Properties

Label 352.2
Level 352
Weight 2
Dimension 2034
Nonzero newspaces 12
Newform subspaces 26
Sturm bound 15360
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 352 = 2^{5} \cdot 11 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Newform subspaces: \( 26 \)
Sturm bound: \(15360\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(352))\).

Total New Old
Modular forms 4160 2214 1946
Cusp forms 3521 2034 1487
Eisenstein series 639 180 459

Trace form

\( 2034 q - 32 q^{2} - 22 q^{3} - 32 q^{4} - 28 q^{5} - 32 q^{6} - 22 q^{7} - 32 q^{8} - 46 q^{9} - 48 q^{10} - 26 q^{11} - 104 q^{12} - 44 q^{13} - 64 q^{14} - 30 q^{15} - 72 q^{16} - 24 q^{17} - 72 q^{18}+ \cdots - 178 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(352))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
352.2.a \(\chi_{352}(1, \cdot)\) 352.2.a.a 1 1
352.2.a.b 1
352.2.a.c 1
352.2.a.d 1
352.2.a.e 1
352.2.a.f 1
352.2.a.g 2
352.2.a.h 2
352.2.c \(\chi_{352}(177, \cdot)\) 352.2.c.a 10 1
352.2.e \(\chi_{352}(351, \cdot)\) 352.2.e.a 12 1
352.2.g \(\chi_{352}(175, \cdot)\) 352.2.g.a 2 1
352.2.g.b 8
352.2.i \(\chi_{352}(87, \cdot)\) None 0 2
352.2.j \(\chi_{352}(89, \cdot)\) None 0 2
352.2.m \(\chi_{352}(97, \cdot)\) 352.2.m.a 4 4
352.2.m.b 4
352.2.m.c 8
352.2.m.d 8
352.2.m.e 12
352.2.m.f 12
352.2.n \(\chi_{352}(45, \cdot)\) 352.2.n.a 160 4
352.2.q \(\chi_{352}(43, \cdot)\) 352.2.q.a 184 4
352.2.s \(\chi_{352}(79, \cdot)\) 352.2.s.a 8 4
352.2.s.b 32
352.2.u \(\chi_{352}(63, \cdot)\) 352.2.u.a 48 4
352.2.w \(\chi_{352}(49, \cdot)\) 352.2.w.a 40 4
352.2.ba \(\chi_{352}(9, \cdot)\) None 0 8
352.2.bb \(\chi_{352}(7, \cdot)\) None 0 8
352.2.bc \(\chi_{352}(19, \cdot)\) 352.2.bc.a 736 16
352.2.bf \(\chi_{352}(5, \cdot)\) 352.2.bf.a 736 16

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(352))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(352)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(44))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(88))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(176))\)\(^{\oplus 2}\)