Properties

Label 351.2.i.b.242.6
Level $351$
Weight $2$
Character 351.242
Analytic conductor $2.803$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(161,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 184x^{12} + 600x^{10} + 894x^{8} + 600x^{6} + 184x^{4} + 24x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 242.6
Root \(1.68741i\) of defining polynomial
Character \(\chi\) \(=\) 351.242
Dual form 351.2.i.b.161.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.14002 - 1.14002i) q^{2} -0.599280i q^{4} +(-2.84492 + 2.84492i) q^{5} +(-2.82684 + 2.82684i) q^{7} +(1.59685 + 1.59685i) q^{8} +6.48652i q^{10} +(-2.08263 - 2.08263i) q^{11} +(3.59030 + 0.331331i) q^{13} +6.44529i q^{14} +4.83942 q^{16} -3.94914 q^{17} +(2.32235 + 2.32235i) q^{19} +(1.70490 + 1.70490i) q^{20} -4.74846 q^{22} +0.755446 q^{23} -11.1872i q^{25} +(4.47072 - 3.71528i) q^{26} +(1.69407 + 1.69407i) q^{28} -3.40981i q^{29} +(6.39174 + 6.39174i) q^{31} +(2.32334 - 2.32334i) q^{32} +(-4.50208 + 4.50208i) q^{34} -16.0843i q^{35} +(-2.85824 + 2.85824i) q^{37} +5.29503 q^{38} -9.08580 q^{40} +(2.08263 - 2.08263i) q^{41} -0.526914i q^{43} +(-1.24808 + 1.24808i) q^{44} +(0.861221 - 0.861221i) q^{46} +(3.18684 + 3.18684i) q^{47} -8.98203i q^{49} +(-12.7536 - 12.7536i) q^{50} +(0.198560 - 2.15159i) q^{52} +10.3944i q^{53} +11.8498 q^{55} -9.02805 q^{56} +(-3.88724 - 3.88724i) q^{58} +(7.20759 + 7.20759i) q^{59} +2.91264 q^{61} +14.5734 q^{62} +4.38156i q^{64} +(-11.1567 + 9.27150i) q^{65} +(-5.13277 - 5.13277i) q^{67} +2.36664i q^{68} +(-18.3364 - 18.3364i) q^{70} +(-2.08948 + 2.08948i) q^{71} +(-3.56787 + 3.56787i) q^{73} +6.51690i q^{74} +(1.39174 - 1.39174i) q^{76} +11.7745 q^{77} +5.79246 q^{79} +(-13.7678 + 13.7678i) q^{80} -4.74846i q^{82} +(7.18887 - 7.18887i) q^{83} +(11.2350 - 11.2350i) q^{85} +(-0.600691 - 0.600691i) q^{86} -6.65127i q^{88} +(-1.51774 - 1.51774i) q^{89} +(-11.0858 + 9.21257i) q^{91} -0.452723i q^{92} +7.26611 q^{94} -13.2138 q^{95} +(2.07237 + 2.07237i) q^{97} +(-10.2397 - 10.2397i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 16 q^{13} - 8 q^{16} - 32 q^{19} + 8 q^{22} + 40 q^{28} + 16 q^{31} + 24 q^{34} - 32 q^{37} - 72 q^{40} + 48 q^{46} + 48 q^{52} + 32 q^{55} + 56 q^{58} - 64 q^{61} - 32 q^{67} - 40 q^{70}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.14002 1.14002i 0.806114 0.806114i −0.177929 0.984043i \(-0.556940\pi\)
0.984043 + 0.177929i \(0.0569398\pi\)
\(3\) 0 0
\(4\) 0.599280i 0.299640i
\(5\) −2.84492 + 2.84492i −1.27229 + 1.27229i −0.327403 + 0.944885i \(0.606174\pi\)
−0.944885 + 0.327403i \(0.893826\pi\)
\(6\) 0 0
\(7\) −2.82684 + 2.82684i −1.06844 + 1.06844i −0.0709657 + 0.997479i \(0.522608\pi\)
−0.997479 + 0.0709657i \(0.977392\pi\)
\(8\) 1.59685 + 1.59685i 0.564570 + 0.564570i
\(9\) 0 0
\(10\) 6.48652i 2.05122i
\(11\) −2.08263 2.08263i −0.627936 0.627936i 0.319612 0.947548i \(-0.396447\pi\)
−0.947548 + 0.319612i \(0.896447\pi\)
\(12\) 0 0
\(13\) 3.59030 + 0.331331i 0.995769 + 0.0918946i
\(14\) 6.44529i 1.72258i
\(15\) 0 0
\(16\) 4.83942 1.20986
\(17\) −3.94914 −0.957806 −0.478903 0.877868i \(-0.658965\pi\)
−0.478903 + 0.877868i \(0.658965\pi\)
\(18\) 0 0
\(19\) 2.32235 + 2.32235i 0.532783 + 0.532783i 0.921399 0.388617i \(-0.127047\pi\)
−0.388617 + 0.921399i \(0.627047\pi\)
\(20\) 1.70490 + 1.70490i 0.381228 + 0.381228i
\(21\) 0 0
\(22\) −4.74846 −1.01238
\(23\) 0.755446 0.157521 0.0787607 0.996894i \(-0.474904\pi\)
0.0787607 + 0.996894i \(0.474904\pi\)
\(24\) 0 0
\(25\) 11.1872i 2.23743i
\(26\) 4.47072 3.71528i 0.876781 0.728626i
\(27\) 0 0
\(28\) 1.69407 + 1.69407i 0.320149 + 0.320149i
\(29\) 3.40981i 0.633186i −0.948562 0.316593i \(-0.897461\pi\)
0.948562 0.316593i \(-0.102539\pi\)
\(30\) 0 0
\(31\) 6.39174 + 6.39174i 1.14799 + 1.14799i 0.986948 + 0.161042i \(0.0514855\pi\)
0.161042 + 0.986948i \(0.448515\pi\)
\(32\) 2.32334 2.32334i 0.410712 0.410712i
\(33\) 0 0
\(34\) −4.50208 + 4.50208i −0.772101 + 0.772101i
\(35\) 16.0843i 2.71874i
\(36\) 0 0
\(37\) −2.85824 + 2.85824i −0.469892 + 0.469892i −0.901880 0.431987i \(-0.857813\pi\)
0.431987 + 0.901880i \(0.357813\pi\)
\(38\) 5.29503 0.858967
\(39\) 0 0
\(40\) −9.08580 −1.43659
\(41\) 2.08263 2.08263i 0.325252 0.325252i −0.525526 0.850778i \(-0.676131\pi\)
0.850778 + 0.525526i \(0.176131\pi\)
\(42\) 0 0
\(43\) 0.526914i 0.0803536i −0.999193 0.0401768i \(-0.987208\pi\)
0.999193 0.0401768i \(-0.0127921\pi\)
\(44\) −1.24808 + 1.24808i −0.188155 + 0.188155i
\(45\) 0 0
\(46\) 0.861221 0.861221i 0.126980 0.126980i
\(47\) 3.18684 + 3.18684i 0.464849 + 0.464849i 0.900241 0.435392i \(-0.143390\pi\)
−0.435392 + 0.900241i \(0.643390\pi\)
\(48\) 0 0
\(49\) 8.98203i 1.28315i
\(50\) −12.7536 12.7536i −1.80363 1.80363i
\(51\) 0 0
\(52\) 0.198560 2.15159i 0.0275353 0.298372i
\(53\) 10.3944i 1.42778i 0.700256 + 0.713892i \(0.253069\pi\)
−0.700256 + 0.713892i \(0.746931\pi\)
\(54\) 0 0
\(55\) 11.8498 1.59783
\(56\) −9.02805 −1.20642
\(57\) 0 0
\(58\) −3.88724 3.88724i −0.510420 0.510420i
\(59\) 7.20759 + 7.20759i 0.938348 + 0.938348i 0.998207 0.0598591i \(-0.0190652\pi\)
−0.0598591 + 0.998207i \(0.519065\pi\)
\(60\) 0 0
\(61\) 2.91264 0.372926 0.186463 0.982462i \(-0.440298\pi\)
0.186463 + 0.982462i \(0.440298\pi\)
\(62\) 14.5734 1.85082
\(63\) 0 0
\(64\) 4.38156i 0.547695i
\(65\) −11.1567 + 9.27150i −1.38382 + 1.14999i
\(66\) 0 0
\(67\) −5.13277 5.13277i −0.627068 0.627068i 0.320261 0.947329i \(-0.396229\pi\)
−0.947329 + 0.320261i \(0.896229\pi\)
\(68\) 2.36664i 0.286997i
\(69\) 0 0
\(70\) −18.3364 18.3364i −2.19161 2.19161i
\(71\) −2.08948 + 2.08948i −0.247975 + 0.247975i −0.820139 0.572164i \(-0.806104\pi\)
0.572164 + 0.820139i \(0.306104\pi\)
\(72\) 0 0
\(73\) −3.56787 + 3.56787i −0.417588 + 0.417588i −0.884372 0.466784i \(-0.845413\pi\)
0.466784 + 0.884372i \(0.345413\pi\)
\(74\) 6.51690i 0.757574i
\(75\) 0 0
\(76\) 1.39174 1.39174i 0.159643 0.159643i
\(77\) 11.7745 1.34183
\(78\) 0 0
\(79\) 5.79246 0.651702 0.325851 0.945421i \(-0.394349\pi\)
0.325851 + 0.945421i \(0.394349\pi\)
\(80\) −13.7678 + 13.7678i −1.53929 + 1.53929i
\(81\) 0 0
\(82\) 4.74846i 0.524380i
\(83\) 7.18887 7.18887i 0.789081 0.789081i −0.192262 0.981344i \(-0.561582\pi\)
0.981344 + 0.192262i \(0.0615824\pi\)
\(84\) 0 0
\(85\) 11.2350 11.2350i 1.21861 1.21861i
\(86\) −0.600691 0.600691i −0.0647742 0.0647742i
\(87\) 0 0
\(88\) 6.65127i 0.709028i
\(89\) −1.51774 1.51774i −0.160880 0.160880i 0.622076 0.782957i \(-0.286289\pi\)
−0.782957 + 0.622076i \(0.786289\pi\)
\(90\) 0 0
\(91\) −11.0858 + 9.21257i −1.16211 + 0.965739i
\(92\) 0.452723i 0.0471997i
\(93\) 0 0
\(94\) 7.26611 0.749442
\(95\) −13.2138 −1.35571
\(96\) 0 0
\(97\) 2.07237 + 2.07237i 0.210417 + 0.210417i 0.804445 0.594028i \(-0.202463\pi\)
−0.594028 + 0.804445i \(0.702463\pi\)
\(98\) −10.2397 10.2397i −1.03436 1.03436i
\(99\) 0 0
\(100\) −6.70425 −0.670425
\(101\) −9.92671 −0.987744 −0.493872 0.869535i \(-0.664419\pi\)
−0.493872 + 0.869535i \(0.664419\pi\)
\(102\) 0 0
\(103\) 8.93719i 0.880607i −0.897849 0.440304i \(-0.854871\pi\)
0.897849 0.440304i \(-0.145129\pi\)
\(104\) 5.20406 + 6.26223i 0.510300 + 0.614062i
\(105\) 0 0
\(106\) 11.8498 + 11.8498i 1.15096 + 1.15096i
\(107\) 12.3513i 1.19404i 0.802226 + 0.597020i \(0.203649\pi\)
−0.802226 + 0.597020i \(0.796351\pi\)
\(108\) 0 0
\(109\) −8.62828 8.62828i −0.826439 0.826439i 0.160583 0.987022i \(-0.448663\pi\)
−0.987022 + 0.160583i \(0.948663\pi\)
\(110\) 13.5090 13.5090i 1.28803 1.28803i
\(111\) 0 0
\(112\) −13.6803 + 13.6803i −1.29266 + 1.29266i
\(113\) 10.9338i 1.02856i −0.857622 0.514281i \(-0.828059\pi\)
0.857622 0.514281i \(-0.171941\pi\)
\(114\) 0 0
\(115\) −2.14918 + 2.14918i −0.200412 + 0.200412i
\(116\) −2.04343 −0.189728
\(117\) 0 0
\(118\) 16.4335 1.51283
\(119\) 11.1636 11.1636i 1.02336 1.02336i
\(120\) 0 0
\(121\) 2.32532i 0.211393i
\(122\) 3.32046 3.32046i 0.300621 0.300621i
\(123\) 0 0
\(124\) 3.83044 3.83044i 0.343984 0.343984i
\(125\) 17.6020 + 17.6020i 1.57437 + 1.57437i
\(126\) 0 0
\(127\) 6.58429i 0.584261i −0.956378 0.292131i \(-0.905636\pi\)
0.956378 0.292131i \(-0.0943642\pi\)
\(128\) 9.64173 + 9.64173i 0.852216 + 0.852216i
\(129\) 0 0
\(130\) −2.14918 + 23.2885i −0.188496 + 2.04254i
\(131\) 1.84780i 0.161443i 0.996737 + 0.0807214i \(0.0257224\pi\)
−0.996737 + 0.0807214i \(0.974278\pi\)
\(132\) 0 0
\(133\) −13.1298 −1.13850
\(134\) −11.7029 −1.01098
\(135\) 0 0
\(136\) −6.30616 6.30616i −0.540749 0.540749i
\(137\) 0.932368 + 0.932368i 0.0796575 + 0.0796575i 0.745813 0.666155i \(-0.232061\pi\)
−0.666155 + 0.745813i \(0.732061\pi\)
\(138\) 0 0
\(139\) −1.59985 −0.135697 −0.0678487 0.997696i \(-0.521614\pi\)
−0.0678487 + 0.997696i \(0.521614\pi\)
\(140\) −9.63898 −0.814643
\(141\) 0 0
\(142\) 4.76408i 0.399793i
\(143\) −6.78721 8.16729i −0.567575 0.682983i
\(144\) 0 0
\(145\) 9.70064 + 9.70064i 0.805595 + 0.805595i
\(146\) 8.13488i 0.673247i
\(147\) 0 0
\(148\) 1.71289 + 1.71289i 0.140799 + 0.140799i
\(149\) 10.6174 10.6174i 0.869811 0.869811i −0.122640 0.992451i \(-0.539136\pi\)
0.992451 + 0.122640i \(0.0391361\pi\)
\(150\) 0 0
\(151\) −4.67908 + 4.67908i −0.380778 + 0.380778i −0.871382 0.490605i \(-0.836776\pi\)
0.490605 + 0.871382i \(0.336776\pi\)
\(152\) 7.41686i 0.601586i
\(153\) 0 0
\(154\) 13.4231 13.4231i 1.08167 1.08167i
\(155\) −36.3680 −2.92115
\(156\) 0 0
\(157\) −4.46410 −0.356274 −0.178137 0.984006i \(-0.557007\pi\)
−0.178137 + 0.984006i \(0.557007\pi\)
\(158\) 6.60350 6.60350i 0.525346 0.525346i
\(159\) 0 0
\(160\) 13.2194i 1.04509i
\(161\) −2.13552 + 2.13552i −0.168303 + 0.168303i
\(162\) 0 0
\(163\) 5.14776 5.14776i 0.403204 0.403204i −0.476157 0.879361i \(-0.657970\pi\)
0.879361 + 0.476157i \(0.157970\pi\)
\(164\) −1.24808 1.24808i −0.0974584 0.0974584i
\(165\) 0 0
\(166\) 16.3909i 1.27218i
\(167\) 6.61536 + 6.61536i 0.511912 + 0.511912i 0.915112 0.403200i \(-0.132102\pi\)
−0.403200 + 0.915112i \(0.632102\pi\)
\(168\) 0 0
\(169\) 12.7804 + 2.37915i 0.983111 + 0.183012i
\(170\) 25.6162i 1.96467i
\(171\) 0 0
\(172\) −0.315769 −0.0240771
\(173\) 5.15052 0.391587 0.195793 0.980645i \(-0.437272\pi\)
0.195793 + 0.980645i \(0.437272\pi\)
\(174\) 0 0
\(175\) 31.6243 + 31.6243i 2.39057 + 2.39057i
\(176\) −10.0787 10.0787i −0.759712 0.759712i
\(177\) 0 0
\(178\) −3.46050 −0.259376
\(179\) 24.9678 1.86618 0.933091 0.359641i \(-0.117101\pi\)
0.933091 + 0.359641i \(0.117101\pi\)
\(180\) 0 0
\(181\) 12.9012i 0.958942i −0.877558 0.479471i \(-0.840829\pi\)
0.877558 0.479471i \(-0.159171\pi\)
\(182\) −2.13552 + 23.1405i −0.158295 + 1.71529i
\(183\) 0 0
\(184\) 1.20633 + 1.20633i 0.0889318 + 0.0889318i
\(185\) 16.2630i 1.19568i
\(186\) 0 0
\(187\) 8.22458 + 8.22458i 0.601441 + 0.601441i
\(188\) 1.90981 1.90981i 0.139287 0.139287i
\(189\) 0 0
\(190\) −15.0640 + 15.0640i −1.09285 + 1.09285i
\(191\) 4.73877i 0.342885i 0.985194 + 0.171443i \(0.0548428\pi\)
−0.985194 + 0.171443i \(0.945157\pi\)
\(192\) 0 0
\(193\) −13.2715 + 13.2715i −0.955307 + 0.955307i −0.999043 0.0437361i \(-0.986074\pi\)
0.0437361 + 0.999043i \(0.486074\pi\)
\(194\) 4.72507 0.339240
\(195\) 0 0
\(196\) −5.38275 −0.384482
\(197\) 11.3728 11.3728i 0.810281 0.810281i −0.174395 0.984676i \(-0.555797\pi\)
0.984676 + 0.174395i \(0.0557968\pi\)
\(198\) 0 0
\(199\) 3.44854i 0.244460i 0.992502 + 0.122230i \(0.0390046\pi\)
−0.992502 + 0.122230i \(0.960995\pi\)
\(200\) 17.8642 17.8642i 1.26319 1.26319i
\(201\) 0 0
\(202\) −11.3166 + 11.3166i −0.796235 + 0.796235i
\(203\) 9.63898 + 9.63898i 0.676524 + 0.676524i
\(204\) 0 0
\(205\) 11.8498i 0.827628i
\(206\) −10.1886 10.1886i −0.709870 0.709870i
\(207\) 0 0
\(208\) 17.3750 + 1.60345i 1.20474 + 0.111179i
\(209\) 9.67316i 0.669107i
\(210\) 0 0
\(211\) 11.4485 0.788150 0.394075 0.919078i \(-0.371065\pi\)
0.394075 + 0.919078i \(0.371065\pi\)
\(212\) 6.22917 0.427821
\(213\) 0 0
\(214\) 14.0806 + 14.0806i 0.962533 + 0.962533i
\(215\) 1.49903 + 1.49903i 0.102233 + 0.102233i
\(216\) 0 0
\(217\) −36.1368 −2.45313
\(218\) −19.6728 −1.33241
\(219\) 0 0
\(220\) 7.10136i 0.478774i
\(221\) −14.1786 1.30847i −0.953754 0.0880172i
\(222\) 0 0
\(223\) 4.29695 + 4.29695i 0.287745 + 0.287745i 0.836188 0.548443i \(-0.184779\pi\)
−0.548443 + 0.836188i \(0.684779\pi\)
\(224\) 13.1354i 0.877645i
\(225\) 0 0
\(226\) −12.4647 12.4647i −0.829138 0.829138i
\(227\) −0.709400 + 0.709400i −0.0470845 + 0.0470845i −0.730257 0.683173i \(-0.760600\pi\)
0.683173 + 0.730257i \(0.260600\pi\)
\(228\) 0 0
\(229\) 13.7455 13.7455i 0.908327 0.908327i −0.0878099 0.996137i \(-0.527987\pi\)
0.996137 + 0.0878099i \(0.0279868\pi\)
\(230\) 4.90022i 0.323111i
\(231\) 0 0
\(232\) 5.44494 5.44494i 0.357478 0.357478i
\(233\) −23.6593 −1.54997 −0.774987 0.631977i \(-0.782244\pi\)
−0.774987 + 0.631977i \(0.782244\pi\)
\(234\) 0 0
\(235\) −18.1326 −1.18284
\(236\) 4.31936 4.31936i 0.281166 0.281166i
\(237\) 0 0
\(238\) 25.4533i 1.64989i
\(239\) −10.6634 + 10.6634i −0.689761 + 0.689761i −0.962179 0.272418i \(-0.912177\pi\)
0.272418 + 0.962179i \(0.412177\pi\)
\(240\) 0 0
\(241\) −13.1118 + 13.1118i −0.844607 + 0.844607i −0.989454 0.144847i \(-0.953731\pi\)
0.144847 + 0.989454i \(0.453731\pi\)
\(242\) −2.65091 2.65091i −0.170407 0.170407i
\(243\) 0 0
\(244\) 1.74549i 0.111743i
\(245\) 25.5532 + 25.5532i 1.63253 + 1.63253i
\(246\) 0 0
\(247\) 7.56844 + 9.10737i 0.481569 + 0.579488i
\(248\) 20.4132i 1.29624i
\(249\) 0 0
\(250\) 40.1332 2.53825
\(251\) 19.9605 1.25990 0.629948 0.776637i \(-0.283076\pi\)
0.629948 + 0.776637i \(0.283076\pi\)
\(252\) 0 0
\(253\) −1.57331 1.57331i −0.0989133 0.0989133i
\(254\) −7.50620 7.50620i −0.470981 0.470981i
\(255\) 0 0
\(256\) 13.2204 0.826272
\(257\) −3.84205 −0.239660 −0.119830 0.992794i \(-0.538235\pi\)
−0.119830 + 0.992794i \(0.538235\pi\)
\(258\) 0 0
\(259\) 16.1596i 1.00411i
\(260\) 5.55622 + 6.68600i 0.344582 + 0.414648i
\(261\) 0 0
\(262\) 2.10652 + 2.10652i 0.130141 + 0.130141i
\(263\) 16.9250i 1.04364i 0.853055 + 0.521821i \(0.174747\pi\)
−0.853055 + 0.521821i \(0.825253\pi\)
\(264\) 0 0
\(265\) −29.5713 29.5713i −1.81655 1.81655i
\(266\) −14.9682 + 14.9682i −0.917759 + 0.917759i
\(267\) 0 0
\(268\) −3.07597 + 3.07597i −0.187895 + 0.187895i
\(269\) 13.1409i 0.801214i −0.916250 0.400607i \(-0.868799\pi\)
0.916250 0.400607i \(-0.131201\pi\)
\(270\) 0 0
\(271\) 3.45455 3.45455i 0.209849 0.209849i −0.594354 0.804203i \(-0.702592\pi\)
0.804203 + 0.594354i \(0.202592\pi\)
\(272\) −19.1115 −1.15881
\(273\) 0 0
\(274\) 2.12583 0.128426
\(275\) −23.2987 + 23.2987i −1.40496 + 1.40496i
\(276\) 0 0
\(277\) 2.38332i 0.143200i −0.997433 0.0715999i \(-0.977190\pi\)
0.997433 0.0715999i \(-0.0228105\pi\)
\(278\) −1.82386 + 1.82386i −0.109388 + 0.109388i
\(279\) 0 0
\(280\) 25.6841 25.6841i 1.53492 1.53492i
\(281\) −20.8144 20.8144i −1.24168 1.24168i −0.959302 0.282382i \(-0.908875\pi\)
−0.282382 0.959302i \(-0.591125\pi\)
\(282\) 0 0
\(283\) 29.2051i 1.73606i 0.496511 + 0.868030i \(0.334614\pi\)
−0.496511 + 0.868030i \(0.665386\pi\)
\(284\) 1.25218 + 1.25218i 0.0743033 + 0.0743033i
\(285\) 0 0
\(286\) −17.0484 1.57331i −1.00809 0.0930319i
\(287\) 11.7745i 0.695027i
\(288\) 0 0
\(289\) −1.40432 −0.0826071
\(290\) 22.1178 1.29880
\(291\) 0 0
\(292\) 2.13816 + 2.13816i 0.125126 + 0.125126i
\(293\) 23.6406 + 23.6406i 1.38110 + 1.38110i 0.842670 + 0.538430i \(0.180982\pi\)
0.538430 + 0.842670i \(0.319018\pi\)
\(294\) 0 0
\(295\) −41.0100 −2.38770
\(296\) −9.12835 −0.530575
\(297\) 0 0
\(298\) 24.2080i 1.40233i
\(299\) 2.71227 + 0.250302i 0.156855 + 0.0144754i
\(300\) 0 0
\(301\) 1.48950 + 1.48950i 0.0858533 + 0.0858533i
\(302\) 10.6685i 0.613901i
\(303\) 0 0
\(304\) 11.2388 + 11.2388i 0.644590 + 0.644590i
\(305\) −8.28624 + 8.28624i −0.474469 + 0.474469i
\(306\) 0 0
\(307\) −10.5089 + 10.5089i −0.599777 + 0.599777i −0.940253 0.340476i \(-0.889412\pi\)
0.340476 + 0.940253i \(0.389412\pi\)
\(308\) 7.05622i 0.402066i
\(309\) 0 0
\(310\) −41.4601 + 41.4601i −2.35478 + 2.35478i
\(311\) 4.95488 0.280966 0.140483 0.990083i \(-0.455135\pi\)
0.140483 + 0.990083i \(0.455135\pi\)
\(312\) 0 0
\(313\) 4.30078 0.243094 0.121547 0.992586i \(-0.461214\pi\)
0.121547 + 0.992586i \(0.461214\pi\)
\(314\) −5.08915 + 5.08915i −0.287198 + 0.287198i
\(315\) 0 0
\(316\) 3.47130i 0.195276i
\(317\) 18.9565 18.9565i 1.06470 1.06470i 0.0669483 0.997756i \(-0.478674\pi\)
0.997756 0.0669483i \(-0.0213263\pi\)
\(318\) 0 0
\(319\) −7.10136 + 7.10136i −0.397600 + 0.397600i
\(320\) −12.4652 12.4652i −0.696825 0.696825i
\(321\) 0 0
\(322\) 4.86907i 0.271343i
\(323\) −9.17126 9.17126i −0.510303 0.510303i
\(324\) 0 0
\(325\) 3.70665 40.1652i 0.205608 2.22797i
\(326\) 11.7371i 0.650057i
\(327\) 0 0
\(328\) 6.65127 0.367255
\(329\) −18.0174 −0.993330
\(330\) 0 0
\(331\) −21.1471 21.1471i −1.16235 1.16235i −0.983960 0.178387i \(-0.942912\pi\)
−0.178387 0.983960i \(-0.557088\pi\)
\(332\) −4.30815 4.30815i −0.236440 0.236440i
\(333\) 0 0
\(334\) 15.0833 0.825319
\(335\) 29.2047 1.59562
\(336\) 0 0
\(337\) 26.3468i 1.43520i −0.696456 0.717600i \(-0.745241\pi\)
0.696456 0.717600i \(-0.254759\pi\)
\(338\) 17.2822 11.8577i 0.940028 0.644971i
\(339\) 0 0
\(340\) −6.73290 6.73290i −0.365143 0.365143i
\(341\) 26.6232i 1.44173i
\(342\) 0 0
\(343\) 5.60288 + 5.60288i 0.302527 + 0.302527i
\(344\) 0.841400 0.841400i 0.0453652 0.0453652i
\(345\) 0 0
\(346\) 5.87168 5.87168i 0.315664 0.315664i
\(347\) 0.164998i 0.00885753i 0.999990 + 0.00442877i \(0.00140972\pi\)
−0.999990 + 0.00442877i \(0.998590\pi\)
\(348\) 0 0
\(349\) 25.4287 25.4287i 1.36117 1.36117i 0.488739 0.872430i \(-0.337457\pi\)
0.872430 0.488739i \(-0.162543\pi\)
\(350\) 72.1045 3.85415
\(351\) 0 0
\(352\) −9.67729 −0.515801
\(353\) 8.52107 8.52107i 0.453531 0.453531i −0.442994 0.896525i \(-0.646084\pi\)
0.896525 + 0.442994i \(0.146084\pi\)
\(354\) 0 0
\(355\) 11.8888i 0.630992i
\(356\) −0.909551 + 0.909551i −0.0482061 + 0.0482061i
\(357\) 0 0
\(358\) 28.4637 28.4637i 1.50436 1.50436i
\(359\) −20.2377 20.2377i −1.06810 1.06810i −0.997505 0.0705983i \(-0.977509\pi\)
−0.0705983 0.997505i \(-0.522491\pi\)
\(360\) 0 0
\(361\) 8.21342i 0.432285i
\(362\) −14.7077 14.7077i −0.773017 0.773017i
\(363\) 0 0
\(364\) 5.52091 + 6.64350i 0.289374 + 0.348214i
\(365\) 20.3006i 1.06258i
\(366\) 0 0
\(367\) −6.88506 −0.359397 −0.179699 0.983722i \(-0.557512\pi\)
−0.179699 + 0.983722i \(0.557512\pi\)
\(368\) 3.65592 0.190578
\(369\) 0 0
\(370\) −18.5401 18.5401i −0.963852 0.963852i
\(371\) −29.3834 29.3834i −1.52551 1.52551i
\(372\) 0 0
\(373\) 32.1812 1.66628 0.833140 0.553062i \(-0.186541\pi\)
0.833140 + 0.553062i \(0.186541\pi\)
\(374\) 18.7523 0.969660
\(375\) 0 0
\(376\) 10.1778i 0.524879i
\(377\) 1.12977 12.2422i 0.0581864 0.630507i
\(378\) 0 0
\(379\) 14.4969 + 14.4969i 0.744657 + 0.744657i 0.973470 0.228813i \(-0.0734845\pi\)
−0.228813 + 0.973470i \(0.573484\pi\)
\(380\) 7.91876i 0.406224i
\(381\) 0 0
\(382\) 5.40228 + 5.40228i 0.276404 + 0.276404i
\(383\) −19.6199 + 19.6199i −1.00253 + 1.00253i −0.00253237 + 0.999997i \(0.500806\pi\)
−0.999997 + 0.00253237i \(0.999194\pi\)
\(384\) 0 0
\(385\) −33.4976 + 33.4976i −1.70719 + 1.70719i
\(386\) 30.2596i 1.54017i
\(387\) 0 0
\(388\) 1.24193 1.24193i 0.0630493 0.0630493i
\(389\) 5.17424 0.262345 0.131172 0.991360i \(-0.458126\pi\)
0.131172 + 0.991360i \(0.458126\pi\)
\(390\) 0 0
\(391\) −2.98336 −0.150875
\(392\) 14.3429 14.3429i 0.724427 0.724427i
\(393\) 0 0
\(394\) 25.9305i 1.30636i
\(395\) −16.4791 + 16.4791i −0.829153 + 0.829153i
\(396\) 0 0
\(397\) −26.9826 + 26.9826i −1.35422 + 1.35422i −0.473336 + 0.880882i \(0.656950\pi\)
−0.880882 + 0.473336i \(0.843050\pi\)
\(398\) 3.93140 + 3.93140i 0.197063 + 0.197063i
\(399\) 0 0
\(400\) 54.1394i 2.70697i
\(401\) −11.4444 11.4444i −0.571508 0.571508i 0.361041 0.932550i \(-0.382421\pi\)
−0.932550 + 0.361041i \(0.882421\pi\)
\(402\) 0 0
\(403\) 20.8304 + 25.0660i 1.03764 + 1.24863i
\(404\) 5.94888i 0.295968i
\(405\) 0 0
\(406\) 21.9772 1.09071
\(407\) 11.9053 0.590125
\(408\) 0 0
\(409\) −16.7065 16.7065i −0.826084 0.826084i 0.160888 0.986973i \(-0.448564\pi\)
−0.986973 + 0.160888i \(0.948564\pi\)
\(410\) 13.5090 + 13.5090i 0.667163 + 0.667163i
\(411\) 0 0
\(412\) −5.35588 −0.263865
\(413\) −40.7494 −2.00514
\(414\) 0 0
\(415\) 40.9036i 2.00788i
\(416\) 9.11126 7.57167i 0.446716 0.371232i
\(417\) 0 0
\(418\) −11.0276 11.0276i −0.539376 0.539376i
\(419\) 39.8507i 1.94683i −0.229040 0.973417i \(-0.573559\pi\)
0.229040 0.973417i \(-0.426441\pi\)
\(420\) 0 0
\(421\) −1.73565 1.73565i −0.0845905 0.0845905i 0.663545 0.748136i \(-0.269051\pi\)
−0.748136 + 0.663545i \(0.769051\pi\)
\(422\) 13.0515 13.0515i 0.635339 0.635339i
\(423\) 0 0
\(424\) −16.5983 + 16.5983i −0.806084 + 0.806084i
\(425\) 44.1797i 2.14303i
\(426\) 0 0
\(427\) −8.23357 + 8.23357i −0.398450 + 0.398450i
\(428\) 7.40186 0.357782
\(429\) 0 0
\(430\) 3.41784 0.164823
\(431\) −5.07206 + 5.07206i −0.244313 + 0.244313i −0.818632 0.574319i \(-0.805267\pi\)
0.574319 + 0.818632i \(0.305267\pi\)
\(432\) 0 0
\(433\) 10.4803i 0.503650i 0.967773 + 0.251825i \(0.0810308\pi\)
−0.967773 + 0.251825i \(0.918969\pi\)
\(434\) −41.1966 + 41.1966i −1.97750 + 1.97750i
\(435\) 0 0
\(436\) −5.17075 + 5.17075i −0.247634 + 0.247634i
\(437\) 1.75441 + 1.75441i 0.0839246 + 0.0839246i
\(438\) 0 0
\(439\) 2.71763i 0.129705i 0.997895 + 0.0648526i \(0.0206577\pi\)
−0.997895 + 0.0648526i \(0.979342\pi\)
\(440\) 18.9223 + 18.9223i 0.902087 + 0.902087i
\(441\) 0 0
\(442\) −17.6555 + 14.6721i −0.839786 + 0.697882i
\(443\) 4.55328i 0.216333i 0.994133 + 0.108166i \(0.0344980\pi\)
−0.994133 + 0.108166i \(0.965502\pi\)
\(444\) 0 0
\(445\) 8.63571 0.409372
\(446\) 9.79719 0.463910
\(447\) 0 0
\(448\) −12.3860 12.3860i −0.585181 0.585181i
\(449\) 28.2655 + 28.2655i 1.33393 + 1.33393i 0.901822 + 0.432107i \(0.142230\pi\)
0.432107 + 0.901822i \(0.357770\pi\)
\(450\) 0 0
\(451\) −8.67468 −0.408475
\(452\) −6.55238 −0.308198
\(453\) 0 0
\(454\) 1.61746i 0.0759110i
\(455\) 5.32921 57.7473i 0.249837 2.70723i
\(456\) 0 0
\(457\) 6.20457 + 6.20457i 0.290237 + 0.290237i 0.837174 0.546937i \(-0.184206\pi\)
−0.546937 + 0.837174i \(0.684206\pi\)
\(458\) 31.3402i 1.46443i
\(459\) 0 0
\(460\) 1.28796 + 1.28796i 0.0600516 + 0.0600516i
\(461\) −24.9610 + 24.9610i −1.16255 + 1.16255i −0.178632 + 0.983916i \(0.557167\pi\)
−0.983916 + 0.178632i \(0.942833\pi\)
\(462\) 0 0
\(463\) −0.184419 + 0.184419i −0.00857068 + 0.00857068i −0.711379 0.702808i \(-0.751929\pi\)
0.702808 + 0.711379i \(0.251929\pi\)
\(464\) 16.5015i 0.766064i
\(465\) 0 0
\(466\) −26.9721 + 26.9721i −1.24946 + 1.24946i
\(467\) −3.26530 −0.151100 −0.0755500 0.997142i \(-0.524071\pi\)
−0.0755500 + 0.997142i \(0.524071\pi\)
\(468\) 0 0
\(469\) 29.0190 1.33997
\(470\) −20.6715 + 20.6715i −0.953506 + 0.953506i
\(471\) 0 0
\(472\) 23.0188i 1.05953i
\(473\) −1.09737 + 1.09737i −0.0504569 + 0.0504569i
\(474\) 0 0
\(475\) 25.9805 25.9805i 1.19207 1.19207i
\(476\) −6.69010 6.69010i −0.306640 0.306640i
\(477\) 0 0
\(478\) 24.3130i 1.11205i
\(479\) 15.2846 + 15.2846i 0.698369 + 0.698369i 0.964059 0.265690i \(-0.0855996\pi\)
−0.265690 + 0.964059i \(0.585600\pi\)
\(480\) 0 0
\(481\) −11.2090 + 9.31492i −0.511085 + 0.424724i
\(482\) 29.8954i 1.36170i
\(483\) 0 0
\(484\) −1.39352 −0.0633418
\(485\) −11.7914 −0.535422
\(486\) 0 0
\(487\) 11.7321 + 11.7321i 0.531630 + 0.531630i 0.921057 0.389427i \(-0.127327\pi\)
−0.389427 + 0.921057i \(0.627327\pi\)
\(488\) 4.65104 + 4.65104i 0.210543 + 0.210543i
\(489\) 0 0
\(490\) 58.2621 2.63202
\(491\) 25.7233 1.16087 0.580437 0.814305i \(-0.302882\pi\)
0.580437 + 0.814305i \(0.302882\pi\)
\(492\) 0 0
\(493\) 13.4658i 0.606469i
\(494\) 19.0107 + 1.75441i 0.855333 + 0.0789345i
\(495\) 0 0
\(496\) 30.9323 + 30.9323i 1.38890 + 1.38890i
\(497\) 11.8132i 0.529896i
\(498\) 0 0
\(499\) 16.0744 + 16.0744i 0.719589 + 0.719589i 0.968521 0.248932i \(-0.0800794\pi\)
−0.248932 + 0.968521i \(0.580079\pi\)
\(500\) 10.5485 10.5485i 0.471745 0.471745i
\(501\) 0 0
\(502\) 22.7553 22.7553i 1.01562 1.01562i
\(503\) 18.0242i 0.803658i −0.915715 0.401829i \(-0.868375\pi\)
0.915715 0.401829i \(-0.131625\pi\)
\(504\) 0 0
\(505\) 28.2407 28.2407i 1.25670 1.25670i
\(506\) −3.58721 −0.159471
\(507\) 0 0
\(508\) −3.94583 −0.175068
\(509\) −22.7730 + 22.7730i −1.00940 + 1.00940i −0.00944076 + 0.999955i \(0.503005\pi\)
−0.999955 + 0.00944076i \(0.996995\pi\)
\(510\) 0 0
\(511\) 20.1716i 0.892339i
\(512\) −4.21201 + 4.21201i −0.186146 + 0.186146i
\(513\) 0 0
\(514\) −4.38000 + 4.38000i −0.193194 + 0.193194i
\(515\) 25.4256 + 25.4256i 1.12039 + 1.12039i
\(516\) 0 0
\(517\) 13.2740i 0.583790i
\(518\) −18.4222 18.4222i −0.809426 0.809426i
\(519\) 0 0
\(520\) −32.6207 3.01041i −1.43051 0.132015i
\(521\) 34.8024i 1.52472i 0.647152 + 0.762361i \(0.275960\pi\)
−0.647152 + 0.762361i \(0.724040\pi\)
\(522\) 0 0
\(523\) −0.671646 −0.0293690 −0.0146845 0.999892i \(-0.504674\pi\)
−0.0146845 + 0.999892i \(0.504674\pi\)
\(524\) 1.10735 0.0483747
\(525\) 0 0
\(526\) 19.2948 + 19.2948i 0.841294 + 0.841294i
\(527\) −25.2418 25.2418i −1.09955 1.09955i
\(528\) 0 0
\(529\) −22.4293 −0.975187
\(530\) −67.4237 −2.92870
\(531\) 0 0
\(532\) 7.86842i 0.341139i
\(533\) 8.16729 6.78721i 0.353764 0.293987i
\(534\) 0 0
\(535\) −35.1384 35.1384i −1.51916 1.51916i
\(536\) 16.3925i 0.708047i
\(537\) 0 0
\(538\) −14.9808 14.9808i −0.645870 0.645870i
\(539\) −18.7062 + 18.7062i −0.805734 + 0.805734i
\(540\) 0 0
\(541\) 23.7311 23.7311i 1.02028 1.02028i 0.0204881 0.999790i \(-0.493478\pi\)
0.999790 0.0204881i \(-0.00652201\pi\)
\(542\) 7.87649i 0.338324i
\(543\) 0 0
\(544\) −9.17517 + 9.17517i −0.393382 + 0.393382i
\(545\) 49.0936 2.10294
\(546\) 0 0
\(547\) −12.5878 −0.538217 −0.269108 0.963110i \(-0.586729\pi\)
−0.269108 + 0.963110i \(0.586729\pi\)
\(548\) 0.558749 0.558749i 0.0238686 0.0238686i
\(549\) 0 0
\(550\) 53.1219i 2.26512i
\(551\) 7.91876 7.91876i 0.337350 0.337350i
\(552\) 0 0
\(553\) −16.3743 + 16.3743i −0.696308 + 0.696308i
\(554\) −2.71703 2.71703i −0.115435 0.115435i
\(555\) 0 0
\(556\) 0.958758i 0.0406604i
\(557\) 9.28336 + 9.28336i 0.393349 + 0.393349i 0.875879 0.482530i \(-0.160282\pi\)
−0.482530 + 0.875879i \(0.660282\pi\)
\(558\) 0 0
\(559\) 0.174583 1.89178i 0.00738406 0.0800136i
\(560\) 77.8386i 3.28928i
\(561\) 0 0
\(562\) −47.4576 −2.00188
\(563\) 24.7006 1.04100 0.520502 0.853860i \(-0.325745\pi\)
0.520502 + 0.853860i \(0.325745\pi\)
\(564\) 0 0
\(565\) 31.1057 + 31.1057i 1.30863 + 1.30863i
\(566\) 33.2943 + 33.2943i 1.39946 + 1.39946i
\(567\) 0 0
\(568\) −6.67314 −0.279999
\(569\) 11.6163 0.486980 0.243490 0.969903i \(-0.421708\pi\)
0.243490 + 0.969903i \(0.421708\pi\)
\(570\) 0 0
\(571\) 4.79069i 0.200484i 0.994963 + 0.100242i \(0.0319617\pi\)
−0.994963 + 0.100242i \(0.968038\pi\)
\(572\) −4.89449 + 4.06744i −0.204649 + 0.170068i
\(573\) 0 0
\(574\) 13.4231 + 13.4231i 0.560271 + 0.560271i
\(575\) 8.45130i 0.352443i
\(576\) 0 0
\(577\) −10.9082 10.9082i −0.454116 0.454116i 0.442602 0.896718i \(-0.354055\pi\)
−0.896718 + 0.442602i \(0.854055\pi\)
\(578\) −1.60095 + 1.60095i −0.0665907 + 0.0665907i
\(579\) 0 0
\(580\) 5.81340 5.81340i 0.241388 0.241388i
\(581\) 40.6436i 1.68618i
\(582\) 0 0
\(583\) 21.6477 21.6477i 0.896557 0.896557i
\(584\) −11.3947 −0.471515
\(585\) 0 0
\(586\) 53.9015 2.22665
\(587\) −21.9578 + 21.9578i −0.906296 + 0.906296i −0.995971 0.0896746i \(-0.971417\pi\)
0.0896746 + 0.995971i \(0.471417\pi\)
\(588\) 0 0
\(589\) 29.6876i 1.22326i
\(590\) −46.7522 + 46.7522i −1.92476 + 1.92476i
\(591\) 0 0
\(592\) −13.8323 + 13.8323i −0.568502 + 0.568502i
\(593\) −24.5051 24.5051i −1.00630 1.00630i −0.999980 0.00632392i \(-0.997987\pi\)
−0.00632392 0.999980i \(-0.502013\pi\)
\(594\) 0 0
\(595\) 63.5190i 2.60402i
\(596\) −6.36279 6.36279i −0.260630 0.260630i
\(597\) 0 0
\(598\) 3.37739 2.80669i 0.138112 0.114774i
\(599\) 23.0963i 0.943689i −0.881682 0.471844i \(-0.843588\pi\)
0.881682 0.471844i \(-0.156412\pi\)
\(600\) 0 0
\(601\) 18.0484 0.736209 0.368105 0.929784i \(-0.380007\pi\)
0.368105 + 0.929784i \(0.380007\pi\)
\(602\) 3.39611 0.138415
\(603\) 0 0
\(604\) 2.80408 + 2.80408i 0.114096 + 0.114096i
\(605\) 6.61536 + 6.61536i 0.268953 + 0.268953i
\(606\) 0 0
\(607\) −5.55379 −0.225421 −0.112711 0.993628i \(-0.535953\pi\)
−0.112711 + 0.993628i \(0.535953\pi\)
\(608\) 10.7912 0.437640
\(609\) 0 0
\(610\) 18.8929i 0.764952i
\(611\) 10.3858 + 12.4976i 0.420165 + 0.505599i
\(612\) 0 0
\(613\) −15.8678 15.8678i −0.640894 0.640894i 0.309881 0.950775i \(-0.399711\pi\)
−0.950775 + 0.309881i \(0.899711\pi\)
\(614\) 23.9608i 0.966978i
\(615\) 0 0
\(616\) 18.8021 + 18.8021i 0.757557 + 0.757557i
\(617\) −15.6265 + 15.6265i −0.629098 + 0.629098i −0.947841 0.318743i \(-0.896739\pi\)
0.318743 + 0.947841i \(0.396739\pi\)
\(618\) 0 0
\(619\) 30.6482 30.6482i 1.23185 1.23185i 0.268602 0.963251i \(-0.413438\pi\)
0.963251 0.268602i \(-0.0865617\pi\)
\(620\) 21.7946i 0.875292i
\(621\) 0 0
\(622\) 5.64866 5.64866i 0.226490 0.226490i
\(623\) 8.58081 0.343783
\(624\) 0 0
\(625\) −44.2169 −1.76868
\(626\) 4.90296 4.90296i 0.195962 0.195962i
\(627\) 0 0
\(628\) 2.67525i 0.106754i
\(629\) 11.2876 11.2876i 0.450066 0.450066i
\(630\) 0 0
\(631\) −11.2885 + 11.2885i −0.449389 + 0.449389i −0.895151 0.445762i \(-0.852933\pi\)
0.445762 + 0.895151i \(0.352933\pi\)
\(632\) 9.24966 + 9.24966i 0.367932 + 0.367932i
\(633\) 0 0
\(634\) 43.2216i 1.71655i
\(635\) 18.7318 + 18.7318i 0.743348 + 0.743348i
\(636\) 0 0
\(637\) 2.97602 32.2481i 0.117914 1.27772i
\(638\) 16.1914i 0.641022i
\(639\) 0 0
\(640\) −54.8599 −2.16853
\(641\) 20.8879 0.825021 0.412510 0.910953i \(-0.364652\pi\)
0.412510 + 0.910953i \(0.364652\pi\)
\(642\) 0 0
\(643\) 32.4927 + 32.4927i 1.28139 + 1.28139i 0.939879 + 0.341507i \(0.110937\pi\)
0.341507 + 0.939879i \(0.389063\pi\)
\(644\) 1.27978 + 1.27978i 0.0504302 + 0.0504302i
\(645\) 0 0
\(646\) −20.9108 −0.822724
\(647\) 11.9714 0.470646 0.235323 0.971917i \(-0.424385\pi\)
0.235323 + 0.971917i \(0.424385\pi\)
\(648\) 0 0
\(649\) 30.0214i 1.17844i
\(650\) −41.5634 50.0147i −1.63025 1.96174i
\(651\) 0 0
\(652\) −3.08495 3.08495i −0.120816 0.120816i
\(653\) 9.71059i 0.380005i 0.981784 + 0.190002i \(0.0608496\pi\)
−0.981784 + 0.190002i \(0.939150\pi\)
\(654\) 0 0
\(655\) −5.25684 5.25684i −0.205402 0.205402i
\(656\) 10.0787 10.0787i 0.393508 0.393508i
\(657\) 0 0
\(658\) −20.5401 + 20.5401i −0.800737 + 0.800737i
\(659\) 29.0022i 1.12977i −0.825171 0.564884i \(-0.808921\pi\)
0.825171 0.564884i \(-0.191079\pi\)
\(660\) 0 0
\(661\) 22.9631 22.9631i 0.893160 0.893160i −0.101659 0.994819i \(-0.532415\pi\)
0.994819 + 0.101659i \(0.0324151\pi\)
\(662\) −48.2160 −1.87397
\(663\) 0 0
\(664\) 22.9590 0.890984
\(665\) 37.3532 37.3532i 1.44850 1.44850i
\(666\) 0 0
\(667\) 2.57593i 0.0997403i
\(668\) 3.96445 3.96445i 0.153389 0.153389i
\(669\) 0 0
\(670\) 33.2938 33.2938i 1.28625 1.28625i
\(671\) −6.06595 6.06595i −0.234173 0.234173i
\(672\) 0 0
\(673\) 12.5669i 0.484420i 0.970224 + 0.242210i \(0.0778723\pi\)
−0.970224 + 0.242210i \(0.922128\pi\)
\(674\) −30.0358 30.0358i −1.15693 1.15693i
\(675\) 0 0
\(676\) 1.42578 7.65906i 0.0548376 0.294579i
\(677\) 21.1632i 0.813367i −0.913569 0.406684i \(-0.866685\pi\)
0.913569 0.406684i \(-0.133315\pi\)
\(678\) 0 0
\(679\) −11.7165 −0.449638
\(680\) 35.8811 1.37598
\(681\) 0 0
\(682\) −30.3509 30.3509i −1.16220 1.16220i
\(683\) 6.59843 + 6.59843i 0.252482 + 0.252482i 0.821987 0.569506i \(-0.192865\pi\)
−0.569506 + 0.821987i \(0.692865\pi\)
\(684\) 0 0
\(685\) −5.30503 −0.202695
\(686\) 12.7748 0.487743
\(687\) 0 0
\(688\) 2.54996i 0.0972163i
\(689\) −3.44399 + 37.3191i −0.131206 + 1.42174i
\(690\) 0 0
\(691\) −34.7891 34.7891i −1.32344 1.32344i −0.910974 0.412465i \(-0.864668\pi\)
−0.412465 0.910974i \(-0.635332\pi\)
\(692\) 3.08660i 0.117335i
\(693\) 0 0
\(694\) 0.188100 + 0.188100i 0.00714018 + 0.00714018i
\(695\) 4.55145 4.55145i 0.172646 0.172646i
\(696\) 0 0
\(697\) −8.22458 + 8.22458i −0.311528 + 0.311528i
\(698\) 57.9784i 2.19451i
\(699\) 0 0
\(700\) 18.9518 18.9518i 0.716311 0.716311i
\(701\) 31.6224 1.19436 0.597181 0.802106i \(-0.296287\pi\)
0.597181 + 0.802106i \(0.296287\pi\)
\(702\) 0 0
\(703\) −13.2757 −0.500701
\(704\) 9.12515 9.12515i 0.343917 0.343917i
\(705\) 0 0
\(706\) 19.4283i 0.731195i
\(707\) 28.0612 28.0612i 1.05535 1.05535i
\(708\) 0 0
\(709\) −7.91321 + 7.91321i −0.297187 + 0.297187i −0.839911 0.542724i \(-0.817393\pi\)
0.542724 + 0.839911i \(0.317393\pi\)
\(710\) −13.5534 13.5534i −0.508652 0.508652i
\(711\) 0 0
\(712\) 4.84719i 0.181656i
\(713\) 4.82861 + 4.82861i 0.180833 + 0.180833i
\(714\) 0 0
\(715\) 42.5444 + 3.92621i 1.59107 + 0.146832i
\(716\) 14.9627i 0.559183i
\(717\) 0 0
\(718\) −46.1426 −1.72203
\(719\) 7.86279 0.293233 0.146616 0.989193i \(-0.453162\pi\)
0.146616 + 0.989193i \(0.453162\pi\)
\(720\) 0 0
\(721\) 25.2640 + 25.2640i 0.940880 + 0.940880i
\(722\) −9.36344 9.36344i −0.348471 0.348471i
\(723\) 0 0
\(724\) −7.73146 −0.287337
\(725\) −38.1461 −1.41671
\(726\) 0 0
\(727\) 8.92509i 0.331013i −0.986209 0.165507i \(-0.947074\pi\)
0.986209 0.165507i \(-0.0529259\pi\)
\(728\) −32.4134 2.99127i −1.20132 0.110864i
\(729\) 0 0
\(730\) −23.1431 23.1431i −0.856564 0.856564i
\(731\) 2.08085i 0.0769632i
\(732\) 0 0
\(733\) 13.8333 + 13.8333i 0.510944 + 0.510944i 0.914816 0.403872i \(-0.132336\pi\)
−0.403872 + 0.914816i \(0.632336\pi\)
\(734\) −7.84909 + 7.84909i −0.289715 + 0.289715i
\(735\) 0 0
\(736\) 1.75515 1.75515i 0.0646959 0.0646959i
\(737\) 21.3793i 0.787517i
\(738\) 0 0
\(739\) 10.3041 10.3041i 0.379042 0.379042i −0.491714 0.870757i \(-0.663630\pi\)
0.870757 + 0.491714i \(0.163630\pi\)
\(740\) −9.74607 −0.358273
\(741\) 0 0
\(742\) −66.9951 −2.45947
\(743\) −1.22694 + 1.22694i −0.0450122 + 0.0450122i −0.729255 0.684242i \(-0.760133\pi\)
0.684242 + 0.729255i \(0.260133\pi\)
\(744\) 0 0
\(745\) 60.4113i 2.21330i
\(746\) 36.6871 36.6871i 1.34321 1.34321i
\(747\) 0 0
\(748\) 4.92883 4.92883i 0.180216 0.180216i
\(749\) −34.9150 34.9150i −1.27577 1.27577i
\(750\) 0 0
\(751\) 50.9443i 1.85898i −0.368842 0.929492i \(-0.620246\pi\)
0.368842 0.929492i \(-0.379754\pi\)
\(752\) 15.4225 + 15.4225i 0.562400 + 0.562400i
\(753\) 0 0
\(754\) −12.6684 15.2443i −0.461355 0.555165i
\(755\) 26.6232i 0.968918i
\(756\) 0 0
\(757\) 13.7057 0.498143 0.249071 0.968485i \(-0.419875\pi\)
0.249071 + 0.968485i \(0.419875\pi\)
\(758\) 33.0535 1.20056
\(759\) 0 0
\(760\) −21.1004 21.1004i −0.765391 0.765391i
\(761\) −20.9931 20.9931i −0.761000 0.761000i 0.215503 0.976503i \(-0.430861\pi\)
−0.976503 + 0.215503i \(0.930861\pi\)
\(762\) 0 0
\(763\) 48.7815 1.76601
\(764\) 2.83985 0.102742
\(765\) 0 0
\(766\) 44.7340i 1.61631i
\(767\) 23.4893 + 28.2655i 0.848148 + 1.02061i
\(768\) 0 0
\(769\) −5.06281 5.06281i −0.182570 0.182570i 0.609905 0.792475i \(-0.291208\pi\)
−0.792475 + 0.609905i \(0.791208\pi\)
\(770\) 76.3756i 2.75239i
\(771\) 0 0
\(772\) 7.95337 + 7.95337i 0.286248 + 0.286248i
\(773\) 11.2488 11.2488i 0.404592 0.404592i −0.475256 0.879848i \(-0.657645\pi\)
0.879848 + 0.475256i \(0.157645\pi\)
\(774\) 0 0
\(775\) 71.5054 71.5054i 2.56855 2.56855i
\(776\) 6.61850i 0.237590i
\(777\) 0 0
\(778\) 5.89873 5.89873i 0.211480 0.211480i
\(779\) 9.67316 0.346577
\(780\) 0 0
\(781\) 8.70320 0.311425
\(782\) −3.40108 + 3.40108i −0.121622 + 0.121622i
\(783\) 0 0
\(784\) 43.4678i 1.55242i
\(785\) 12.7000 12.7000i 0.453283 0.453283i
\(786\) 0 0
\(787\) −16.4021 + 16.4021i −0.584673 + 0.584673i −0.936184 0.351511i \(-0.885668\pi\)
0.351511 + 0.936184i \(0.385668\pi\)
\(788\) −6.81552 6.81552i −0.242793 0.242793i
\(789\) 0 0
\(790\) 37.5729i 1.33678i
\(791\) 30.9080 + 30.9080i 1.09896 + 1.09896i
\(792\) 0 0
\(793\) 10.4572 + 0.965048i 0.371348 + 0.0342698i
\(794\) 61.5213i 2.18331i
\(795\) 0 0
\(796\) 2.06664 0.0732501
\(797\) −51.6968 −1.83119 −0.915597 0.402096i \(-0.868282\pi\)
−0.915597 + 0.402096i \(0.868282\pi\)
\(798\) 0 0
\(799\) −12.5853 12.5853i −0.445235 0.445235i
\(800\) −25.9916 25.9916i −0.918940 0.918940i
\(801\) 0 0
\(802\) −26.0937 −0.921402
\(803\) 14.8611 0.524437
\(804\) 0 0
\(805\) 12.1508i 0.428259i
\(806\) 52.3227 + 4.82861i 1.84299 + 0.170080i
\(807\) 0 0
\(808\) −15.8514 15.8514i −0.557651 0.557651i
\(809\) 33.3494i 1.17250i −0.810129 0.586252i \(-0.800603\pi\)
0.810129 0.586252i \(-0.199397\pi\)
\(810\) 0 0
\(811\) −14.8364 14.8364i −0.520978 0.520978i 0.396889 0.917867i \(-0.370090\pi\)
−0.917867 + 0.396889i \(0.870090\pi\)
\(812\) 5.77645 5.77645i 0.202714 0.202714i
\(813\) 0 0
\(814\) 13.5723 13.5723i 0.475708 0.475708i
\(815\) 29.2900i 1.02598i
\(816\) 0 0
\(817\) 1.22368 1.22368i 0.0428110 0.0428110i
\(818\) −38.0914 −1.33184
\(819\) 0 0
\(820\) 7.10136 0.247990
\(821\) −19.3172 + 19.3172i −0.674174 + 0.674174i −0.958675 0.284502i \(-0.908172\pi\)
0.284502 + 0.958675i \(0.408172\pi\)
\(822\) 0 0
\(823\) 43.3067i 1.50958i −0.655968 0.754788i \(-0.727739\pi\)
0.655968 0.754788i \(-0.272261\pi\)
\(824\) 14.2713 14.2713i 0.497165 0.497165i
\(825\) 0 0
\(826\) −46.4550 + 46.4550i −1.61638 + 1.61638i
\(827\) 0.987036 + 0.987036i 0.0343226 + 0.0343226i 0.724060 0.689737i \(-0.242274\pi\)
−0.689737 + 0.724060i \(0.742274\pi\)
\(828\) 0 0
\(829\) 32.5598i 1.13085i 0.824800 + 0.565424i \(0.191288\pi\)
−0.824800 + 0.565424i \(0.808712\pi\)
\(830\) 46.6308 + 46.6308i 1.61858 + 1.61858i
\(831\) 0 0
\(832\) −1.45174 + 15.7311i −0.0503302 + 0.545377i
\(833\) 35.4713i 1.22901i
\(834\) 0 0
\(835\) −37.6404 −1.30260
\(836\) −5.79693 −0.200491
\(837\) 0 0
\(838\) −45.4305 45.4305i −1.56937 1.56937i
\(839\) −22.3969 22.3969i −0.773227 0.773227i 0.205442 0.978669i \(-0.434137\pi\)
−0.978669 + 0.205442i \(0.934137\pi\)
\(840\) 0 0
\(841\) 17.3732 0.599076
\(842\) −3.95735 −0.136379
\(843\) 0 0
\(844\) 6.86088i 0.236161i
\(845\) −43.1279 + 29.5909i −1.48364 + 1.01796i
\(846\) 0 0
\(847\) 6.57331 + 6.57331i 0.225862 + 0.225862i
\(848\) 50.3030i 1.72741i
\(849\) 0 0
\(850\) 50.3656 + 50.3656i 1.72753 + 1.72753i
\(851\) −2.15925 + 2.15925i −0.0740181 + 0.0740181i
\(852\) 0 0
\(853\) 8.37348 8.37348i 0.286703 0.286703i −0.549072 0.835775i \(-0.685019\pi\)
0.835775 + 0.549072i \(0.185019\pi\)
\(854\) 18.7728i 0.642393i
\(855\) 0 0
\(856\) −19.7230 + 19.7230i −0.674120 + 0.674120i
\(857\) −41.8824 −1.43067 −0.715337 0.698779i \(-0.753727\pi\)
−0.715337 + 0.698779i \(0.753727\pi\)
\(858\) 0 0
\(859\) 17.4849 0.596578 0.298289 0.954476i \(-0.403584\pi\)
0.298289 + 0.954476i \(0.403584\pi\)
\(860\) 0.898338 0.898338i 0.0306331 0.0306331i
\(861\) 0 0
\(862\) 11.5645i 0.393888i
\(863\) −25.9343 + 25.9343i −0.882814 + 0.882814i −0.993820 0.111006i \(-0.964593\pi\)
0.111006 + 0.993820i \(0.464593\pi\)
\(864\) 0 0
\(865\) −14.6528 + 14.6528i −0.498211 + 0.498211i
\(866\) 11.9477 + 11.9477i 0.406000 + 0.406000i
\(867\) 0 0
\(868\) 21.6561i 0.735055i
\(869\) −12.0635 12.0635i −0.409227 0.409227i
\(870\) 0 0
\(871\) −16.7275 20.1288i −0.566790 0.682039i
\(872\) 27.5561i 0.933166i
\(873\) 0 0
\(874\) 4.00011 0.135306
\(875\) −99.5161 −3.36426
\(876\) 0 0
\(877\) −19.4440 19.4440i −0.656576 0.656576i 0.297993 0.954568i \(-0.403683\pi\)
−0.954568 + 0.297993i \(0.903683\pi\)
\(878\) 3.09814 + 3.09814i 0.104557 + 0.104557i
\(879\) 0 0
\(880\) 57.3463 1.93314
\(881\) 38.6717 1.30288 0.651442 0.758698i \(-0.274164\pi\)
0.651442 + 0.758698i \(0.274164\pi\)
\(882\) 0 0
\(883\) 32.1536i 1.08206i −0.841005 0.541028i \(-0.818035\pi\)
0.841005 0.541028i \(-0.181965\pi\)
\(884\) −0.784140 + 8.49693i −0.0263735 + 0.285783i
\(885\) 0 0
\(886\) 5.19082 + 5.19082i 0.174389 + 0.174389i
\(887\) 15.4017i 0.517140i 0.965993 + 0.258570i \(0.0832512\pi\)
−0.965993 + 0.258570i \(0.916749\pi\)
\(888\) 0 0
\(889\) 18.6127 + 18.6127i 0.624250 + 0.624250i
\(890\) 9.84486 9.84486i 0.330000 0.330000i
\(891\) 0 0
\(892\) 2.57507 2.57507i 0.0862199 0.0862199i
\(893\) 14.8019i 0.495327i
\(894\) 0 0
\(895\) −71.0315 + 71.0315i −2.37432 + 2.37432i
\(896\) −54.5112 −1.82109
\(897\) 0 0
\(898\) 64.4462 2.15060
\(899\) 21.7946 21.7946i 0.726891 0.726891i
\(900\) 0 0
\(901\) 41.0490i 1.36754i
\(902\) −9.88928 + 9.88928i −0.329277 + 0.329277i
\(903\) 0 0
\(904\) 17.4595 17.4595i 0.580695 0.580695i
\(905\) 36.7031 + 36.7031i 1.22005 + 1.22005i
\(906\) 0 0
\(907\) 41.1690i 1.36699i −0.729953 0.683497i \(-0.760458\pi\)
0.729953 0.683497i \(-0.239542\pi\)
\(908\) 0.425129 + 0.425129i 0.0141084 + 0.0141084i
\(909\) 0 0
\(910\) −59.7575 71.9083i −1.98094 2.38374i
\(911\) 18.6022i 0.616319i 0.951335 + 0.308159i \(0.0997130\pi\)
−0.951335 + 0.308159i \(0.900287\pi\)
\(912\) 0 0
\(913\) −29.9435 −0.990985
\(914\) 14.1466 0.467929
\(915\) 0 0
\(916\) −8.23739 8.23739i −0.272171 0.272171i
\(917\) −5.22342 5.22342i −0.172493 0.172493i
\(918\) 0 0
\(919\) −3.42602 −0.113014 −0.0565071 0.998402i \(-0.517996\pi\)
−0.0565071 + 0.998402i \(0.517996\pi\)
\(920\) −6.86383 −0.226294
\(921\) 0 0
\(922\) 56.9119i 1.87429i
\(923\) −8.19415 + 6.80953i −0.269714 + 0.224138i
\(924\) 0 0
\(925\) 31.9757 + 31.9757i 1.05135 + 1.05135i
\(926\) 0.420482i 0.0138179i
\(927\) 0 0
\(928\) −7.92214 7.92214i −0.260057 0.260057i
\(929\) 12.4259 12.4259i 0.407682 0.407682i −0.473248 0.880929i \(-0.656918\pi\)
0.880929 + 0.473248i \(0.156918\pi\)
\(930\) 0 0
\(931\) 20.8594 20.8594i 0.683639 0.683639i
\(932\) 14.1786i 0.464434i
\(933\) 0 0
\(934\) −3.72250 + 3.72250i −0.121804 + 0.121804i
\(935\) −46.7966 −1.53041
\(936\) 0 0
\(937\) 13.8756 0.453298 0.226649 0.973977i \(-0.427223\pi\)
0.226649 + 0.973977i \(0.427223\pi\)
\(938\) 33.0822 33.0822i 1.08017 1.08017i
\(939\) 0 0
\(940\) 10.8665i 0.354427i
\(941\) 24.9933 24.9933i 0.814759 0.814759i −0.170585 0.985343i \(-0.554566\pi\)
0.985343 + 0.170585i \(0.0545656\pi\)
\(942\) 0 0
\(943\) 1.57331 1.57331i 0.0512341 0.0512341i
\(944\) 34.8806 + 34.8806i 1.13527 + 1.13527i
\(945\) 0 0
\(946\) 2.50203i 0.0813480i
\(947\) −42.4253 42.4253i −1.37864 1.37864i −0.846925 0.531712i \(-0.821549\pi\)
−0.531712 0.846925i \(-0.678451\pi\)
\(948\) 0 0
\(949\) −13.9919 + 11.6276i −0.454195 + 0.377447i
\(950\) 59.2364i 1.92188i
\(951\) 0 0
\(952\) 35.6530 1.15552
\(953\) 49.0629 1.58930 0.794652 0.607065i \(-0.207653\pi\)
0.794652 + 0.607065i \(0.207653\pi\)
\(954\) 0 0
\(955\) −13.4814 13.4814i −0.436249 0.436249i
\(956\) 6.39039 + 6.39039i 0.206680 + 0.206680i
\(957\) 0 0
\(958\) 34.8493 1.12593
\(959\) −5.27130 −0.170219
\(960\) 0 0
\(961\) 50.7086i 1.63576i
\(962\) −2.15925 + 23.3976i −0.0696170 + 0.754368i
\(963\) 0 0
\(964\) 7.85765 + 7.85765i 0.253078 + 0.253078i
\(965\) 75.5131i 2.43085i
\(966\) 0 0
\(967\) 23.7884 + 23.7884i 0.764985 + 0.764985i 0.977219 0.212234i \(-0.0680740\pi\)
−0.212234 + 0.977219i \(0.568074\pi\)
\(968\) 3.71318 3.71318i 0.119346 0.119346i
\(969\) 0 0
\(970\) −13.4425 + 13.4425i −0.431611 + 0.431611i
\(971\) 14.8419i 0.476300i 0.971228 + 0.238150i \(0.0765410\pi\)
−0.971228 + 0.238150i \(0.923459\pi\)
\(972\) 0 0
\(973\) 4.52252 4.52252i 0.144985 0.144985i
\(974\) 26.7495 0.857109
\(975\) 0 0
\(976\) 14.0955 0.451186
\(977\) 29.6113 29.6113i 0.947351 0.947351i −0.0513308 0.998682i \(-0.516346\pi\)
0.998682 + 0.0513308i \(0.0163463\pi\)
\(978\) 0 0
\(979\) 6.32178i 0.202045i
\(980\) 15.3135 15.3135i 0.489172 0.489172i
\(981\) 0 0
\(982\) 29.3250 29.3250i 0.935797 0.935797i
\(983\) 23.4450 + 23.4450i 0.747779 + 0.747779i 0.974062 0.226283i \(-0.0726573\pi\)
−0.226283 + 0.974062i \(0.572657\pi\)
\(984\) 0 0
\(985\) 64.7097i 2.06182i
\(986\) 15.3513 + 15.3513i 0.488884 + 0.488884i
\(987\) 0 0
\(988\) 5.45787 4.53562i 0.173638 0.144297i
\(989\) 0.398055i 0.0126574i
\(990\) 0 0
\(991\) 18.6854 0.593560 0.296780 0.954946i \(-0.404087\pi\)
0.296780 + 0.954946i \(0.404087\pi\)
\(992\) 29.7003 0.942986
\(993\) 0 0
\(994\) −13.4673 13.4673i −0.427156 0.427156i
\(995\) −9.81083 9.81083i −0.311024 0.311024i
\(996\) 0 0
\(997\) 45.8968 1.45357 0.726783 0.686867i \(-0.241014\pi\)
0.726783 + 0.686867i \(0.241014\pi\)
\(998\) 36.6502 1.16014
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.i.b.242.6 yes 16
3.2 odd 2 inner 351.2.i.b.242.3 yes 16
13.5 odd 4 inner 351.2.i.b.161.3 16
39.5 even 4 inner 351.2.i.b.161.6 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.i.b.161.3 16 13.5 odd 4 inner
351.2.i.b.161.6 yes 16 39.5 even 4 inner
351.2.i.b.242.3 yes 16 3.2 odd 2 inner
351.2.i.b.242.6 yes 16 1.1 even 1 trivial