01482i 0.162422i
\(612\) 0 0
\(613\) −21.1127 −0.852736 −0.426368 0.904550i \(-0.640207\pi\)
−0.426368 + 0.904550i \(0.640207\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 10.6262i − 0.427795i −0.976856 0.213897i \(-0.931384\pi\)
0.976856 0.213897i \(-0.0686158\pi\)
\(618\) 0 0
\(619\) 22.9365i 0.921896i 0.887427 + 0.460948i \(0.152491\pi\)
−0.887427 + 0.460948i \(0.847509\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 6.20782 0.248313
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −18.2693 −0.728443
\(630\) 0 0
\(631\) −4.19211 −0.166885 −0.0834425 0.996513i \(-0.526592\pi\)
−0.0834425 + 0.996513i \(0.526592\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.83550 −0.0728395
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 17.8857i 0.706444i 0.935539 + 0.353222i \(0.114914\pi\)
−0.935539 + 0.353222i \(0.885086\pi\)
\(642\) 0 0
\(643\) − 30.8980i − 1.21850i −0.792980 0.609248i \(-0.791471\pi\)
0.792980 0.609248i \(-0.208529\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 7.63407 0.300126 0.150063 0.988676i \(-0.452052\pi\)
0.150063 + 0.988676i \(0.452052\pi\)
\(648\) 0 0
\(649\) 9.98229i 0.391839i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 22.2473i 0.870606i 0.900284 + 0.435303i \(0.143359\pi\)
−0.900284 + 0.435303i \(0.856641\pi\)
\(654\) 0 0
\(655\) −24.1897 −0.945171
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.74939i 0.340828i 0.985373 + 0.170414i \(0.0545105\pi\)
−0.985373 + 0.170414i \(0.945490\pi\)
\(660\) 0 0
\(661\) − 7.46987i − 0.290544i −0.989392 0.145272i \(-0.953594\pi\)
0.989392 0.145272i \(-0.0464058\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −40.6072 −1.57232
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 24.7019 0.953605
\(672\) 0 0
\(673\) −0.388583 −0.0149788 −0.00748938 0.999972i \(-0.502384\pi\)
−0.00748938 + 0.999972i \(0.502384\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.9188 −0.727110 −0.363555 0.931573i \(-0.618437\pi\)
−0.363555 + 0.931573i \(0.618437\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 5.71698i 0.218754i 0.994000 + 0.109377i \(0.0348856\pi\)
−0.994000 + 0.109377i \(0.965114\pi\)
\(684\) 0 0
\(685\) − 24.9969i − 0.955084i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.11275 −0.0804895
\(690\) 0 0
\(691\) 50.5303i 1.92226i 0.276090 + 0.961132i \(0.410961\pi\)
−0.276090 + 0.961132i \(0.589039\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.64376i 0.289944i
\(696\) 0 0
\(697\) −11.1103 −0.420831
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 14.5025i 0.547752i 0.961765 + 0.273876i \(0.0883058\pi\)
−0.961765 + 0.273876i \(0.911694\pi\)
\(702\) 0 0
\(703\) 9.32051i 0.351530i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −18.0731 −0.678751 −0.339376 0.940651i \(-0.610216\pi\)
−0.339376 + 0.940651i \(0.610216\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −40.4427 −1.51459
\(714\) 0 0
\(715\) 2.24807 0.0840729
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 50.7440 1.89243 0.946216 0.323536i \(-0.104872\pi\)
0.946216 + 0.323536i \(0.104872\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 30.1421i 1.11945i
\(726\) 0 0
\(727\) − 6.77139i − 0.251137i −0.992085 0.125568i \(-0.959925\pi\)
0.992085 0.125568i \(-0.0400755\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −16.9631 −0.627403
\(732\) 0 0
\(733\) 50.6148i 1.86950i 0.355306 + 0.934750i \(0.384377\pi\)
−0.355306 + 0.934750i \(0.615623\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.1190i 0.520080i
\(738\) 0 0
\(739\) −30.7020 −1.12939 −0.564695 0.825300i \(-0.691006\pi\)
−0.564695 + 0.825300i \(0.691006\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 5.18883i − 0.190360i −0.995460 0.0951799i \(-0.969657\pi\)
0.995460 0.0951799i \(-0.0303426\pi\)
\(744\) 0 0
\(745\) − 16.8951i − 0.618990i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.23722 −0.0451466 −0.0225733 0.999745i \(-0.507186\pi\)
−0.0225733 + 0.999745i \(0.507186\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0479 0.438470
\(756\) 0 0
\(757\) 51.3970 1.86806 0.934028 0.357200i \(-0.116268\pi\)
0.934028 + 0.357200i \(0.116268\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 29.6381 1.07438 0.537190 0.843461i \(-0.319486\pi\)
0.537190 + 0.843461i \(0.319486\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 6.84096i − 0.247013i
\(768\) 0 0
\(769\) − 28.1387i − 1.01471i −0.861738 0.507354i \(-0.830624\pi\)
0.861738 0.507354i \(-0.169376\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.9045 0.428177 0.214088 0.976814i \(-0.431322\pi\)
0.214088 + 0.976814i \(0.431322\pi\)
\(774\) 0 0
\(775\) 30.0200i 1.07835i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 5.66817i 0.203083i
\(780\) 0 0
\(781\) −9.16320 −0.327885
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 0.542431i − 0.0193602i
\(786\) 0 0
\(787\) 34.0573i 1.21401i 0.794697 + 0.607007i \(0.207630\pi\)
−0.794697 + 0.607007i \(0.792370\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −16.9284 −0.601146
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.8088 1.16215 0.581074 0.813851i \(-0.302633\pi\)
0.581074 + 0.813851i \(0.302633\pi\)
\(798\) 0 0
\(799\) 14.5560 0.514954
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.63388 0.0576583
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 7.95416i − 0.279654i −0.990176 0.139827i \(-0.955345\pi\)
0.990176 0.139827i \(-0.0446546\pi\)
\(810\) 0 0
\(811\) 22.4200i 0.787273i 0.919266 + 0.393636i \(0.128783\pi\)
−0.919266 + 0.393636i \(0.871217\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 26.2278 0.918721
\(816\) 0 0
\(817\) 8.65414i 0.302770i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 5.37678i − 0.187651i −0.995589 0.0938254i \(-0.970090\pi\)
0.995589 0.0938254i \(-0.0299095\pi\)
\(822\) 0 0
\(823\) −7.10259 −0.247581 −0.123790 0.992308i \(-0.539505\pi\)
−0.123790 + 0.992308i \(0.539505\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 49.1228i − 1.70817i −0.520135 0.854084i \(-0.674118\pi\)
0.520135 0.854084i \(-0.325882\pi\)
\(828\) 0 0
\(829\) 0.170141i 0.00590924i 0.999996 + 0.00295462i \(0.000940486\pi\)
−0.999996 + 0.00295462i \(0.999060\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 6.37350 0.220564
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −43.2416 −1.49287 −0.746434 0.665460i \(-0.768235\pi\)
−0.746434 + 0.665460i \(0.768235\pi\)
\(840\) 0 0
\(841\) −40.3208 −1.39037
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 13.7294 0.472305
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 21.4594i − 0.735617i
\(852\) 0 0
\(853\) − 19.3097i − 0.661153i −0.943779 0.330577i \(-0.892757\pi\)
0.943779 0.330577i \(-0.107243\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 53.5994 1.83092 0.915461 0.402408i \(-0.131827\pi\)
0.915461 + 0.402408i \(0.131827\pi\)
\(858\) 0 0
\(859\) 3.00087i 0.102389i 0.998689 + 0.0511943i \(0.0163028\pi\)
−0.998689 + 0.0511943i \(0.983697\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 41.5766i 1.41528i 0.706572 + 0.707641i \(0.250241\pi\)
−0.706572 + 0.707641i \(0.749759\pi\)
\(864\) 0 0
\(865\) 11.1757 0.379986
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 18.5863i 0.630498i
\(870\) 0 0
\(871\) − 9.67588i − 0.327855i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −35.4921 −1.19848 −0.599241 0.800568i \(-0.704531\pi\)
−0.599241 + 0.800568i \(0.704531\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.7343 −0.429030 −0.214515 0.976721i \(-0.568817\pi\)
−0.214515 + 0.976721i \(0.568817\pi\)
\(882\) 0 0
\(883\) −29.0274 −0.976849 −0.488425 0.872606i \(-0.662428\pi\)
−0.488425 + 0.872606i \(0.662428\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 44.6485 1.49915 0.749575 0.661919i \(-0.230258\pi\)
0.749575 + 0.661919i \(0.230258\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 7.42609i − 0.248505i
\(894\) 0 0
\(895\) 2.65797i 0.0888462i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −69.0400 −2.30261
\(900\) 0 0
\(901\) 7.65992i 0.255189i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 25.6051i 0.851143i
\(906\) 0 0
\(907\) 29.7726 0.988582 0.494291 0.869297i \(-0.335428\pi\)
0.494291 + 0.869297i \(0.335428\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 33.4911i 1.10961i 0.831981 + 0.554804i \(0.187207\pi\)
−0.831981 + 0.554804i \(0.812793\pi\)
\(912\) 0 0
\(913\) 17.0887i 0.565554i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 13.5840 0.448096 0.224048 0.974578i \(-0.428073\pi\)
0.224048 + 0.974578i \(0.428073\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 6.27963 0.206697
\(924\) 0 0
\(925\) −15.9290 −0.523741
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −0.0536313 −0.00175959 −0.000879793 1.00000i \(-0.500280\pi\)
−0.000879793 1.00000i \(0.500280\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 8.15051i − 0.266550i
\(936\) 0 0
\(937\) − 14.3633i − 0.469230i −0.972088 0.234615i \(-0.924617\pi\)
0.972088 0.234615i \(-0.0753829\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 33.9124 1.10551 0.552757 0.833343i \(-0.313576\pi\)
0.552757 + 0.833343i \(0.313576\pi\)
\(942\) 0 0
\(943\) − 13.0503i − 0.424976i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 32.7927i − 1.06562i −0.846235 0.532810i \(-0.821136\pi\)
0.846235 0.532810i \(-0.178864\pi\)
\(948\) 0 0
\(949\) −1.11971 −0.0363474
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 25.2186i − 0.816912i −0.912778 0.408456i \(-0.866067\pi\)
0.912778 0.408456i \(-0.133933\pi\)
\(954\) 0 0
\(955\) 25.5398i 0.826448i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −37.7604 −1.21808
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −25.4326 −0.818703
\(966\) 0 0
\(967\) −15.0565 −0.484183 −0.242091 0.970253i \(-0.577833\pi\)
−0.242091 + 0.970253i \(0.577833\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −12.6049 −0.404510 −0.202255 0.979333i \(-0.564827\pi\)
−0.202255 + 0.979333i \(0.564827\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 53.1669i 1.70096i 0.526007 + 0.850480i \(0.323688\pi\)
−0.526007 + 0.850480i \(0.676312\pi\)
\(978\) 0 0
\(979\) − 21.0560i − 0.672951i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 8.86131 0.282632 0.141316 0.989965i \(-0.454867\pi\)
0.141316 + 0.989965i \(0.454867\pi\)
\(984\) 0 0
\(985\) − 6.56359i − 0.209134i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 19.9251i − 0.633582i
\(990\) 0 0
\(991\) −29.8469 −0.948118 −0.474059 0.880493i \(-0.657212\pi\)
−0.474059 + 0.880493i \(0.657212\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 19.2709i − 0.610929i
\(996\) 0 0
\(997\) − 12.7612i − 0.404153i −0.979370 0.202076i \(-0.935231\pi\)
0.979370 0.202076i \(-0.0647689\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3528.2.k.b.881.12 16
3.2 odd 2 inner 3528.2.k.b.881.5 16
4.3 odd 2 7056.2.k.h.881.11 16
7.2 even 3 504.2.bl.a.17.3 16
7.3 odd 6 504.2.bl.a.89.6 yes 16
7.4 even 3 3528.2.bl.a.1097.3 16
7.5 odd 6 3528.2.bl.a.521.6 16
7.6 odd 2 inner 3528.2.k.b.881.6 16
12.11 even 2 7056.2.k.h.881.6 16
21.2 odd 6 504.2.bl.a.17.6 yes 16
21.5 even 6 3528.2.bl.a.521.3 16
21.11 odd 6 3528.2.bl.a.1097.6 16
21.17 even 6 504.2.bl.a.89.3 yes 16
21.20 even 2 inner 3528.2.k.b.881.11 16
28.3 even 6 1008.2.bt.d.593.6 16
28.23 odd 6 1008.2.bt.d.17.3 16
28.27 even 2 7056.2.k.h.881.5 16
84.23 even 6 1008.2.bt.d.17.6 16
84.59 odd 6 1008.2.bt.d.593.3 16
84.83 odd 2 7056.2.k.h.881.12 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.bl.a.17.3 16 7.2 even 3
504.2.bl.a.17.6 yes 16 21.2 odd 6
504.2.bl.a.89.3 yes 16 21.17 even 6
504.2.bl.a.89.6 yes 16 7.3 odd 6
1008.2.bt.d.17.3 16 28.23 odd 6
1008.2.bt.d.17.6 16 84.23 even 6
1008.2.bt.d.593.3 16 84.59 odd 6
1008.2.bt.d.593.6 16 28.3 even 6
3528.2.k.b.881.5 16 3.2 odd 2 inner
3528.2.k.b.881.6 16 7.6 odd 2 inner
3528.2.k.b.881.11 16 21.20 even 2 inner
3528.2.k.b.881.12 16 1.1 even 1 trivial
3528.2.bl.a.521.3 16 21.5 even 6
3528.2.bl.a.521.6 16 7.5 odd 6
3528.2.bl.a.1097.3 16 7.4 even 3
3528.2.bl.a.1097.6 16 21.11 odd 6
7056.2.k.h.881.5 16 28.27 even 2
7056.2.k.h.881.6 16 12.11 even 2
7056.2.k.h.881.11 16 4.3 odd 2
7056.2.k.h.881.12 16 84.83 odd 2