Properties

Label 3510.2.j.h.1171.1
Level $3510$
Weight $2$
Character 3510.1171
Analytic conductor $28.027$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3510,2,Mod(1171,3510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3510, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3510.1171"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3510 = 2 \cdot 3^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3510.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,-4,-4,0,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.0274911095\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.856615824.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 1170)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1171.1
Root \(-0.385731i\) of defining polynomial
Character \(\chi\) \(=\) 3510.1171
Dual form 3510.2.j.h.2341.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} +(-0.425606 - 0.737171i) q^{7} -1.00000 q^{8} -1.00000 q^{10} +(-0.0743941 - 0.128854i) q^{11} +(0.500000 - 0.866025i) q^{13} +(0.425606 - 0.737171i) q^{14} +(-0.500000 - 0.866025i) q^{16} +0.0580138 q^{17} +1.85121 q^{19} +(-0.500000 - 0.866025i) q^{20} +(0.0743941 - 0.128854i) q^{22} +(2.78651 - 4.82637i) q^{23} +(-0.500000 - 0.866025i) q^{25} +1.00000 q^{26} +0.851212 q^{28} +(3.26851 + 5.66122i) q^{29} +(-1.59371 + 2.76039i) q^{31} +(0.500000 - 0.866025i) q^{32} +(0.0290069 + 0.0502414i) q^{34} +0.851212 q^{35} +1.73518 q^{37} +(0.925606 + 1.60320i) q^{38} +(0.500000 - 0.866025i) q^{40} +(-4.31389 + 7.47188i) q^{41} +(1.27820 + 2.21390i) q^{43} +0.148788 q^{44} +5.57301 q^{46} +(6.55501 + 11.3536i) q^{47} +(3.13772 - 5.43469i) q^{49} +(0.500000 - 0.866025i) q^{50} +(0.500000 + 0.866025i) q^{52} +11.8452 q^{53} +0.148788 q^{55} +(0.425606 + 0.737171i) q^{56} +(-3.26851 + 5.66122i) q^{58} +(-3.17480 + 5.49891i) q^{59} +(1.10202 + 1.90876i) q^{61} -3.18742 q^{62} +1.00000 q^{64} +(0.500000 + 0.866025i) q^{65} +(2.73281 - 4.73337i) q^{67} +(-0.0290069 + 0.0502414i) q^{68} +(0.425606 + 0.737171i) q^{70} -10.8152 q^{71} -6.14279 q^{73} +(0.867592 + 1.50271i) q^{74} +(-0.925606 + 1.60320i) q^{76} +(-0.0633251 + 0.109682i) q^{77} +(-6.67342 - 11.5587i) q^{79} +1.00000 q^{80} -8.62779 q^{82} +(6.96961 + 12.0717i) q^{83} +(-0.0290069 + 0.0502414i) q^{85} +(-1.27820 + 2.21390i) q^{86} +(0.0743941 + 0.128854i) q^{88} +5.88985 q^{89} -0.851212 q^{91} +(2.78651 + 4.82637i) q^{92} +(-6.55501 + 11.3536i) q^{94} +(-0.925606 + 1.60320i) q^{95} +(1.31551 + 2.27854i) q^{97} +6.27544 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} - 4 q^{5} + 7 q^{7} - 8 q^{8} - 8 q^{10} - 11 q^{11} + 4 q^{13} - 7 q^{14} - 4 q^{16} + 8 q^{17} - 6 q^{19} - 4 q^{20} + 11 q^{22} + 15 q^{23} - 4 q^{25} + 8 q^{26} - 14 q^{28} - 4 q^{29}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3510\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(2081\) \(2107\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −0.425606 0.737171i −0.160864 0.278624i 0.774315 0.632801i \(-0.218095\pi\)
−0.935179 + 0.354176i \(0.884761\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.00000 −0.316228
\(11\) −0.0743941 0.128854i −0.0224307 0.0388511i 0.854592 0.519300i \(-0.173807\pi\)
−0.877023 + 0.480449i \(0.840474\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) 0.425606 0.737171i 0.113748 0.197017i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.0580138 0.0140704 0.00703521 0.999975i \(-0.497761\pi\)
0.00703521 + 0.999975i \(0.497761\pi\)
\(18\) 0 0
\(19\) 1.85121 0.424697 0.212349 0.977194i \(-0.431889\pi\)
0.212349 + 0.977194i \(0.431889\pi\)
\(20\) −0.500000 0.866025i −0.111803 0.193649i
\(21\) 0 0
\(22\) 0.0743941 0.128854i 0.0158609 0.0274718i
\(23\) 2.78651 4.82637i 0.581027 1.00637i −0.414331 0.910126i \(-0.635984\pi\)
0.995358 0.0962420i \(-0.0306823\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) 0.851212 0.160864
\(29\) 3.26851 + 5.66122i 0.606947 + 1.05126i 0.991741 + 0.128260i \(0.0409391\pi\)
−0.384794 + 0.923002i \(0.625728\pi\)
\(30\) 0 0
\(31\) −1.59371 + 2.76039i −0.286239 + 0.495780i −0.972909 0.231189i \(-0.925738\pi\)
0.686670 + 0.726969i \(0.259072\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 0.0290069 + 0.0502414i 0.00497464 + 0.00861633i
\(35\) 0.851212 0.143881
\(36\) 0 0
\(37\) 1.73518 0.285263 0.142631 0.989776i \(-0.454444\pi\)
0.142631 + 0.989776i \(0.454444\pi\)
\(38\) 0.925606 + 1.60320i 0.150153 + 0.260073i
\(39\) 0 0
\(40\) 0.500000 0.866025i 0.0790569 0.136931i
\(41\) −4.31389 + 7.47188i −0.673717 + 1.16691i 0.303125 + 0.952951i \(0.401970\pi\)
−0.976842 + 0.213961i \(0.931363\pi\)
\(42\) 0 0
\(43\) 1.27820 + 2.21390i 0.194923 + 0.337617i 0.946875 0.321601i \(-0.104221\pi\)
−0.751952 + 0.659218i \(0.770888\pi\)
\(44\) 0.148788 0.0224307
\(45\) 0 0
\(46\) 5.57301 0.821696
\(47\) 6.55501 + 11.3536i 0.956147 + 1.65610i 0.731721 + 0.681604i \(0.238717\pi\)
0.224426 + 0.974491i \(0.427949\pi\)
\(48\) 0 0
\(49\) 3.13772 5.43469i 0.448246 0.776384i
\(50\) 0.500000 0.866025i 0.0707107 0.122474i
\(51\) 0 0
\(52\) 0.500000 + 0.866025i 0.0693375 + 0.120096i
\(53\) 11.8452 1.62707 0.813533 0.581519i \(-0.197542\pi\)
0.813533 + 0.581519i \(0.197542\pi\)
\(54\) 0 0
\(55\) 0.148788 0.0200626
\(56\) 0.425606 + 0.737171i 0.0568740 + 0.0985086i
\(57\) 0 0
\(58\) −3.26851 + 5.66122i −0.429176 + 0.743355i
\(59\) −3.17480 + 5.49891i −0.413323 + 0.715897i −0.995251 0.0973438i \(-0.968965\pi\)
0.581928 + 0.813241i \(0.302299\pi\)
\(60\) 0 0
\(61\) 1.10202 + 1.90876i 0.141099 + 0.244391i 0.927911 0.372802i \(-0.121603\pi\)
−0.786811 + 0.617193i \(0.788270\pi\)
\(62\) −3.18742 −0.404803
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.500000 + 0.866025i 0.0620174 + 0.107417i
\(66\) 0 0
\(67\) 2.73281 4.73337i 0.333866 0.578273i −0.649400 0.760447i \(-0.724980\pi\)
0.983266 + 0.182174i \(0.0583134\pi\)
\(68\) −0.0290069 + 0.0502414i −0.00351760 + 0.00609267i
\(69\) 0 0
\(70\) 0.425606 + 0.737171i 0.0508696 + 0.0881088i
\(71\) −10.8152 −1.28353 −0.641765 0.766902i \(-0.721797\pi\)
−0.641765 + 0.766902i \(0.721797\pi\)
\(72\) 0 0
\(73\) −6.14279 −0.718959 −0.359480 0.933153i \(-0.617046\pi\)
−0.359480 + 0.933153i \(0.617046\pi\)
\(74\) 0.867592 + 1.50271i 0.100856 + 0.174687i
\(75\) 0 0
\(76\) −0.925606 + 1.60320i −0.106174 + 0.183899i
\(77\) −0.0633251 + 0.109682i −0.00721657 + 0.0124995i
\(78\) 0 0
\(79\) −6.67342 11.5587i −0.750818 1.30045i −0.947427 0.319973i \(-0.896326\pi\)
0.196609 0.980482i \(-0.437007\pi\)
\(80\) 1.00000 0.111803
\(81\) 0 0
\(82\) −8.62779 −0.952780
\(83\) 6.96961 + 12.0717i 0.765015 + 1.32504i 0.940239 + 0.340515i \(0.110602\pi\)
−0.175224 + 0.984529i \(0.556065\pi\)
\(84\) 0 0
\(85\) −0.0290069 + 0.0502414i −0.00314624 + 0.00544945i
\(86\) −1.27820 + 2.21390i −0.137832 + 0.238731i
\(87\) 0 0
\(88\) 0.0743941 + 0.128854i 0.00793044 + 0.0137359i
\(89\) 5.88985 0.624322 0.312161 0.950029i \(-0.398947\pi\)
0.312161 + 0.950029i \(0.398947\pi\)
\(90\) 0 0
\(91\) −0.851212 −0.0892312
\(92\) 2.78651 + 4.82637i 0.290513 + 0.503184i
\(93\) 0 0
\(94\) −6.55501 + 11.3536i −0.676098 + 1.17104i
\(95\) −0.925606 + 1.60320i −0.0949652 + 0.164484i
\(96\) 0 0
\(97\) 1.31551 + 2.27854i 0.133570 + 0.231350i 0.925050 0.379844i \(-0.124022\pi\)
−0.791480 + 0.611195i \(0.790689\pi\)
\(98\) 6.27544 0.633915
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 6.41592 + 11.1127i 0.638408 + 1.10575i 0.985782 + 0.168028i \(0.0537399\pi\)
−0.347375 + 0.937726i \(0.612927\pi\)
\(102\) 0 0
\(103\) −5.41592 + 9.38064i −0.533646 + 0.924302i 0.465582 + 0.885005i \(0.345845\pi\)
−0.999228 + 0.0392971i \(0.987488\pi\)
\(104\) −0.500000 + 0.866025i −0.0490290 + 0.0849208i
\(105\) 0 0
\(106\) 5.92261 + 10.2583i 0.575254 + 0.996370i
\(107\) −2.27820 −0.220242 −0.110121 0.993918i \(-0.535124\pi\)
−0.110121 + 0.993918i \(0.535124\pi\)
\(108\) 0 0
\(109\) −4.56977 −0.437705 −0.218853 0.975758i \(-0.570231\pi\)
−0.218853 + 0.975758i \(0.570231\pi\)
\(110\) 0.0743941 + 0.128854i 0.00709320 + 0.0122858i
\(111\) 0 0
\(112\) −0.425606 + 0.737171i −0.0402160 + 0.0696561i
\(113\) −6.22981 + 10.7903i −0.586051 + 1.01507i 0.408692 + 0.912672i \(0.365985\pi\)
−0.994743 + 0.102398i \(0.967348\pi\)
\(114\) 0 0
\(115\) 2.78651 + 4.82637i 0.259843 + 0.450062i
\(116\) −6.53701 −0.606947
\(117\) 0 0
\(118\) −6.34959 −0.584527
\(119\) −0.0246910 0.0427661i −0.00226342 0.00392036i
\(120\) 0 0
\(121\) 5.48893 9.50711i 0.498994 0.864282i
\(122\) −1.10202 + 1.90876i −0.0997724 + 0.172811i
\(123\) 0 0
\(124\) −1.59371 2.76039i −0.143119 0.247890i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −6.23680 −0.553427 −0.276713 0.960952i \(-0.589245\pi\)
−0.276713 + 0.960952i \(0.589245\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −0.500000 + 0.866025i −0.0438529 + 0.0759555i
\(131\) 3.14879 5.45386i 0.275111 0.476506i −0.695052 0.718959i \(-0.744619\pi\)
0.970163 + 0.242453i \(0.0779521\pi\)
\(132\) 0 0
\(133\) −0.787887 1.36466i −0.0683184 0.118331i
\(134\) 5.46562 0.472158
\(135\) 0 0
\(136\) −0.0580138 −0.00497464
\(137\) 6.05070 + 10.4801i 0.516946 + 0.895377i 0.999806 + 0.0196794i \(0.00626456\pi\)
−0.482860 + 0.875697i \(0.660402\pi\)
\(138\) 0 0
\(139\) −1.41892 + 2.45763i −0.120351 + 0.208454i −0.919906 0.392139i \(-0.871735\pi\)
0.799555 + 0.600593i \(0.205069\pi\)
\(140\) −0.425606 + 0.737171i −0.0359703 + 0.0623023i
\(141\) 0 0
\(142\) −5.40761 9.36625i −0.453796 0.785998i
\(143\) −0.148788 −0.0124423
\(144\) 0 0
\(145\) −6.53701 −0.542869
\(146\) −3.07139 5.31981i −0.254190 0.440271i
\(147\) 0 0
\(148\) −0.867592 + 1.50271i −0.0713156 + 0.123522i
\(149\) 1.91592 3.31846i 0.156958 0.271859i −0.776812 0.629732i \(-0.783165\pi\)
0.933770 + 0.357873i \(0.116498\pi\)
\(150\) 0 0
\(151\) 4.71049 + 8.15881i 0.383334 + 0.663955i 0.991537 0.129827i \(-0.0414423\pi\)
−0.608202 + 0.793782i \(0.708109\pi\)
\(152\) −1.85121 −0.150153
\(153\) 0 0
\(154\) −0.126650 −0.0102058
\(155\) −1.59371 2.76039i −0.128010 0.221720i
\(156\) 0 0
\(157\) −5.34152 + 9.25179i −0.426300 + 0.738373i −0.996541 0.0831044i \(-0.973516\pi\)
0.570241 + 0.821477i \(0.306850\pi\)
\(158\) 6.67342 11.5587i 0.530909 0.919561i
\(159\) 0 0
\(160\) 0.500000 + 0.866025i 0.0395285 + 0.0684653i
\(161\) −4.74382 −0.373865
\(162\) 0 0
\(163\) 5.63379 0.441272 0.220636 0.975356i \(-0.429187\pi\)
0.220636 + 0.975356i \(0.429187\pi\)
\(164\) −4.31389 7.47188i −0.336859 0.583456i
\(165\) 0 0
\(166\) −6.96961 + 12.0717i −0.540947 + 0.936948i
\(167\) 6.05232 10.4829i 0.468342 0.811193i −0.531003 0.847370i \(-0.678185\pi\)
0.999345 + 0.0361770i \(0.0115180\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −0.0580138 −0.00444945
\(171\) 0 0
\(172\) −2.55639 −0.194923
\(173\) 10.8399 + 18.7753i 0.824142 + 1.42746i 0.902573 + 0.430537i \(0.141676\pi\)
−0.0784304 + 0.996920i \(0.524991\pi\)
\(174\) 0 0
\(175\) −0.425606 + 0.737171i −0.0321728 + 0.0557249i
\(176\) −0.0743941 + 0.128854i −0.00560767 + 0.00971276i
\(177\) 0 0
\(178\) 2.94492 + 5.10076i 0.220731 + 0.382318i
\(179\) −4.88721 −0.365287 −0.182644 0.983179i \(-0.558465\pi\)
−0.182644 + 0.983179i \(0.558465\pi\)
\(180\) 0 0
\(181\) 25.6412 1.90589 0.952947 0.303138i \(-0.0980344\pi\)
0.952947 + 0.303138i \(0.0980344\pi\)
\(182\) −0.425606 0.737171i −0.0315480 0.0546428i
\(183\) 0 0
\(184\) −2.78651 + 4.82637i −0.205424 + 0.355805i
\(185\) −0.867592 + 1.50271i −0.0637866 + 0.110482i
\(186\) 0 0
\(187\) −0.00431588 0.00747533i −0.000315609 0.000546650i
\(188\) −13.1100 −0.956147
\(189\) 0 0
\(190\) −1.85121 −0.134301
\(191\) 3.90923 + 6.77098i 0.282862 + 0.489931i 0.972088 0.234615i \(-0.0753829\pi\)
−0.689227 + 0.724546i \(0.742050\pi\)
\(192\) 0 0
\(193\) −5.60709 + 9.71177i −0.403607 + 0.699068i −0.994158 0.107932i \(-0.965577\pi\)
0.590551 + 0.807000i \(0.298910\pi\)
\(194\) −1.31551 + 2.27854i −0.0944484 + 0.163589i
\(195\) 0 0
\(196\) 3.13772 + 5.43469i 0.224123 + 0.388192i
\(197\) −24.8092 −1.76758 −0.883792 0.467881i \(-0.845018\pi\)
−0.883792 + 0.467881i \(0.845018\pi\)
\(198\) 0 0
\(199\) 5.78720 0.410244 0.205122 0.978736i \(-0.434241\pi\)
0.205122 + 0.978736i \(0.434241\pi\)
\(200\) 0.500000 + 0.866025i 0.0353553 + 0.0612372i
\(201\) 0 0
\(202\) −6.41592 + 11.1127i −0.451422 + 0.781886i
\(203\) 2.78219 4.81890i 0.195272 0.338220i
\(204\) 0 0
\(205\) −4.31389 7.47188i −0.301295 0.521859i
\(206\) −10.8318 −0.754690
\(207\) 0 0
\(208\) −1.00000 −0.0693375
\(209\) −0.137719 0.238537i −0.00952624 0.0164999i
\(210\) 0 0
\(211\) −1.23149 + 2.13301i −0.0847795 + 0.146842i −0.905297 0.424779i \(-0.860352\pi\)
0.820518 + 0.571621i \(0.193685\pi\)
\(212\) −5.92261 + 10.2583i −0.406766 + 0.704540i
\(213\) 0 0
\(214\) −1.13910 1.97298i −0.0778672 0.134870i
\(215\) −2.55639 −0.174345
\(216\) 0 0
\(217\) 2.71317 0.184182
\(218\) −2.28489 3.95754i −0.154752 0.268038i
\(219\) 0 0
\(220\) −0.0743941 + 0.128854i −0.00501565 + 0.00868736i
\(221\) 0.0290069 0.0502414i 0.00195122 0.00337960i
\(222\) 0 0
\(223\) 7.07433 + 12.2531i 0.473732 + 0.820528i 0.999548 0.0300703i \(-0.00957311\pi\)
−0.525816 + 0.850599i \(0.676240\pi\)
\(224\) −0.851212 −0.0568740
\(225\) 0 0
\(226\) −12.4596 −0.828802
\(227\) −6.81089 11.7968i −0.452055 0.782982i 0.546459 0.837486i \(-0.315976\pi\)
−0.998514 + 0.0545040i \(0.982642\pi\)
\(228\) 0 0
\(229\) 0.765570 1.32601i 0.0505903 0.0876250i −0.839621 0.543172i \(-0.817223\pi\)
0.890212 + 0.455547i \(0.150556\pi\)
\(230\) −2.78651 + 4.82637i −0.183737 + 0.318242i
\(231\) 0 0
\(232\) −3.26851 5.66122i −0.214588 0.371677i
\(233\) 12.5509 0.822235 0.411118 0.911582i \(-0.365139\pi\)
0.411118 + 0.911582i \(0.365139\pi\)
\(234\) 0 0
\(235\) −13.1100 −0.855204
\(236\) −3.17480 5.49891i −0.206662 0.357948i
\(237\) 0 0
\(238\) 0.0246910 0.0427661i 0.00160048 0.00277211i
\(239\) 10.1748 17.6233i 0.658153 1.13995i −0.322941 0.946419i \(-0.604671\pi\)
0.981093 0.193535i \(-0.0619953\pi\)
\(240\) 0 0
\(241\) −5.51638 9.55465i −0.355341 0.615469i 0.631835 0.775103i \(-0.282302\pi\)
−0.987176 + 0.159634i \(0.948969\pi\)
\(242\) 10.9779 0.705684
\(243\) 0 0
\(244\) −2.20404 −0.141099
\(245\) 3.13772 + 5.43469i 0.200462 + 0.347210i
\(246\) 0 0
\(247\) 0.925606 1.60320i 0.0588949 0.102009i
\(248\) 1.59371 2.76039i 0.101201 0.175285i
\(249\) 0 0
\(250\) 0.500000 + 0.866025i 0.0316228 + 0.0547723i
\(251\) −2.60578 −0.164475 −0.0822375 0.996613i \(-0.526207\pi\)
−0.0822375 + 0.996613i \(0.526207\pi\)
\(252\) 0 0
\(253\) −0.829199 −0.0521313
\(254\) −3.11840 5.40123i −0.195666 0.338903i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −0.187422 + 0.324625i −0.0116911 + 0.0202496i −0.871812 0.489841i \(-0.837055\pi\)
0.860121 + 0.510091i \(0.170388\pi\)
\(258\) 0 0
\(259\) −0.738505 1.27913i −0.0458884 0.0794811i
\(260\) −1.00000 −0.0620174
\(261\) 0 0
\(262\) 6.29758 0.389066
\(263\) 2.09509 + 3.62880i 0.129189 + 0.223762i 0.923363 0.383929i \(-0.125429\pi\)
−0.794174 + 0.607691i \(0.792096\pi\)
\(264\) 0 0
\(265\) −5.92261 + 10.2583i −0.363823 + 0.630160i
\(266\) 0.787887 1.36466i 0.0483084 0.0836727i
\(267\) 0 0
\(268\) 2.73281 + 4.73337i 0.166933 + 0.289136i
\(269\) −18.9032 −1.15255 −0.576275 0.817256i \(-0.695494\pi\)
−0.576275 + 0.817256i \(0.695494\pi\)
\(270\) 0 0
\(271\) 13.0165 0.790696 0.395348 0.918531i \(-0.370624\pi\)
0.395348 + 0.918531i \(0.370624\pi\)
\(272\) −0.0290069 0.0502414i −0.00175880 0.00304633i
\(273\) 0 0
\(274\) −6.05070 + 10.4801i −0.365536 + 0.633127i
\(275\) −0.0743941 + 0.128854i −0.00448613 + 0.00777021i
\(276\) 0 0
\(277\) −3.69435 6.39881i −0.221972 0.384467i 0.733435 0.679760i \(-0.237916\pi\)
−0.955407 + 0.295293i \(0.904583\pi\)
\(278\) −2.83783 −0.170202
\(279\) 0 0
\(280\) −0.851212 −0.0508696
\(281\) 11.5190 + 19.9515i 0.687167 + 1.19021i 0.972751 + 0.231854i \(0.0744792\pi\)
−0.285584 + 0.958354i \(0.592188\pi\)
\(282\) 0 0
\(283\) 6.89522 11.9429i 0.409878 0.709930i −0.584997 0.811035i \(-0.698905\pi\)
0.994876 + 0.101105i \(0.0322378\pi\)
\(284\) 5.40761 9.36625i 0.320882 0.555785i
\(285\) 0 0
\(286\) −0.0743941 0.128854i −0.00439902 0.00761932i
\(287\) 7.34408 0.433507
\(288\) 0 0
\(289\) −16.9966 −0.999802
\(290\) −3.26851 5.66122i −0.191933 0.332438i
\(291\) 0 0
\(292\) 3.07139 5.31981i 0.179740 0.311318i
\(293\) 5.01638 8.68863i 0.293060 0.507595i −0.681472 0.731844i \(-0.738660\pi\)
0.974532 + 0.224250i \(0.0719931\pi\)
\(294\) 0 0
\(295\) −3.17480 5.49891i −0.184844 0.320159i
\(296\) −1.73518 −0.100856
\(297\) 0 0
\(298\) 3.83183 0.221972
\(299\) −2.78651 4.82637i −0.161148 0.279116i
\(300\) 0 0
\(301\) 1.08802 1.88450i 0.0627122 0.108621i
\(302\) −4.71049 + 8.15881i −0.271058 + 0.469487i
\(303\) 0 0
\(304\) −0.925606 1.60320i −0.0530871 0.0919496i
\(305\) −2.20404 −0.126203
\(306\) 0 0
\(307\) 1.79307 0.102336 0.0511680 0.998690i \(-0.483706\pi\)
0.0511680 + 0.998690i \(0.483706\pi\)
\(308\) −0.0633251 0.109682i −0.00360829 0.00624973i
\(309\) 0 0
\(310\) 1.59371 2.76039i 0.0905167 0.156780i
\(311\) −5.47900 + 9.48991i −0.310686 + 0.538123i −0.978511 0.206195i \(-0.933892\pi\)
0.667825 + 0.744318i \(0.267225\pi\)
\(312\) 0 0
\(313\) 3.28782 + 5.69468i 0.185839 + 0.321882i 0.943859 0.330349i \(-0.107166\pi\)
−0.758020 + 0.652231i \(0.773833\pi\)
\(314\) −10.6830 −0.602879
\(315\) 0 0
\(316\) 13.3468 0.750818
\(317\) −6.69942 11.6037i −0.376277 0.651731i 0.614240 0.789119i \(-0.289463\pi\)
−0.990517 + 0.137388i \(0.956129\pi\)
\(318\) 0 0
\(319\) 0.486315 0.842323i 0.0272284 0.0471610i
\(320\) −0.500000 + 0.866025i −0.0279508 + 0.0484123i
\(321\) 0 0
\(322\) −2.37191 4.10827i −0.132181 0.228945i
\(323\) 0.107396 0.00597566
\(324\) 0 0
\(325\) −1.00000 −0.0554700
\(326\) 2.81689 + 4.87900i 0.156013 + 0.270223i
\(327\) 0 0
\(328\) 4.31389 7.47188i 0.238195 0.412566i
\(329\) 5.57971 9.66433i 0.307619 0.532812i
\(330\) 0 0
\(331\) −2.58564 4.47846i −0.142120 0.246159i 0.786175 0.618004i \(-0.212058\pi\)
−0.928295 + 0.371845i \(0.878725\pi\)
\(332\) −13.9392 −0.765015
\(333\) 0 0
\(334\) 12.1046 0.662336
\(335\) 2.73281 + 4.73337i 0.149309 + 0.258611i
\(336\) 0 0
\(337\) 10.0644 17.4321i 0.548243 0.949584i −0.450152 0.892952i \(-0.648630\pi\)
0.998395 0.0566326i \(-0.0180364\pi\)
\(338\) 0.500000 0.866025i 0.0271964 0.0471056i
\(339\) 0 0
\(340\) −0.0290069 0.0502414i −0.00157312 0.00272472i
\(341\) 0.474251 0.0256821
\(342\) 0 0
\(343\) −11.3002 −0.610154
\(344\) −1.27820 2.21390i −0.0689158 0.119366i
\(345\) 0 0
\(346\) −10.8399 + 18.7753i −0.582757 + 1.00936i
\(347\) −3.71181 + 6.42904i −0.199260 + 0.345129i −0.948289 0.317409i \(-0.897187\pi\)
0.749028 + 0.662538i \(0.230521\pi\)
\(348\) 0 0
\(349\) 16.0259 + 27.7578i 0.857849 + 1.48584i 0.873976 + 0.485968i \(0.161533\pi\)
−0.0161272 + 0.999870i \(0.505134\pi\)
\(350\) −0.851212 −0.0454992
\(351\) 0 0
\(352\) −0.148788 −0.00793044
\(353\) 4.65704 + 8.06622i 0.247869 + 0.429322i 0.962934 0.269736i \(-0.0869364\pi\)
−0.715065 + 0.699058i \(0.753603\pi\)
\(354\) 0 0
\(355\) 5.40761 9.36625i 0.287006 0.497109i
\(356\) −2.94492 + 5.10076i −0.156081 + 0.270340i
\(357\) 0 0
\(358\) −2.44361 4.23245i −0.129149 0.223692i
\(359\) 5.03264 0.265612 0.132806 0.991142i \(-0.457601\pi\)
0.132806 + 0.991142i \(0.457601\pi\)
\(360\) 0 0
\(361\) −15.5730 −0.819632
\(362\) 12.8206 + 22.2059i 0.673835 + 1.16712i
\(363\) 0 0
\(364\) 0.425606 0.737171i 0.0223078 0.0386383i
\(365\) 3.07139 5.31981i 0.160764 0.278452i
\(366\) 0 0
\(367\) 4.49331 + 7.78264i 0.234549 + 0.406251i 0.959141 0.282927i \(-0.0913054\pi\)
−0.724593 + 0.689177i \(0.757972\pi\)
\(368\) −5.57301 −0.290513
\(369\) 0 0
\(370\) −1.73518 −0.0902079
\(371\) −5.04139 8.73195i −0.261736 0.453340i
\(372\) 0 0
\(373\) −1.70518 + 2.95346i −0.0882910 + 0.152924i −0.906789 0.421585i \(-0.861474\pi\)
0.818498 + 0.574510i \(0.194807\pi\)
\(374\) 0.00431588 0.00747533i 0.000223169 0.000386540i
\(375\) 0 0
\(376\) −6.55501 11.3536i −0.338049 0.585518i
\(377\) 6.53701 0.336673
\(378\) 0 0
\(379\) 30.3956 1.56132 0.780659 0.624958i \(-0.214884\pi\)
0.780659 + 0.624958i \(0.214884\pi\)
\(380\) −0.925606 1.60320i −0.0474826 0.0822422i
\(381\) 0 0
\(382\) −3.90923 + 6.77098i −0.200013 + 0.346433i
\(383\) 5.23944 9.07497i 0.267723 0.463709i −0.700551 0.713603i \(-0.747062\pi\)
0.968273 + 0.249893i \(0.0803955\pi\)
\(384\) 0 0
\(385\) −0.0633251 0.109682i −0.00322735 0.00558993i
\(386\) −11.2142 −0.570787
\(387\) 0 0
\(388\) −2.63103 −0.133570
\(389\) −6.42392 11.1266i −0.325706 0.564139i 0.655949 0.754805i \(-0.272269\pi\)
−0.981655 + 0.190666i \(0.938935\pi\)
\(390\) 0 0
\(391\) 0.161656 0.279996i 0.00817529 0.0141600i
\(392\) −3.13772 + 5.43469i −0.158479 + 0.274493i
\(393\) 0 0
\(394\) −12.4046 21.4854i −0.624935 1.08242i
\(395\) 13.3468 0.671552
\(396\) 0 0
\(397\) 6.59515 0.331001 0.165501 0.986210i \(-0.447076\pi\)
0.165501 + 0.986210i \(0.447076\pi\)
\(398\) 2.89360 + 5.01186i 0.145043 + 0.251222i
\(399\) 0 0
\(400\) −0.500000 + 0.866025i −0.0250000 + 0.0433013i
\(401\) −7.98494 + 13.8303i −0.398749 + 0.690653i −0.993572 0.113204i \(-0.963889\pi\)
0.594823 + 0.803857i \(0.297222\pi\)
\(402\) 0 0
\(403\) 1.59371 + 2.76039i 0.0793884 + 0.137505i
\(404\) −12.8318 −0.638408
\(405\) 0 0
\(406\) 5.56438 0.276156
\(407\) −0.129087 0.223586i −0.00639863 0.0110828i
\(408\) 0 0
\(409\) 0.484999 0.840043i 0.0239816 0.0415374i −0.853786 0.520625i \(-0.825699\pi\)
0.877767 + 0.479087i \(0.159032\pi\)
\(410\) 4.31389 7.47188i 0.213048 0.369010i
\(411\) 0 0
\(412\) −5.41592 9.38064i −0.266823 0.462151i
\(413\) 5.40485 0.265955
\(414\) 0 0
\(415\) −13.9392 −0.684250
\(416\) −0.500000 0.866025i −0.0245145 0.0424604i
\(417\) 0 0
\(418\) 0.137719 0.238537i 0.00673607 0.0116672i
\(419\) 11.7491 20.3501i 0.573982 0.994167i −0.422169 0.906517i \(-0.638731\pi\)
0.996151 0.0876496i \(-0.0279356\pi\)
\(420\) 0 0
\(421\) −0.422669 0.732084i −0.0205996 0.0356796i 0.855542 0.517734i \(-0.173224\pi\)
−0.876141 + 0.482054i \(0.839891\pi\)
\(422\) −2.46299 −0.119896
\(423\) 0 0
\(424\) −11.8452 −0.575254
\(425\) −0.0290069 0.0502414i −0.00140704 0.00243707i
\(426\) 0 0
\(427\) 0.938054 1.62476i 0.0453956 0.0786275i
\(428\) 1.13910 1.97298i 0.0550604 0.0953674i
\(429\) 0 0
\(430\) −1.27820 2.21390i −0.0616401 0.106764i
\(431\) 34.8834 1.68027 0.840136 0.542375i \(-0.182475\pi\)
0.840136 + 0.542375i \(0.182475\pi\)
\(432\) 0 0
\(433\) 23.7409 1.14092 0.570458 0.821327i \(-0.306766\pi\)
0.570458 + 0.821327i \(0.306766\pi\)
\(434\) 1.35659 + 2.34968i 0.0651182 + 0.112788i
\(435\) 0 0
\(436\) 2.28489 3.95754i 0.109426 0.189532i
\(437\) 5.15842 8.93464i 0.246760 0.427402i
\(438\) 0 0
\(439\) −19.4279 33.6500i −0.927241 1.60603i −0.787917 0.615782i \(-0.788840\pi\)
−0.139324 0.990247i \(-0.544493\pi\)
\(440\) −0.148788 −0.00709320
\(441\) 0 0
\(442\) 0.0580138 0.00275943
\(443\) 8.67180 + 15.0200i 0.412009 + 0.713621i 0.995109 0.0987791i \(-0.0314937\pi\)
−0.583100 + 0.812400i \(0.698160\pi\)
\(444\) 0 0
\(445\) −2.94492 + 5.10076i −0.139603 + 0.241799i
\(446\) −7.07433 + 12.2531i −0.334979 + 0.580201i
\(447\) 0 0
\(448\) −0.425606 0.737171i −0.0201080 0.0348281i
\(449\) 4.51452 0.213053 0.106527 0.994310i \(-0.466027\pi\)
0.106527 + 0.994310i \(0.466027\pi\)
\(450\) 0 0
\(451\) 1.28371 0.0604477
\(452\) −6.22981 10.7903i −0.293026 0.507535i
\(453\) 0 0
\(454\) 6.81089 11.7968i 0.319651 0.553652i
\(455\) 0.425606 0.737171i 0.0199527 0.0345591i
\(456\) 0 0
\(457\) 12.2174 + 21.1612i 0.571507 + 0.989879i 0.996412 + 0.0846410i \(0.0269743\pi\)
−0.424904 + 0.905238i \(0.639692\pi\)
\(458\) 1.53114 0.0715455
\(459\) 0 0
\(460\) −5.57301 −0.259843
\(461\) −7.34446 12.7210i −0.342066 0.592475i 0.642751 0.766075i \(-0.277793\pi\)
−0.984816 + 0.173601i \(0.944460\pi\)
\(462\) 0 0
\(463\) −1.99400 + 3.45371i −0.0926691 + 0.160508i −0.908633 0.417595i \(-0.862873\pi\)
0.815964 + 0.578102i \(0.196207\pi\)
\(464\) 3.26851 5.66122i 0.151737 0.262816i
\(465\) 0 0
\(466\) 6.27544 + 10.8694i 0.290704 + 0.503514i
\(467\) −29.0599 −1.34473 −0.672365 0.740219i \(-0.734722\pi\)
−0.672365 + 0.740219i \(0.734722\pi\)
\(468\) 0 0
\(469\) −4.65240 −0.214828
\(470\) −6.55501 11.3536i −0.302360 0.523703i
\(471\) 0 0
\(472\) 3.17480 5.49891i 0.146132 0.253108i
\(473\) 0.190181 0.329403i 0.00874451 0.0151459i
\(474\) 0 0
\(475\) −0.925606 1.60320i −0.0424697 0.0735597i
\(476\) 0.0493820 0.00226342
\(477\) 0 0
\(478\) 20.3496 0.930769
\(479\) −20.6816 35.8216i −0.944967 1.63673i −0.755818 0.654781i \(-0.772761\pi\)
−0.189148 0.981949i \(-0.560573\pi\)
\(480\) 0 0
\(481\) 0.867592 1.50271i 0.0395588 0.0685178i
\(482\) 5.51638 9.55465i 0.251264 0.435202i
\(483\) 0 0
\(484\) 5.48893 + 9.50711i 0.249497 + 0.432141i
\(485\) −2.63103 −0.119469
\(486\) 0 0
\(487\) −42.6109 −1.93088 −0.965442 0.260619i \(-0.916073\pi\)
−0.965442 + 0.260619i \(0.916073\pi\)
\(488\) −1.10202 1.90876i −0.0498862 0.0864054i
\(489\) 0 0
\(490\) −3.13772 + 5.43469i −0.141748 + 0.245514i
\(491\) 6.02732 10.4396i 0.272009 0.471134i −0.697367 0.716714i \(-0.745645\pi\)
0.969376 + 0.245580i \(0.0789785\pi\)
\(492\) 0 0
\(493\) 0.189618 + 0.328429i 0.00853999 + 0.0147917i
\(494\) 1.85121 0.0832900
\(495\) 0 0
\(496\) 3.18742 0.143119
\(497\) 4.60302 + 7.97266i 0.206474 + 0.357623i
\(498\) 0 0
\(499\) −16.7641 + 29.0362i −0.750463 + 1.29984i 0.197136 + 0.980376i \(0.436836\pi\)
−0.947599 + 0.319463i \(0.896497\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) −1.30289 2.25667i −0.0581507 0.100720i
\(503\) −2.33310 −0.104028 −0.0520138 0.998646i \(-0.516564\pi\)
−0.0520138 + 0.998646i \(0.516564\pi\)
\(504\) 0 0
\(505\) −12.8318 −0.571009
\(506\) −0.414600 0.718107i −0.0184312 0.0319238i
\(507\) 0 0
\(508\) 3.11840 5.40123i 0.138357 0.239641i
\(509\) 17.2327 29.8480i 0.763828 1.32299i −0.177036 0.984204i \(-0.556651\pi\)
0.940864 0.338785i \(-0.110016\pi\)
\(510\) 0 0
\(511\) 2.61441 + 4.52829i 0.115655 + 0.200320i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −0.374845 −0.0165337
\(515\) −5.41592 9.38064i −0.238654 0.413360i
\(516\) 0 0
\(517\) 0.975309 1.68928i 0.0428940 0.0742947i
\(518\) 0.738505 1.27913i 0.0324480 0.0562016i
\(519\) 0 0
\(520\) −0.500000 0.866025i −0.0219265 0.0379777i
\(521\) 32.9659 1.44426 0.722130 0.691757i \(-0.243163\pi\)
0.722130 + 0.691757i \(0.243163\pi\)
\(522\) 0 0
\(523\) 5.71629 0.249956 0.124978 0.992160i \(-0.460114\pi\)
0.124978 + 0.992160i \(0.460114\pi\)
\(524\) 3.14879 + 5.45386i 0.137555 + 0.238253i
\(525\) 0 0
\(526\) −2.09509 + 3.62880i −0.0913503 + 0.158223i
\(527\) −0.0924572 + 0.160141i −0.00402750 + 0.00697584i
\(528\) 0 0
\(529\) −4.02925 6.97886i −0.175185 0.303429i
\(530\) −11.8452 −0.514523
\(531\) 0 0
\(532\) 1.57577 0.0683184
\(533\) 4.31389 + 7.47188i 0.186855 + 0.323643i
\(534\) 0 0
\(535\) 1.13910 1.97298i 0.0492475 0.0852992i
\(536\) −2.73281 + 4.73337i −0.118039 + 0.204450i
\(537\) 0 0
\(538\) −9.45161 16.3707i −0.407488 0.705790i
\(539\) −0.933711 −0.0402178
\(540\) 0 0
\(541\) 5.80507 0.249579 0.124790 0.992183i \(-0.460174\pi\)
0.124790 + 0.992183i \(0.460174\pi\)
\(542\) 6.50825 + 11.2726i 0.279553 + 0.484200i
\(543\) 0 0
\(544\) 0.0290069 0.0502414i 0.00124366 0.00215408i
\(545\) 2.28489 3.95754i 0.0978738 0.169522i
\(546\) 0 0
\(547\) 0.902294 + 1.56282i 0.0385793 + 0.0668213i 0.884670 0.466217i \(-0.154383\pi\)
−0.846091 + 0.533038i \(0.821050\pi\)
\(548\) −12.1014 −0.516946
\(549\) 0 0
\(550\) −0.148788 −0.00634435
\(551\) 6.05070 + 10.4801i 0.257768 + 0.446468i
\(552\) 0 0
\(553\) −5.68049 + 9.83890i −0.241559 + 0.418393i
\(554\) 3.69435 6.39881i 0.156958 0.271859i
\(555\) 0 0
\(556\) −1.41892 2.45763i −0.0601754 0.104227i
\(557\) −21.2616 −0.900882 −0.450441 0.892806i \(-0.648733\pi\)
−0.450441 + 0.892806i \(0.648733\pi\)
\(558\) 0 0
\(559\) 2.55639 0.108124
\(560\) −0.425606 0.737171i −0.0179851 0.0311512i
\(561\) 0 0
\(562\) −11.5190 + 19.9515i −0.485900 + 0.841604i
\(563\) 4.58702 7.94495i 0.193320 0.334840i −0.753029 0.657988i \(-0.771408\pi\)
0.946348 + 0.323148i \(0.104741\pi\)
\(564\) 0 0
\(565\) −6.22981 10.7903i −0.262090 0.453953i
\(566\) 13.7904 0.579655
\(567\) 0 0
\(568\) 10.8152 0.453796
\(569\) 10.9471 + 18.9609i 0.458924 + 0.794881i 0.998904 0.0467974i \(-0.0149015\pi\)
−0.539980 + 0.841678i \(0.681568\pi\)
\(570\) 0 0
\(571\) 22.5036 38.9773i 0.941745 1.63115i 0.179604 0.983739i \(-0.442518\pi\)
0.762141 0.647411i \(-0.224148\pi\)
\(572\) 0.0743941 0.128854i 0.00311057 0.00538767i
\(573\) 0 0
\(574\) 3.67204 + 6.36016i 0.153268 + 0.265468i
\(575\) −5.57301 −0.232411
\(576\) 0 0
\(577\) 11.0993 0.462069 0.231035 0.972946i \(-0.425789\pi\)
0.231035 + 0.972946i \(0.425789\pi\)
\(578\) −8.49832 14.7195i −0.353483 0.612251i
\(579\) 0 0
\(580\) 3.26851 5.66122i 0.135717 0.235069i
\(581\) 5.93262 10.2756i 0.246126 0.426304i
\(582\) 0 0
\(583\) −0.881214 1.52631i −0.0364962 0.0632132i
\(584\) 6.14279 0.254190
\(585\) 0 0
\(586\) 10.0328 0.414450
\(587\) 9.08672 + 15.7387i 0.375049 + 0.649604i 0.990334 0.138701i \(-0.0442926\pi\)
−0.615285 + 0.788304i \(0.710959\pi\)
\(588\) 0 0
\(589\) −2.95030 + 5.11006i −0.121565 + 0.210557i
\(590\) 3.17480 5.49891i 0.130704 0.226386i
\(591\) 0 0
\(592\) −0.867592 1.50271i −0.0356578 0.0617611i
\(593\) 45.0659 1.85063 0.925317 0.379195i \(-0.123799\pi\)
0.925317 + 0.379195i \(0.123799\pi\)
\(594\) 0 0
\(595\) 0.0493820 0.00202447
\(596\) 1.91592 + 3.31846i 0.0784790 + 0.135930i
\(597\) 0 0
\(598\) 2.78651 4.82637i 0.113949 0.197365i
\(599\) 22.9386 39.7309i 0.937247 1.62336i 0.166669 0.986013i \(-0.446699\pi\)
0.770578 0.637346i \(-0.219968\pi\)
\(600\) 0 0
\(601\) 2.50669 + 4.34172i 0.102250 + 0.177102i 0.912611 0.408828i \(-0.134062\pi\)
−0.810361 + 0.585930i \(0.800729\pi\)
\(602\) 2.17603 0.0886885
\(603\) 0 0
\(604\) −9.42099 −0.383334
\(605\) 5.48893 + 9.50711i 0.223157 + 0.386519i
\(606\) 0 0
\(607\) 5.28213 9.14892i 0.214395 0.371343i −0.738690 0.674045i \(-0.764555\pi\)
0.953085 + 0.302702i \(0.0978887\pi\)
\(608\) 0.925606 1.60320i 0.0375383 0.0650182i
\(609\) 0 0
\(610\) −1.10202 1.90876i −0.0446196 0.0772833i
\(611\) 13.1100 0.530375
\(612\) 0 0
\(613\) 10.4736 0.423025 0.211513 0.977375i \(-0.432161\pi\)
0.211513 + 0.977375i \(0.432161\pi\)
\(614\) 0.896536 + 1.55285i 0.0361813 + 0.0626678i
\(615\) 0 0
\(616\) 0.0633251 0.109682i 0.00255144 0.00441923i
\(617\) −11.1967 + 19.3933i −0.450763 + 0.780745i −0.998434 0.0559493i \(-0.982181\pi\)
0.547670 + 0.836694i \(0.315515\pi\)
\(618\) 0 0
\(619\) −10.6984 18.5302i −0.430006 0.744793i 0.566867 0.823809i \(-0.308155\pi\)
−0.996873 + 0.0790167i \(0.974822\pi\)
\(620\) 3.18742 0.128010
\(621\) 0 0
\(622\) −10.9580 −0.439376
\(623\) −2.50675 4.34182i −0.100431 0.173951i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) −3.28782 + 5.69468i −0.131408 + 0.227605i
\(627\) 0 0
\(628\) −5.34152 9.25179i −0.213150 0.369187i
\(629\) 0.100665 0.00401376
\(630\) 0 0
\(631\) 0.0358759 0.00142820 0.000714098 1.00000i \(-0.499773\pi\)
0.000714098 1.00000i \(0.499773\pi\)
\(632\) 6.67342 + 11.5587i 0.265454 + 0.459780i
\(633\) 0 0
\(634\) 6.69942 11.6037i 0.266068 0.460844i
\(635\) 3.11840 5.40123i 0.123750 0.214341i
\(636\) 0 0
\(637\) −3.13772 5.43469i −0.124321 0.215330i
\(638\) 0.972631 0.0385068
\(639\) 0 0
\(640\) −1.00000 −0.0395285
\(641\) −16.3066 28.2438i −0.644071 1.11556i −0.984515 0.175299i \(-0.943911\pi\)
0.340444 0.940265i \(-0.389423\pi\)
\(642\) 0 0
\(643\) 11.0464 19.1329i 0.435627 0.754529i −0.561719 0.827328i \(-0.689860\pi\)
0.997347 + 0.0727990i \(0.0231932\pi\)
\(644\) 2.37191 4.10827i 0.0934663 0.161888i
\(645\) 0 0
\(646\) 0.0536979 + 0.0930075i 0.00211272 + 0.00365933i
\(647\) −39.0330 −1.53455 −0.767273 0.641321i \(-0.778387\pi\)
−0.767273 + 0.641321i \(0.778387\pi\)
\(648\) 0 0
\(649\) 0.944744 0.0370845
\(650\) −0.500000 0.866025i −0.0196116 0.0339683i
\(651\) 0 0
\(652\) −2.81689 + 4.87900i −0.110318 + 0.191076i
\(653\) −20.9333 + 36.2576i −0.819184 + 1.41887i 0.0871008 + 0.996200i \(0.472240\pi\)
−0.906284 + 0.422668i \(0.861094\pi\)
\(654\) 0 0
\(655\) 3.14879 + 5.45386i 0.123033 + 0.213100i
\(656\) 8.62779 0.336859
\(657\) 0 0
\(658\) 11.1594 0.435039
\(659\) −3.84521 6.66010i −0.149788 0.259441i 0.781361 0.624079i \(-0.214526\pi\)
−0.931149 + 0.364639i \(0.881193\pi\)
\(660\) 0 0
\(661\) 16.4913 28.5638i 0.641437 1.11100i −0.343675 0.939089i \(-0.611672\pi\)
0.985112 0.171913i \(-0.0549949\pi\)
\(662\) 2.58564 4.47846i 0.100494 0.174060i
\(663\) 0 0
\(664\) −6.96961 12.0717i −0.270473 0.468474i
\(665\) 1.57577 0.0611059
\(666\) 0 0
\(667\) 36.4309 1.41061
\(668\) 6.05232 + 10.4829i 0.234171 + 0.405596i
\(669\) 0 0
\(670\) −2.73281 + 4.73337i −0.105578 + 0.182866i
\(671\) 0.163968 0.284001i 0.00632991 0.0109637i
\(672\) 0 0
\(673\) −5.45699 9.45178i −0.210351 0.364339i 0.741473 0.670983i \(-0.234127\pi\)
−0.951825 + 0.306643i \(0.900794\pi\)
\(674\) 20.1288 0.775332
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) −14.0987 24.4197i −0.541858 0.938525i −0.998797 0.0490275i \(-0.984388\pi\)
0.456940 0.889498i \(-0.348946\pi\)
\(678\) 0 0
\(679\) 1.11978 1.93952i 0.0429733 0.0744319i
\(680\) 0.0290069 0.0502414i 0.00111236 0.00192667i
\(681\) 0 0
\(682\) 0.237125 + 0.410713i 0.00908000 + 0.0157270i
\(683\) 7.03552 0.269207 0.134603 0.990900i \(-0.457024\pi\)
0.134603 + 0.990900i \(0.457024\pi\)
\(684\) 0 0
\(685\) −12.1014 −0.462371
\(686\) −5.65010 9.78627i −0.215722 0.373641i
\(687\) 0 0
\(688\) 1.27820 2.21390i 0.0487308 0.0844042i
\(689\) 5.92261 10.2583i 0.225633 0.390808i
\(690\) 0 0
\(691\) −10.6764 18.4921i −0.406150 0.703472i 0.588305 0.808639i \(-0.299796\pi\)
−0.994455 + 0.105167i \(0.966462\pi\)
\(692\) −21.6798 −0.824142
\(693\) 0 0
\(694\) −7.42362 −0.281797
\(695\) −1.41892 2.45763i −0.0538225 0.0932234i
\(696\) 0 0
\(697\) −0.250265 + 0.433472i −0.00947948 + 0.0164189i
\(698\) −16.0259 + 27.7578i −0.606591 + 1.05065i
\(699\) 0 0
\(700\) −0.425606 0.737171i −0.0160864 0.0278624i
\(701\) −41.2962 −1.55974 −0.779868 0.625944i \(-0.784714\pi\)
−0.779868 + 0.625944i \(0.784714\pi\)
\(702\) 0 0
\(703\) 3.21219 0.121150
\(704\) −0.0743941 0.128854i −0.00280383 0.00485638i
\(705\) 0 0
\(706\) −4.65704 + 8.06622i −0.175270 + 0.303576i
\(707\) 5.46130 9.45925i 0.205393 0.355752i
\(708\) 0 0
\(709\) −9.45137 16.3703i −0.354954 0.614798i 0.632156 0.774841i \(-0.282170\pi\)
−0.987110 + 0.160043i \(0.948837\pi\)
\(710\) 10.8152 0.405888
\(711\) 0 0
\(712\) −5.88985 −0.220731
\(713\) 8.88178 + 15.3837i 0.332625 + 0.576124i
\(714\) 0 0
\(715\) 0.0743941 0.128854i 0.00278218 0.00481888i
\(716\) 2.44361 4.23245i 0.0913219 0.158174i
\(717\) 0 0
\(718\) 2.51632 + 4.35839i 0.0939081 + 0.162654i
\(719\) −40.6689 −1.51669 −0.758347 0.651851i \(-0.773993\pi\)
−0.758347 + 0.651851i \(0.773993\pi\)
\(720\) 0 0
\(721\) 9.22018 0.343378
\(722\) −7.78651 13.4866i −0.289784 0.501920i
\(723\) 0 0
\(724\) −12.8206 + 22.2059i −0.476473 + 0.825276i
\(725\) 3.26851 5.66122i 0.121389 0.210252i
\(726\) 0 0
\(727\) 7.10610 + 12.3081i 0.263551 + 0.456483i 0.967183 0.254081i \(-0.0817731\pi\)
−0.703632 + 0.710564i \(0.748440\pi\)
\(728\) 0.851212 0.0315480
\(729\) 0 0
\(730\) 6.14279 0.227355
\(731\) 0.0741530 + 0.128437i 0.00274265 + 0.00475041i
\(732\) 0 0
\(733\) −6.85684 + 11.8764i −0.253263 + 0.438665i −0.964422 0.264366i \(-0.914837\pi\)
0.711159 + 0.703031i \(0.248171\pi\)
\(734\) −4.49331 + 7.78264i −0.165851 + 0.287262i
\(735\) 0 0
\(736\) −2.78651 4.82637i −0.102712 0.177902i
\(737\) −0.813220 −0.0299553
\(738\) 0 0
\(739\) −28.9640 −1.06546 −0.532729 0.846286i \(-0.678833\pi\)
−0.532729 + 0.846286i \(0.678833\pi\)
\(740\) −0.867592 1.50271i −0.0318933 0.0552408i
\(741\) 0 0
\(742\) 5.04139 8.73195i 0.185075 0.320560i
\(743\) −17.4459 + 30.2172i −0.640029 + 1.10856i 0.345396 + 0.938457i \(0.387744\pi\)
−0.985426 + 0.170106i \(0.945589\pi\)
\(744\) 0 0
\(745\) 1.91592 + 3.31846i 0.0701937 + 0.121579i
\(746\) −3.41036 −0.124862
\(747\) 0 0
\(748\) 0.00863177 0.000315609
\(749\) 0.969614 + 1.67942i 0.0354289 + 0.0613647i
\(750\) 0 0
\(751\) 15.0354 26.0421i 0.548649 0.950288i −0.449718 0.893171i \(-0.648476\pi\)
0.998367 0.0571179i \(-0.0181911\pi\)
\(752\) 6.55501 11.3536i 0.239037 0.414024i
\(753\) 0 0
\(754\) 3.26851 + 5.66122i 0.119032 + 0.206169i
\(755\) −9.42099 −0.342865
\(756\) 0 0
\(757\) −13.6037 −0.494433 −0.247217 0.968960i \(-0.579516\pi\)
−0.247217 + 0.968960i \(0.579516\pi\)
\(758\) 15.1978 + 26.3234i 0.552009 + 0.956108i
\(759\) 0 0
\(760\) 0.925606 1.60320i 0.0335753 0.0581540i
\(761\) −10.6087 + 18.3748i −0.384566 + 0.666087i −0.991709 0.128505i \(-0.958982\pi\)
0.607143 + 0.794592i \(0.292315\pi\)
\(762\) 0 0
\(763\) 1.94492 + 3.36871i 0.0704109 + 0.121955i
\(764\) −7.81845 −0.282862
\(765\) 0 0
\(766\) 10.4789 0.378617
\(767\) 3.17480 + 5.49891i 0.114635 + 0.198554i
\(768\) 0 0
\(769\) −4.79889 + 8.31193i −0.173053 + 0.299736i −0.939486 0.342588i \(-0.888696\pi\)
0.766433 + 0.642324i \(0.222030\pi\)
\(770\) 0.0633251 0.109682i 0.00228208 0.00395268i
\(771\) 0 0
\(772\) −5.60709 9.71177i −0.201804 0.349534i
\(773\) −48.6082 −1.74831 −0.874157 0.485643i \(-0.838585\pi\)
−0.874157 + 0.485643i \(0.838585\pi\)
\(774\) 0 0
\(775\) 3.18742 0.114496
\(776\) −1.31551 2.27854i −0.0472242 0.0817947i
\(777\) 0 0
\(778\) 6.42392 11.1266i 0.230309 0.398907i
\(779\) −7.98593 + 13.8320i −0.286126 + 0.495584i
\(780\) 0 0
\(781\) 0.804588 + 1.39359i 0.0287904 + 0.0498665i
\(782\) 0.323312 0.0115616
\(783\) 0 0
\(784\) −6.27544 −0.224123
\(785\) −5.34152 9.25179i −0.190647 0.330210i
\(786\) 0 0
\(787\) 14.8528 25.7258i 0.529444 0.917024i −0.469966 0.882684i \(-0.655734\pi\)
0.999410 0.0343396i \(-0.0109328\pi\)
\(788\) 12.4046 21.4854i 0.441896 0.765386i
\(789\) 0 0
\(790\) 6.67342 + 11.5587i 0.237430 + 0.411240i
\(791\) 10.6058 0.377098
\(792\) 0 0
\(793\) 2.20404 0.0782679
\(794\) 3.29758 + 5.71157i 0.117027 + 0.202696i
\(795\) 0 0
\(796\) −2.89360 + 5.01186i −0.102561 + 0.177641i
\(797\) 15.2340 26.3861i 0.539618 0.934645i −0.459307 0.888278i \(-0.651902\pi\)
0.998924 0.0463674i \(-0.0147645\pi\)
\(798\) 0 0
\(799\) 0.380281 + 0.658666i 0.0134534 + 0.0233019i
\(800\) −1.00000 −0.0353553
\(801\) 0 0
\(802\) −15.9699 −0.563916
\(803\) 0.456987 + 0.791525i 0.0161267 + 0.0279323i
\(804\) 0 0
\(805\) 2.37191 4.10827i 0.0835988 0.144797i
\(806\) −1.59371 + 2.76039i −0.0561361 + 0.0972305i
\(807\) 0 0
\(808\) −6.41592 11.1127i −0.225711 0.390943i
\(809\) 7.09401 0.249412 0.124706 0.992194i \(-0.460201\pi\)
0.124706 + 0.992194i \(0.460201\pi\)
\(810\) 0 0
\(811\) 7.57914 0.266140 0.133070 0.991107i \(-0.457517\pi\)
0.133070 + 0.991107i \(0.457517\pi\)
\(812\) 2.78219 + 4.81890i 0.0976358 + 0.169110i
\(813\) 0 0
\(814\) 0.129087 0.223586i 0.00452451 0.00783669i
\(815\) −2.81689 + 4.87900i −0.0986715 + 0.170904i
\(816\) 0 0
\(817\) 2.36621 + 4.09840i 0.0827833 + 0.143385i
\(818\) 0.969998 0.0339152
\(819\) 0 0
\(820\) 8.62779 0.301295
\(821\) −6.27582 10.8700i −0.219028 0.379367i 0.735483 0.677543i \(-0.236955\pi\)
−0.954511 + 0.298176i \(0.903622\pi\)
\(822\) 0 0
\(823\) 23.9253 41.4398i 0.833984 1.44450i −0.0608717 0.998146i \(-0.519388\pi\)
0.894855 0.446356i \(-0.147279\pi\)
\(824\) 5.41592 9.38064i 0.188672 0.326790i
\(825\) 0 0
\(826\) 2.70242 + 4.68073i 0.0940293 + 0.162864i
\(827\) 24.9360 0.867109 0.433555 0.901127i \(-0.357259\pi\)
0.433555 + 0.901127i \(0.357259\pi\)
\(828\) 0 0
\(829\) 10.8598 0.377178 0.188589 0.982056i \(-0.439609\pi\)
0.188589 + 0.982056i \(0.439609\pi\)
\(830\) −6.96961 12.0717i −0.241919 0.419016i
\(831\) 0 0
\(832\) 0.500000 0.866025i 0.0173344 0.0300240i
\(833\) 0.182031 0.315287i 0.00630700 0.0109240i
\(834\) 0 0
\(835\) 6.05232 + 10.4829i 0.209449 + 0.362777i
\(836\) 0.275439 0.00952624
\(837\) 0 0
\(838\) 23.4983 0.811734
\(839\) −9.52163 16.4919i −0.328723 0.569365i 0.653536 0.756896i \(-0.273285\pi\)
−0.982259 + 0.187531i \(0.939952\pi\)
\(840\) 0 0
\(841\) −6.86628 + 11.8927i −0.236768 + 0.410094i
\(842\) 0.422669 0.732084i 0.0145661 0.0252293i
\(843\) 0 0
\(844\) −1.23149 2.13301i −0.0423897 0.0734212i
\(845\) 1.00000 0.0344010
\(846\) 0 0
\(847\) −9.34449 −0.321080
\(848\) −5.92261 10.2583i −0.203383 0.352270i
\(849\) 0 0
\(850\) 0.0290069 0.0502414i 0.000994928 0.00172327i
\(851\) 4.83510 8.37465i 0.165745 0.287079i
\(852\) 0 0
\(853\) 24.9101 + 43.1456i 0.852905 + 1.47728i 0.878575 + 0.477605i \(0.158495\pi\)
−0.0256692 + 0.999670i \(0.508172\pi\)
\(854\) 1.87611 0.0641991
\(855\) 0 0
\(856\) 2.27820 0.0778672
\(857\) 13.5730 + 23.5092i 0.463645 + 0.803057i 0.999139 0.0414818i \(-0.0132078\pi\)
−0.535494 + 0.844539i \(0.679875\pi\)
\(858\) 0 0
\(859\) 9.94993 17.2338i 0.339487 0.588009i −0.644849 0.764310i \(-0.723080\pi\)
0.984336 + 0.176301i \(0.0564131\pi\)
\(860\) 1.27820 2.21390i 0.0435861 0.0754934i
\(861\) 0 0
\(862\) 17.4417 + 30.2099i 0.594066 + 1.02895i
\(863\) 2.24743 0.0765033 0.0382517 0.999268i \(-0.487821\pi\)
0.0382517 + 0.999268i \(0.487821\pi\)
\(864\) 0 0
\(865\) −21.6798 −0.737135
\(866\) 11.8705 + 20.5603i 0.403375 + 0.698666i
\(867\) 0 0
\(868\) −1.35659 + 2.34968i −0.0460455 + 0.0797532i
\(869\) −0.992926 + 1.71980i −0.0336827 + 0.0583402i
\(870\) 0 0
\(871\) −2.73281 4.73337i −0.0925977 0.160384i
\(872\) 4.56977 0.154752
\(873\) 0 0
\(874\) 10.3168 0.348972
\(875\) −0.425606 0.737171i −0.0143881 0.0249209i
\(876\) 0 0
\(877\) 20.5013 35.5092i 0.692278 1.19906i −0.278811 0.960346i \(-0.589940\pi\)
0.971090 0.238715i \(-0.0767262\pi\)
\(878\) 19.4279 33.6500i 0.655658 1.13563i
\(879\) 0 0
\(880\) −0.0743941 0.128854i −0.00250783 0.00434368i
\(881\) −33.9525 −1.14389 −0.571944 0.820293i \(-0.693811\pi\)
−0.571944 + 0.820293i \(0.693811\pi\)
\(882\) 0 0
\(883\) 27.8138 0.936010 0.468005 0.883726i \(-0.344973\pi\)
0.468005 + 0.883726i \(0.344973\pi\)
\(884\) 0.0290069 + 0.0502414i 0.000975608 + 0.00168980i
\(885\) 0 0
\(886\) −8.67180 + 15.0200i −0.291335 + 0.504607i
\(887\) 23.9454 41.4746i 0.804007 1.39258i −0.112952 0.993600i \(-0.536031\pi\)
0.916959 0.398981i \(-0.130636\pi\)
\(888\) 0 0
\(889\) 2.65442 + 4.59759i 0.0890264 + 0.154198i
\(890\) −5.88985 −0.197428
\(891\) 0 0
\(892\) −14.1487 −0.473732
\(893\) 12.1347 + 21.0180i 0.406073 + 0.703339i
\(894\) 0 0
\(895\) 2.44361 4.23245i 0.0816808 0.141475i
\(896\) 0.425606 0.737171i 0.0142185 0.0246272i
\(897\) 0 0
\(898\) 2.25726 + 3.90969i 0.0753257 + 0.130468i
\(899\) −20.8362 −0.694927
\(900\) 0 0
\(901\) 0.687186 0.0228935
\(902\) 0.641857 + 1.11173i 0.0213715 + 0.0370165i
\(903\) 0 0
\(904\) 6.22981 10.7903i 0.207200 0.358882i
\(905\) −12.8206 + 22.2059i −0.426171 + 0.738149i
\(906\) 0 0
\(907\) 10.7792 + 18.6701i 0.357917 + 0.619931i 0.987613 0.156911i \(-0.0501537\pi\)
−0.629695 + 0.776842i \(0.716820\pi\)
\(908\) 13.6218 0.452055
\(909\) 0 0
\(910\) 0.851212 0.0282174
\(911\) 19.7802 + 34.2603i 0.655347 + 1.13510i 0.981807 + 0.189884i \(0.0608111\pi\)
−0.326459 + 0.945211i \(0.605856\pi\)
\(912\) 0 0
\(913\) 1.03700 1.79613i 0.0343196 0.0594432i
\(914\) −12.2174 + 21.1612i −0.404116 + 0.699950i
\(915\) 0 0
\(916\) 0.765570 + 1.32601i 0.0252952 + 0.0438125i
\(917\) −5.36057 −0.177022
\(918\) 0 0
\(919\) −0.985977 −0.0325244 −0.0162622 0.999868i \(-0.505177\pi\)
−0.0162622 + 0.999868i \(0.505177\pi\)
\(920\) −2.78651 4.82637i −0.0918684 0.159121i
\(921\) 0 0
\(922\) 7.34446 12.7210i 0.241877 0.418943i
\(923\) −5.40761 + 9.36625i −0.177993 + 0.308294i
\(924\) 0 0
\(925\) −0.867592 1.50271i −0.0285263 0.0494089i
\(926\) −3.98800 −0.131054
\(927\) 0 0
\(928\) 6.53701 0.214588
\(929\) −27.0874 46.9168i −0.888709 1.53929i −0.841403 0.540409i \(-0.818270\pi\)
−0.0473065 0.998880i \(-0.515064\pi\)
\(930\) 0 0
\(931\) 5.80858 10.0608i 0.190369 0.329728i
\(932\) −6.27544 + 10.8694i −0.205559 + 0.356038i
\(933\) 0 0
\(934\) −14.5299 25.1666i −0.475434 0.823476i
\(935\) 0.00863177 0.000282289
\(936\) 0 0
\(937\) 8.63366 0.282049 0.141025 0.990006i \(-0.454960\pi\)
0.141025 + 0.990006i \(0.454960\pi\)
\(938\) −2.32620 4.02910i −0.0759531 0.131555i
\(939\) 0 0
\(940\) 6.55501 11.3536i 0.213801 0.370314i
\(941\) −1.51107 + 2.61725i −0.0492594 + 0.0853199i −0.889604 0.456733i \(-0.849019\pi\)
0.840344 + 0.542053i \(0.182353\pi\)
\(942\) 0 0
\(943\) 24.0414 + 41.6409i 0.782896 + 1.35601i
\(944\) 6.34959 0.206662
\(945\) 0 0
\(946\) 0.380361 0.0123666
\(947\) 25.9158 + 44.8875i 0.842150 + 1.45865i 0.888073 + 0.459702i \(0.152044\pi\)
−0.0459233 + 0.998945i \(0.514623\pi\)
\(948\) 0 0
\(949\) −3.07139 + 5.31981i −0.0997017 + 0.172688i
\(950\) 0.925606 1.60320i 0.0300306 0.0520146i
\(951\) 0 0
\(952\) 0.0246910 + 0.0427661i 0.000800240 + 0.00138606i
\(953\) −39.5024 −1.27961 −0.639804 0.768538i \(-0.720985\pi\)
−0.639804 + 0.768538i \(0.720985\pi\)
\(954\) 0 0
\(955\) −7.81845 −0.252999
\(956\) 10.1748 + 17.6233i 0.329076 + 0.569977i
\(957\) 0 0
\(958\) 20.6816 35.8216i 0.668192 1.15734i
\(959\) 5.15043 8.92080i 0.166316 0.288068i
\(960\) 0 0
\(961\) 10.4202 + 18.0483i 0.336134 + 0.582202i
\(962\) 1.73518 0.0559446
\(963\) 0 0
\(964\) 11.0328 0.355341
\(965\) −5.60709 9.71177i −0.180499 0.312633i
\(966\) 0 0
\(967\) −4.86597 + 8.42811i −0.156479 + 0.271030i −0.933597 0.358326i \(-0.883348\pi\)
0.777118 + 0.629356i \(0.216681\pi\)
\(968\) −5.48893 + 9.50711i −0.176421 + 0.305570i
\(969\) 0 0
\(970\) −1.31551 2.27854i −0.0422386 0.0731594i
\(971\) 10.7765 0.345833 0.172916 0.984937i \(-0.444681\pi\)
0.172916 + 0.984937i \(0.444681\pi\)
\(972\) 0 0
\(973\) 2.41559 0.0774404
\(974\) −21.3054 36.9021i −0.682670 1.18242i
\(975\) 0 0
\(976\) 1.10202 1.90876i 0.0352749 0.0610979i
\(977\) −17.9926 + 31.1640i −0.575633 + 0.997026i 0.420340 + 0.907367i \(0.361911\pi\)
−0.995973 + 0.0896587i \(0.971422\pi\)
\(978\) 0 0
\(979\) −0.438170 0.758932i −0.0140040 0.0242556i
\(980\) −6.27544 −0.200462
\(981\) 0 0
\(982\) 12.0546 0.384679
\(983\) 11.6844 + 20.2380i 0.372675 + 0.645492i 0.989976 0.141235i \(-0.0451072\pi\)
−0.617301 + 0.786727i \(0.711774\pi\)
\(984\) 0 0
\(985\) 12.4046 21.4854i 0.395244 0.684582i
\(986\) −0.189618 + 0.328429i −0.00603868 + 0.0104593i
\(987\) 0 0
\(988\) 0.925606 + 1.60320i 0.0294474 + 0.0510045i
\(989\) 14.2468 0.453023
\(990\) 0 0
\(991\) −13.6196 −0.432642 −0.216321 0.976322i \(-0.569406\pi\)
−0.216321 + 0.976322i \(0.569406\pi\)
\(992\) 1.59371 + 2.76039i 0.0506004 + 0.0876424i
\(993\) 0 0
\(994\) −4.60302 + 7.97266i −0.145999 + 0.252877i
\(995\) −2.89360 + 5.01186i −0.0917333 + 0.158887i
\(996\) 0 0
\(997\) −14.4871 25.0923i −0.458810 0.794682i 0.540088 0.841608i \(-0.318391\pi\)
−0.998898 + 0.0469260i \(0.985058\pi\)
\(998\) −33.5281 −1.06131
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3510.2.j.h.1171.1 8
3.2 odd 2 1170.2.j.h.391.1 8
9.2 odd 6 1170.2.j.h.781.1 yes 8
9.7 even 3 inner 3510.2.j.h.2341.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1170.2.j.h.391.1 8 3.2 odd 2
1170.2.j.h.781.1 yes 8 9.2 odd 6
3510.2.j.h.1171.1 8 1.1 even 1 trivial
3510.2.j.h.2341.1 8 9.7 even 3 inner