Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [352,2,Mod(45,352)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(352, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([0, 7, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("352.45");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 352 = 2^{5} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 352.n (of order \(8\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.81073415115\) |
Analytic rank: | \(0\) |
Dimension: | \(160\) |
Relative dimension: | \(40\) over \(\Q(\zeta_{8})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{8}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45.1 | −1.40899 | − | 0.121493i | 0.295327 | − | 0.712982i | 1.97048 | + | 0.342364i | −0.912619 | + | 0.378019i | −0.502734 | + | 0.968701i | 0.169918 | − | 0.169918i | −2.73478 | − | 0.721786i | 1.70019 | + | 1.70019i | 1.33179 | − | 0.421746i |
45.2 | −1.40312 | − | 0.176771i | −0.786365 | + | 1.89845i | 1.93750 | + | 0.496064i | 1.77711 | − | 0.736103i | 1.43896 | − | 2.52475i | −3.53406 | + | 3.53406i | −2.63086 | − | 1.03853i | −0.864430 | − | 0.864430i | −2.62363 | + | 0.718701i |
45.3 | −1.39120 | + | 0.254107i | 1.28218 | − | 3.09546i | 1.87086 | − | 0.707026i | −0.541423 | + | 0.224265i | −0.997190 | + | 4.63221i | 3.42929 | − | 3.42929i | −2.42307 | + | 1.45901i | −5.81657 | − | 5.81657i | 0.696239 | − | 0.449576i |
45.4 | −1.38982 | + | 0.261511i | −0.342954 | + | 0.827965i | 1.86322 | − | 0.726908i | −3.84471 | + | 1.59253i | 0.260125 | − | 1.24041i | 0.897811 | − | 0.897811i | −2.39946 | + | 1.49753i | 1.55341 | + | 1.55341i | 4.92700 | − | 3.21877i |
45.5 | −1.38771 | − | 0.272508i | 0.0495063 | − | 0.119519i | 1.85148 | + | 0.756324i | 3.36527 | − | 1.39394i | −0.101270 | + | 0.152367i | 2.36229 | − | 2.36229i | −2.36321 | − | 1.55410i | 2.10949 | + | 2.10949i | −5.04988 | + | 1.01732i |
45.6 | −1.26223 | + | 0.637791i | 0.851231 | − | 2.05505i | 1.18644 | − | 1.61008i | −1.73443 | + | 0.718422i | 0.236247 | + | 3.13685i | −3.06287 | + | 3.06287i | −0.470671 | + | 2.78899i | −1.37733 | − | 1.37733i | 1.73104 | − | 2.01302i |
45.7 | −1.21532 | + | 0.723188i | 0.443524 | − | 1.07076i | 0.953999 | − | 1.75781i | 2.95283 | − | 1.22310i | 0.235339 | + | 1.62207i | −0.544294 | + | 0.544294i | 0.111813 | + | 2.82622i | 1.17150 | + | 1.17150i | −2.70410 | + | 3.62191i |
45.8 | −1.21451 | − | 0.724544i | 1.24381 | − | 3.00281i | 0.950072 | + | 1.75993i | 3.33233 | − | 1.38030i | −3.68629 | + | 2.74576i | −2.60523 | + | 2.60523i | 0.121276 | − | 2.82583i | −5.34852 | − | 5.34852i | −5.04724 | − | 0.738036i |
45.9 | −1.19859 | − | 0.750585i | 0.612055 | − | 1.47763i | 0.873244 | + | 1.79929i | −2.43306 | + | 1.00780i | −1.84269 | + | 1.31168i | −1.62581 | + | 1.62581i | 0.303858 | − | 2.81206i | 0.312536 | + | 0.312536i | 3.67268 | + | 0.618270i |
45.10 | −1.17562 | − | 0.786075i | −0.821814 | + | 1.98403i | 0.764172 | + | 1.84825i | 0.279093 | − | 0.115604i | 2.52574 | − | 1.68647i | 2.72415 | − | 2.72415i | 0.554489 | − | 2.77354i | −1.13970 | − | 1.13970i | −0.418981 | − | 0.0834812i |
45.11 | −1.05278 | − | 0.944275i | −0.572262 | + | 1.38156i | 0.216689 | + | 1.98823i | −1.26110 | + | 0.522366i | 1.90704 | − | 0.914108i | −0.780224 | + | 0.780224i | 1.64931 | − | 2.29778i | 0.540088 | + | 0.540088i | 1.82092 | + | 0.640892i |
45.12 | −0.808743 | + | 1.16014i | −0.834198 | + | 2.01393i | −0.691870 | − | 1.87652i | −3.17138 | + | 1.31363i | −1.66180 | − | 2.59654i | −2.88679 | + | 2.88679i | 2.73658 | + | 0.714950i | −1.23871 | − | 1.23871i | 1.04083 | − | 4.74165i |
45.13 | −0.786776 | + | 1.17515i | −0.181061 | + | 0.437119i | −0.761968 | − | 1.84916i | −0.620270 | + | 0.256924i | −0.371228 | − | 0.556689i | 0.666406 | − | 0.666406i | 2.77255 | + | 0.559448i | 1.96303 | + | 1.96303i | 0.186088 | − | 0.931053i |
45.14 | −0.736075 | + | 1.20756i | 0.781137 | − | 1.88583i | −0.916388 | − | 1.77770i | −0.243537 | + | 0.100876i | 1.70227 | + | 2.33138i | 1.03521 | − | 1.03521i | 2.82121 | + | 0.201931i | −0.824865 | − | 0.824865i | 0.0574475 | − | 0.368338i |
45.15 | −0.720777 | − | 1.21675i | 0.555561 | − | 1.34124i | −0.960961 | + | 1.75401i | 1.75948 | − | 0.728800i | −2.03239 | + | 0.290758i | 1.87846 | − | 1.87846i | 2.82683 | − | 0.0950021i | 0.631036 | + | 0.631036i | −2.15496 | − | 1.61554i |
45.16 | −0.485531 | − | 1.32825i | −1.13323 | + | 2.73587i | −1.52852 | + | 1.28982i | 4.06060 | − | 1.68195i | 4.18415 | + | 0.176873i | −0.347099 | + | 0.347099i | 2.45535 | + | 1.40402i | −4.07943 | − | 4.07943i | −4.20561 | − | 4.57687i |
45.17 | −0.290095 | − | 1.38414i | −0.104231 | + | 0.251637i | −1.83169 | + | 0.803065i | −3.83200 | + | 1.58727i | 0.378537 | + | 0.0712722i | 2.68118 | − | 2.68118i | 1.64292 | + | 2.30235i | 2.06886 | + | 2.06886i | 3.30865 | + | 4.84357i |
45.18 | −0.187349 | + | 1.40175i | −0.504935 | + | 1.21902i | −1.92980 | − | 0.525232i | 2.41202 | − | 0.999093i | −1.61416 | − | 0.936174i | 3.04703 | − | 3.04703i | 1.09779 | − | 2.60670i | 0.890269 | + | 0.890269i | 0.948588 | + | 3.56823i |
45.19 | −0.0941526 | − | 1.41108i | 1.19624 | − | 2.88798i | −1.98227 | + | 0.265713i | −2.77785 | + | 1.15062i | −4.18779 | − | 1.41607i | −1.10504 | + | 1.10504i | 0.561577 | + | 2.77212i | −4.78811 | − | 4.78811i | 1.88516 | + | 3.81142i |
45.20 | −0.0645658 | + | 1.41274i | 0.243474 | − | 0.587798i | −1.99166 | − | 0.182429i | 2.40247 | − | 0.995138i | 0.814686 | + | 0.381917i | −3.21448 | + | 3.21448i | 0.386318 | − | 2.80192i | 1.83509 | + | 1.83509i | 1.25075 | + | 3.45832i |
See next 80 embeddings (of 160 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
32.g | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 352.2.n.a | ✓ | 160 |
32.g | even | 8 | 1 | inner | 352.2.n.a | ✓ | 160 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
352.2.n.a | ✓ | 160 | 1.a | even | 1 | 1 | trivial |
352.2.n.a | ✓ | 160 | 32.g | even | 8 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(352, [\chi])\).