Properties

Label 3510.2.j.a
Level $3510$
Weight $2$
Character orbit 3510.j
Analytic conductor $28.027$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3510,2,Mod(1171,3510)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3510, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3510.1171"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3510 = 2 \cdot 3^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3510.j (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,-1,0,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(28.0274911095\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1170)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} - \zeta_{6} q^{4} - \zeta_{6} q^{5} + ( - \zeta_{6} + 1) q^{7} + q^{8} + q^{10} - \zeta_{6} q^{13} + \zeta_{6} q^{14} + (\zeta_{6} - 1) q^{16} - 6 q^{17} + 2 q^{19} + (\zeta_{6} - 1) q^{20} + \cdots - 6 q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} - q^{5} + q^{7} + 2 q^{8} + 2 q^{10} - q^{13} + q^{14} - q^{16} - 12 q^{17} + 4 q^{19} - q^{20} + 3 q^{23} - q^{25} + 2 q^{26} - 2 q^{28} - 3 q^{29} - 2 q^{31} - q^{32} + 6 q^{34}+ \cdots - 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3510\mathbb{Z}\right)^\times\).

\(n\) \(1081\) \(2081\) \(2107\)
\(\chi(n)\) \(1\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1171.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0 −0.500000 + 0.866025i −0.500000 + 0.866025i 0 0.500000 + 0.866025i 1.00000 0 1.00000
2341.1 −0.500000 + 0.866025i 0 −0.500000 0.866025i −0.500000 0.866025i 0 0.500000 0.866025i 1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3510.2.j.a 2
3.b odd 2 1 1170.2.j.f 2
9.c even 3 1 inner 3510.2.j.a 2
9.d odd 6 1 1170.2.j.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1170.2.j.f 2 3.b odd 2 1
1170.2.j.f 2 9.d odd 6 1
3510.2.j.a 2 1.a even 1 1 trivial
3510.2.j.a 2 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3510, [\chi])\):

\( T_{7}^{2} - T_{7} + 1 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$7$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$17$ \( (T + 6)^{2} \) Copy content Toggle raw display
$19$ \( (T - 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$29$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$31$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 3T + 9 \) Copy content Toggle raw display
$43$ \( T^{2} - 4T + 16 \) Copy content Toggle raw display
$47$ \( T^{2} - 9T + 81 \) Copy content Toggle raw display
$53$ \( (T + 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$61$ \( T^{2} + 5T + 25 \) Copy content Toggle raw display
$67$ \( T^{2} - 7T + 49 \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( (T - 8)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
$83$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$89$ \( (T + 3)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 8T + 64 \) Copy content Toggle raw display
show more
show less