| L(s) = 1 | + 1.17·5-s + 1.67i·11-s − 1.14i·13-s − 4.15·17-s + 2.11i·19-s − 4.87i·23-s − 3.62·25-s − 8.32i·29-s − 8.29i·31-s + 4.39·37-s + 2.67·41-s + 4.08·43-s − 3.50·47-s − 1.84i·53-s + 1.96i·55-s + ⋯ |
| L(s) = 1 | + 0.525·5-s + 0.503i·11-s − 0.317i·13-s − 1.00·17-s + 0.485i·19-s − 1.01i·23-s − 0.724·25-s − 1.54i·29-s − 1.48i·31-s + 0.723·37-s + 0.417·41-s + 0.623·43-s − 0.511·47-s − 0.253i·53-s + 0.264i·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3528 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.239 + 0.970i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.563576958\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.563576958\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 \) |
| good | 5 | \( 1 - 1.17T + 5T^{2} \) |
| 11 | \( 1 - 1.67iT - 11T^{2} \) |
| 13 | \( 1 + 1.14iT - 13T^{2} \) |
| 17 | \( 1 + 4.15T + 17T^{2} \) |
| 19 | \( 1 - 2.11iT - 19T^{2} \) |
| 23 | \( 1 + 4.87iT - 23T^{2} \) |
| 29 | \( 1 + 8.32iT - 29T^{2} \) |
| 31 | \( 1 + 8.29iT - 31T^{2} \) |
| 37 | \( 1 - 4.39T + 37T^{2} \) |
| 41 | \( 1 - 2.67T + 41T^{2} \) |
| 43 | \( 1 - 4.08T + 43T^{2} \) |
| 47 | \( 1 + 3.50T + 47T^{2} \) |
| 53 | \( 1 + 1.84iT - 53T^{2} \) |
| 59 | \( 1 - 5.97T + 59T^{2} \) |
| 61 | \( 1 + 14.7iT - 61T^{2} \) |
| 67 | \( 1 - 8.44T + 67T^{2} \) |
| 71 | \( 1 - 5.48iT - 71T^{2} \) |
| 73 | \( 1 + 0.977iT - 73T^{2} \) |
| 79 | \( 1 - 11.1T + 79T^{2} \) |
| 83 | \( 1 - 10.2T + 83T^{2} \) |
| 89 | \( 1 + 12.5T + 89T^{2} \) |
| 97 | \( 1 - 9.52iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.204425406829052139996862016919, −7.889084613095273307733685333675, −6.78665589535333474377718898334, −6.19793841787995780013125663204, −5.50005992162982673065725210955, −4.47742541893242121433399807336, −3.91171190691530091652649297163, −2.52835213049058717051496996821, −2.01767533270470047480682713549, −0.47790571967599321996553789790,
1.18935179914575777022301839601, 2.21493410992090504346773249378, 3.17019774794120167571271725373, 4.09018727295220708853376183868, 5.03851960391383442700091825473, 5.68892649604562559687119569701, 6.55810121033854742494789819435, 7.11924044869359041272081641936, 8.033900781453314103135900260212, 8.921699718658272088935863727984