Properties

Label 351.2.i.b.242.3
Level $351$
Weight $2$
Character 351.242
Analytic conductor $2.803$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(161,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.161"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.i (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 24x^{14} + 184x^{12} + 600x^{10} + 894x^{8} + 600x^{6} + 184x^{4} + 24x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 242.3
Root \(-0.592624i\) of defining polynomial
Character \(\chi\) \(=\) 351.242
Dual form 351.2.i.b.161.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.14002 + 1.14002i) q^{2} -0.599280i q^{4} +(2.84492 - 2.84492i) q^{5} +(-2.82684 + 2.82684i) q^{7} +(-1.59685 - 1.59685i) q^{8} +6.48652i q^{10} +(2.08263 + 2.08263i) q^{11} +(3.59030 + 0.331331i) q^{13} -6.44529i q^{14} +4.83942 q^{16} +3.94914 q^{17} +(2.32235 + 2.32235i) q^{19} +(-1.70490 - 1.70490i) q^{20} -4.74846 q^{22} -0.755446 q^{23} -11.1872i q^{25} +(-4.47072 + 3.71528i) q^{26} +(1.69407 + 1.69407i) q^{28} +3.40981i q^{29} +(6.39174 + 6.39174i) q^{31} +(-2.32334 + 2.32334i) q^{32} +(-4.50208 + 4.50208i) q^{34} +16.0843i q^{35} +(-2.85824 + 2.85824i) q^{37} -5.29503 q^{38} -9.08580 q^{40} +(-2.08263 + 2.08263i) q^{41} -0.526914i q^{43} +(1.24808 - 1.24808i) q^{44} +(0.861221 - 0.861221i) q^{46} +(-3.18684 - 3.18684i) q^{47} -8.98203i q^{49} +(12.7536 + 12.7536i) q^{50} +(0.198560 - 2.15159i) q^{52} -10.3944i q^{53} +11.8498 q^{55} +9.02805 q^{56} +(-3.88724 - 3.88724i) q^{58} +(-7.20759 - 7.20759i) q^{59} +2.91264 q^{61} -14.5734 q^{62} +4.38156i q^{64} +(11.1567 - 9.27150i) q^{65} +(-5.13277 - 5.13277i) q^{67} -2.36664i q^{68} +(-18.3364 - 18.3364i) q^{70} +(2.08948 - 2.08948i) q^{71} +(-3.56787 + 3.56787i) q^{73} -6.51690i q^{74} +(1.39174 - 1.39174i) q^{76} -11.7745 q^{77} +5.79246 q^{79} +(13.7678 - 13.7678i) q^{80} -4.74846i q^{82} +(-7.18887 + 7.18887i) q^{83} +(11.2350 - 11.2350i) q^{85} +(0.600691 + 0.600691i) q^{86} -6.65127i q^{88} +(1.51774 + 1.51774i) q^{89} +(-11.0858 + 9.21257i) q^{91} +0.452723i q^{92} +7.26611 q^{94} +13.2138 q^{95} +(2.07237 + 2.07237i) q^{97} +(10.2397 + 10.2397i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} + 16 q^{13} - 8 q^{16} - 32 q^{19} + 8 q^{22} + 40 q^{28} + 16 q^{31} + 24 q^{34} - 32 q^{37} - 72 q^{40} + 48 q^{46} + 48 q^{52} + 32 q^{55} + 56 q^{58} - 64 q^{61} - 32 q^{67} - 40 q^{70}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.14002 + 1.14002i −0.806114 + 0.806114i −0.984043 0.177929i \(-0.943060\pi\)
0.177929 + 0.984043i \(0.443060\pi\)
\(3\) 0 0
\(4\) 0.599280i 0.299640i
\(5\) 2.84492 2.84492i 1.27229 1.27229i 0.327403 0.944885i \(-0.393826\pi\)
0.944885 0.327403i \(-0.106174\pi\)
\(6\) 0 0
\(7\) −2.82684 + 2.82684i −1.06844 + 1.06844i −0.0709657 + 0.997479i \(0.522608\pi\)
−0.997479 + 0.0709657i \(0.977392\pi\)
\(8\) −1.59685 1.59685i −0.564570 0.564570i
\(9\) 0 0
\(10\) 6.48652i 2.05122i
\(11\) 2.08263 + 2.08263i 0.627936 + 0.627936i 0.947548 0.319612i \(-0.103553\pi\)
−0.319612 + 0.947548i \(0.603553\pi\)
\(12\) 0 0
\(13\) 3.59030 + 0.331331i 0.995769 + 0.0918946i
\(14\) 6.44529i 1.72258i
\(15\) 0 0
\(16\) 4.83942 1.20986
\(17\) 3.94914 0.957806 0.478903 0.877868i \(-0.341035\pi\)
0.478903 + 0.877868i \(0.341035\pi\)
\(18\) 0 0
\(19\) 2.32235 + 2.32235i 0.532783 + 0.532783i 0.921399 0.388617i \(-0.127047\pi\)
−0.388617 + 0.921399i \(0.627047\pi\)
\(20\) −1.70490 1.70490i −0.381228 0.381228i
\(21\) 0 0
\(22\) −4.74846 −1.01238
\(23\) −0.755446 −0.157521 −0.0787607 0.996894i \(-0.525096\pi\)
−0.0787607 + 0.996894i \(0.525096\pi\)
\(24\) 0 0
\(25\) 11.1872i 2.23743i
\(26\) −4.47072 + 3.71528i −0.876781 + 0.728626i
\(27\) 0 0
\(28\) 1.69407 + 1.69407i 0.320149 + 0.320149i
\(29\) 3.40981i 0.633186i 0.948562 + 0.316593i \(0.102539\pi\)
−0.948562 + 0.316593i \(0.897461\pi\)
\(30\) 0 0
\(31\) 6.39174 + 6.39174i 1.14799 + 1.14799i 0.986948 + 0.161042i \(0.0514855\pi\)
0.161042 + 0.986948i \(0.448515\pi\)
\(32\) −2.32334 + 2.32334i −0.410712 + 0.410712i
\(33\) 0 0
\(34\) −4.50208 + 4.50208i −0.772101 + 0.772101i
\(35\) 16.0843i 2.71874i
\(36\) 0 0
\(37\) −2.85824 + 2.85824i −0.469892 + 0.469892i −0.901880 0.431987i \(-0.857813\pi\)
0.431987 + 0.901880i \(0.357813\pi\)
\(38\) −5.29503 −0.858967
\(39\) 0 0
\(40\) −9.08580 −1.43659
\(41\) −2.08263 + 2.08263i −0.325252 + 0.325252i −0.850778 0.525526i \(-0.823869\pi\)
0.525526 + 0.850778i \(0.323869\pi\)
\(42\) 0 0
\(43\) 0.526914i 0.0803536i −0.999193 0.0401768i \(-0.987208\pi\)
0.999193 0.0401768i \(-0.0127921\pi\)
\(44\) 1.24808 1.24808i 0.188155 0.188155i
\(45\) 0 0
\(46\) 0.861221 0.861221i 0.126980 0.126980i
\(47\) −3.18684 3.18684i −0.464849 0.464849i 0.435392 0.900241i \(-0.356610\pi\)
−0.900241 + 0.435392i \(0.856610\pi\)
\(48\) 0 0
\(49\) 8.98203i 1.28315i
\(50\) 12.7536 + 12.7536i 1.80363 + 1.80363i
\(51\) 0 0
\(52\) 0.198560 2.15159i 0.0275353 0.298372i
\(53\) 10.3944i 1.42778i −0.700256 0.713892i \(-0.746931\pi\)
0.700256 0.713892i \(-0.253069\pi\)
\(54\) 0 0
\(55\) 11.8498 1.59783
\(56\) 9.02805 1.20642
\(57\) 0 0
\(58\) −3.88724 3.88724i −0.510420 0.510420i
\(59\) −7.20759 7.20759i −0.938348 0.938348i 0.0598591 0.998207i \(-0.480935\pi\)
−0.998207 + 0.0598591i \(0.980935\pi\)
\(60\) 0 0
\(61\) 2.91264 0.372926 0.186463 0.982462i \(-0.440298\pi\)
0.186463 + 0.982462i \(0.440298\pi\)
\(62\) −14.5734 −1.85082
\(63\) 0 0
\(64\) 4.38156i 0.547695i
\(65\) 11.1567 9.27150i 1.38382 1.14999i
\(66\) 0 0
\(67\) −5.13277 5.13277i −0.627068 0.627068i 0.320261 0.947329i \(-0.396229\pi\)
−0.947329 + 0.320261i \(0.896229\pi\)
\(68\) 2.36664i 0.286997i
\(69\) 0 0
\(70\) −18.3364 18.3364i −2.19161 2.19161i
\(71\) 2.08948 2.08948i 0.247975 0.247975i −0.572164 0.820139i \(-0.693896\pi\)
0.820139 + 0.572164i \(0.193896\pi\)
\(72\) 0 0
\(73\) −3.56787 + 3.56787i −0.417588 + 0.417588i −0.884372 0.466784i \(-0.845413\pi\)
0.466784 + 0.884372i \(0.345413\pi\)
\(74\) 6.51690i 0.757574i
\(75\) 0 0
\(76\) 1.39174 1.39174i 0.159643 0.159643i
\(77\) −11.7745 −1.34183
\(78\) 0 0
\(79\) 5.79246 0.651702 0.325851 0.945421i \(-0.394349\pi\)
0.325851 + 0.945421i \(0.394349\pi\)
\(80\) 13.7678 13.7678i 1.53929 1.53929i
\(81\) 0 0
\(82\) 4.74846i 0.524380i
\(83\) −7.18887 + 7.18887i −0.789081 + 0.789081i −0.981344 0.192262i \(-0.938418\pi\)
0.192262 + 0.981344i \(0.438418\pi\)
\(84\) 0 0
\(85\) 11.2350 11.2350i 1.21861 1.21861i
\(86\) 0.600691 + 0.600691i 0.0647742 + 0.0647742i
\(87\) 0 0
\(88\) 6.65127i 0.709028i
\(89\) 1.51774 + 1.51774i 0.160880 + 0.160880i 0.782957 0.622076i \(-0.213711\pi\)
−0.622076 + 0.782957i \(0.713711\pi\)
\(90\) 0 0
\(91\) −11.0858 + 9.21257i −1.16211 + 0.965739i
\(92\) 0.452723i 0.0471997i
\(93\) 0 0
\(94\) 7.26611 0.749442
\(95\) 13.2138 1.35571
\(96\) 0 0
\(97\) 2.07237 + 2.07237i 0.210417 + 0.210417i 0.804445 0.594028i \(-0.202463\pi\)
−0.594028 + 0.804445i \(0.702463\pi\)
\(98\) 10.2397 + 10.2397i 1.03436 + 1.03436i
\(99\) 0 0
\(100\) −6.70425 −0.670425
\(101\) 9.92671 0.987744 0.493872 0.869535i \(-0.335581\pi\)
0.493872 + 0.869535i \(0.335581\pi\)
\(102\) 0 0
\(103\) 8.93719i 0.880607i −0.897849 0.440304i \(-0.854871\pi\)
0.897849 0.440304i \(-0.145129\pi\)
\(104\) −5.20406 6.26223i −0.510300 0.614062i
\(105\) 0 0
\(106\) 11.8498 + 11.8498i 1.15096 + 1.15096i
\(107\) 12.3513i 1.19404i −0.802226 0.597020i \(-0.796351\pi\)
0.802226 0.597020i \(-0.203649\pi\)
\(108\) 0 0
\(109\) −8.62828 8.62828i −0.826439 0.826439i 0.160583 0.987022i \(-0.448663\pi\)
−0.987022 + 0.160583i \(0.948663\pi\)
\(110\) −13.5090 + 13.5090i −1.28803 + 1.28803i
\(111\) 0 0
\(112\) −13.6803 + 13.6803i −1.29266 + 1.29266i
\(113\) 10.9338i 1.02856i 0.857622 + 0.514281i \(0.171941\pi\)
−0.857622 + 0.514281i \(0.828059\pi\)
\(114\) 0 0
\(115\) −2.14918 + 2.14918i −0.200412 + 0.200412i
\(116\) 2.04343 0.189728
\(117\) 0 0
\(118\) 16.4335 1.51283
\(119\) −11.1636 + 11.1636i −1.02336 + 1.02336i
\(120\) 0 0
\(121\) 2.32532i 0.211393i
\(122\) −3.32046 + 3.32046i −0.300621 + 0.300621i
\(123\) 0 0
\(124\) 3.83044 3.83044i 0.343984 0.343984i
\(125\) −17.6020 17.6020i −1.57437 1.57437i
\(126\) 0 0
\(127\) 6.58429i 0.584261i −0.956378 0.292131i \(-0.905636\pi\)
0.956378 0.292131i \(-0.0943642\pi\)
\(128\) −9.64173 9.64173i −0.852216 0.852216i
\(129\) 0 0
\(130\) −2.14918 + 23.2885i −0.188496 + 2.04254i
\(131\) 1.84780i 0.161443i −0.996737 0.0807214i \(-0.974278\pi\)
0.996737 0.0807214i \(-0.0257224\pi\)
\(132\) 0 0
\(133\) −13.1298 −1.13850
\(134\) 11.7029 1.01098
\(135\) 0 0
\(136\) −6.30616 6.30616i −0.540749 0.540749i
\(137\) −0.932368 0.932368i −0.0796575 0.0796575i 0.666155 0.745813i \(-0.267939\pi\)
−0.745813 + 0.666155i \(0.767939\pi\)
\(138\) 0 0
\(139\) −1.59985 −0.135697 −0.0678487 0.997696i \(-0.521614\pi\)
−0.0678487 + 0.997696i \(0.521614\pi\)
\(140\) 9.63898 0.814643
\(141\) 0 0
\(142\) 4.76408i 0.399793i
\(143\) 6.78721 + 8.16729i 0.567575 + 0.682983i
\(144\) 0 0
\(145\) 9.70064 + 9.70064i 0.805595 + 0.805595i
\(146\) 8.13488i 0.673247i
\(147\) 0 0
\(148\) 1.71289 + 1.71289i 0.140799 + 0.140799i
\(149\) −10.6174 + 10.6174i −0.869811 + 0.869811i −0.992451 0.122640i \(-0.960864\pi\)
0.122640 + 0.992451i \(0.460864\pi\)
\(150\) 0 0
\(151\) −4.67908 + 4.67908i −0.380778 + 0.380778i −0.871382 0.490605i \(-0.836776\pi\)
0.490605 + 0.871382i \(0.336776\pi\)
\(152\) 7.41686i 0.601586i
\(153\) 0 0
\(154\) 13.4231 13.4231i 1.08167 1.08167i
\(155\) 36.3680 2.92115
\(156\) 0 0
\(157\) −4.46410 −0.356274 −0.178137 0.984006i \(-0.557007\pi\)
−0.178137 + 0.984006i \(0.557007\pi\)
\(158\) −6.60350 + 6.60350i −0.525346 + 0.525346i
\(159\) 0 0
\(160\) 13.2194i 1.04509i
\(161\) 2.13552 2.13552i 0.168303 0.168303i
\(162\) 0 0
\(163\) 5.14776 5.14776i 0.403204 0.403204i −0.476157 0.879361i \(-0.657970\pi\)
0.879361 + 0.476157i \(0.157970\pi\)
\(164\) 1.24808 + 1.24808i 0.0974584 + 0.0974584i
\(165\) 0 0
\(166\) 16.3909i 1.27218i
\(167\) −6.61536 6.61536i −0.511912 0.511912i 0.403200 0.915112i \(-0.367898\pi\)
−0.915112 + 0.403200i \(0.867898\pi\)
\(168\) 0 0
\(169\) 12.7804 + 2.37915i 0.983111 + 0.183012i
\(170\) 25.6162i 1.96467i
\(171\) 0 0
\(172\) −0.315769 −0.0240771
\(173\) −5.15052 −0.391587 −0.195793 0.980645i \(-0.562728\pi\)
−0.195793 + 0.980645i \(0.562728\pi\)
\(174\) 0 0
\(175\) 31.6243 + 31.6243i 2.39057 + 2.39057i
\(176\) 10.0787 + 10.0787i 0.759712 + 0.759712i
\(177\) 0 0
\(178\) −3.46050 −0.259376
\(179\) −24.9678 −1.86618 −0.933091 0.359641i \(-0.882899\pi\)
−0.933091 + 0.359641i \(0.882899\pi\)
\(180\) 0 0
\(181\) 12.9012i 0.958942i −0.877558 0.479471i \(-0.840829\pi\)
0.877558 0.479471i \(-0.159171\pi\)
\(182\) 2.13552 23.1405i 0.158295 1.71529i
\(183\) 0 0
\(184\) 1.20633 + 1.20633i 0.0889318 + 0.0889318i
\(185\) 16.2630i 1.19568i
\(186\) 0 0
\(187\) 8.22458 + 8.22458i 0.601441 + 0.601441i
\(188\) −1.90981 + 1.90981i −0.139287 + 0.139287i
\(189\) 0 0
\(190\) −15.0640 + 15.0640i −1.09285 + 1.09285i
\(191\) 4.73877i 0.342885i −0.985194 0.171443i \(-0.945157\pi\)
0.985194 0.171443i \(-0.0548428\pi\)
\(192\) 0 0
\(193\) −13.2715 + 13.2715i −0.955307 + 0.955307i −0.999043 0.0437361i \(-0.986074\pi\)
0.0437361 + 0.999043i \(0.486074\pi\)
\(194\) −4.72507 −0.339240
\(195\) 0 0
\(196\) −5.38275 −0.384482
\(197\) −11.3728 + 11.3728i −0.810281 + 0.810281i −0.984676 0.174395i \(-0.944203\pi\)
0.174395 + 0.984676i \(0.444203\pi\)
\(198\) 0 0
\(199\) 3.44854i 0.244460i 0.992502 + 0.122230i \(0.0390046\pi\)
−0.992502 + 0.122230i \(0.960995\pi\)
\(200\) −17.8642 + 17.8642i −1.26319 + 1.26319i
\(201\) 0 0
\(202\) −11.3166 + 11.3166i −0.796235 + 0.796235i
\(203\) −9.63898 9.63898i −0.676524 0.676524i
\(204\) 0 0
\(205\) 11.8498i 0.827628i
\(206\) 10.1886 + 10.1886i 0.709870 + 0.709870i
\(207\) 0 0
\(208\) 17.3750 + 1.60345i 1.20474 + 0.111179i
\(209\) 9.67316i 0.669107i
\(210\) 0 0
\(211\) 11.4485 0.788150 0.394075 0.919078i \(-0.371065\pi\)
0.394075 + 0.919078i \(0.371065\pi\)
\(212\) −6.22917 −0.427821
\(213\) 0 0
\(214\) 14.0806 + 14.0806i 0.962533 + 0.962533i
\(215\) −1.49903 1.49903i −0.102233 0.102233i
\(216\) 0 0
\(217\) −36.1368 −2.45313
\(218\) 19.6728 1.33241
\(219\) 0 0
\(220\) 7.10136i 0.478774i
\(221\) 14.1786 + 1.30847i 0.953754 + 0.0880172i
\(222\) 0 0
\(223\) 4.29695 + 4.29695i 0.287745 + 0.287745i 0.836188 0.548443i \(-0.184779\pi\)
−0.548443 + 0.836188i \(0.684779\pi\)
\(224\) 13.1354i 0.877645i
\(225\) 0 0
\(226\) −12.4647 12.4647i −0.829138 0.829138i
\(227\) 0.709400 0.709400i 0.0470845 0.0470845i −0.683173 0.730257i \(-0.739400\pi\)
0.730257 + 0.683173i \(0.239400\pi\)
\(228\) 0 0
\(229\) 13.7455 13.7455i 0.908327 0.908327i −0.0878099 0.996137i \(-0.527987\pi\)
0.996137 + 0.0878099i \(0.0279868\pi\)
\(230\) 4.90022i 0.323111i
\(231\) 0 0
\(232\) 5.44494 5.44494i 0.357478 0.357478i
\(233\) 23.6593 1.54997 0.774987 0.631977i \(-0.217756\pi\)
0.774987 + 0.631977i \(0.217756\pi\)
\(234\) 0 0
\(235\) −18.1326 −1.18284
\(236\) −4.31936 + 4.31936i −0.281166 + 0.281166i
\(237\) 0 0
\(238\) 25.4533i 1.64989i
\(239\) 10.6634 10.6634i 0.689761 0.689761i −0.272418 0.962179i \(-0.587823\pi\)
0.962179 + 0.272418i \(0.0878234\pi\)
\(240\) 0 0
\(241\) −13.1118 + 13.1118i −0.844607 + 0.844607i −0.989454 0.144847i \(-0.953731\pi\)
0.144847 + 0.989454i \(0.453731\pi\)
\(242\) 2.65091 + 2.65091i 0.170407 + 0.170407i
\(243\) 0 0
\(244\) 1.74549i 0.111743i
\(245\) −25.5532 25.5532i −1.63253 1.63253i
\(246\) 0 0
\(247\) 7.56844 + 9.10737i 0.481569 + 0.579488i
\(248\) 20.4132i 1.29624i
\(249\) 0 0
\(250\) 40.1332 2.53825
\(251\) −19.9605 −1.25990 −0.629948 0.776637i \(-0.716924\pi\)
−0.629948 + 0.776637i \(0.716924\pi\)
\(252\) 0 0
\(253\) −1.57331 1.57331i −0.0989133 0.0989133i
\(254\) 7.50620 + 7.50620i 0.470981 + 0.470981i
\(255\) 0 0
\(256\) 13.2204 0.826272
\(257\) 3.84205 0.239660 0.119830 0.992794i \(-0.461765\pi\)
0.119830 + 0.992794i \(0.461765\pi\)
\(258\) 0 0
\(259\) 16.1596i 1.00411i
\(260\) −5.55622 6.68600i −0.344582 0.414648i
\(261\) 0 0
\(262\) 2.10652 + 2.10652i 0.130141 + 0.130141i
\(263\) 16.9250i 1.04364i −0.853055 0.521821i \(-0.825253\pi\)
0.853055 0.521821i \(-0.174747\pi\)
\(264\) 0 0
\(265\) −29.5713 29.5713i −1.81655 1.81655i
\(266\) 14.9682 14.9682i 0.917759 0.917759i
\(267\) 0 0
\(268\) −3.07597 + 3.07597i −0.187895 + 0.187895i
\(269\) 13.1409i 0.801214i 0.916250 + 0.400607i \(0.131201\pi\)
−0.916250 + 0.400607i \(0.868799\pi\)
\(270\) 0 0
\(271\) 3.45455 3.45455i 0.209849 0.209849i −0.594354 0.804203i \(-0.702592\pi\)
0.804203 + 0.594354i \(0.202592\pi\)
\(272\) 19.1115 1.15881
\(273\) 0 0
\(274\) 2.12583 0.128426
\(275\) 23.2987 23.2987i 1.40496 1.40496i
\(276\) 0 0
\(277\) 2.38332i 0.143200i −0.997433 0.0715999i \(-0.977190\pi\)
0.997433 0.0715999i \(-0.0228105\pi\)
\(278\) 1.82386 1.82386i 0.109388 0.109388i
\(279\) 0 0
\(280\) 25.6841 25.6841i 1.53492 1.53492i
\(281\) 20.8144 + 20.8144i 1.24168 + 1.24168i 0.959302 + 0.282382i \(0.0911245\pi\)
0.282382 + 0.959302i \(0.408875\pi\)
\(282\) 0 0
\(283\) 29.2051i 1.73606i 0.496511 + 0.868030i \(0.334614\pi\)
−0.496511 + 0.868030i \(0.665386\pi\)
\(284\) −1.25218 1.25218i −0.0743033 0.0743033i
\(285\) 0 0
\(286\) −17.0484 1.57331i −1.00809 0.0930319i
\(287\) 11.7745i 0.695027i
\(288\) 0 0
\(289\) −1.40432 −0.0826071
\(290\) −22.1178 −1.29880
\(291\) 0 0
\(292\) 2.13816 + 2.13816i 0.125126 + 0.125126i
\(293\) −23.6406 23.6406i −1.38110 1.38110i −0.842670 0.538430i \(-0.819018\pi\)
−0.538430 0.842670i \(-0.680982\pi\)
\(294\) 0 0
\(295\) −41.0100 −2.38770
\(296\) 9.12835 0.530575
\(297\) 0 0
\(298\) 24.2080i 1.40233i
\(299\) −2.71227 0.250302i −0.156855 0.0144754i
\(300\) 0 0
\(301\) 1.48950 + 1.48950i 0.0858533 + 0.0858533i
\(302\) 10.6685i 0.613901i
\(303\) 0 0
\(304\) 11.2388 + 11.2388i 0.644590 + 0.644590i
\(305\) 8.28624 8.28624i 0.474469 0.474469i
\(306\) 0 0
\(307\) −10.5089 + 10.5089i −0.599777 + 0.599777i −0.940253 0.340476i \(-0.889412\pi\)
0.340476 + 0.940253i \(0.389412\pi\)
\(308\) 7.05622i 0.402066i
\(309\) 0 0
\(310\) −41.4601 + 41.4601i −2.35478 + 2.35478i
\(311\) −4.95488 −0.280966 −0.140483 0.990083i \(-0.544865\pi\)
−0.140483 + 0.990083i \(0.544865\pi\)
\(312\) 0 0
\(313\) 4.30078 0.243094 0.121547 0.992586i \(-0.461214\pi\)
0.121547 + 0.992586i \(0.461214\pi\)
\(314\) 5.08915 5.08915i 0.287198 0.287198i
\(315\) 0 0
\(316\) 3.47130i 0.195276i
\(317\) −18.9565 + 18.9565i −1.06470 + 1.06470i −0.0669483 + 0.997756i \(0.521326\pi\)
−0.997756 + 0.0669483i \(0.978674\pi\)
\(318\) 0 0
\(319\) −7.10136 + 7.10136i −0.397600 + 0.397600i
\(320\) 12.4652 + 12.4652i 0.696825 + 0.696825i
\(321\) 0 0
\(322\) 4.86907i 0.271343i
\(323\) 9.17126 + 9.17126i 0.510303 + 0.510303i
\(324\) 0 0
\(325\) 3.70665 40.1652i 0.205608 2.22797i
\(326\) 11.7371i 0.650057i
\(327\) 0 0
\(328\) 6.65127 0.367255
\(329\) 18.0174 0.993330
\(330\) 0 0
\(331\) −21.1471 21.1471i −1.16235 1.16235i −0.983960 0.178387i \(-0.942912\pi\)
−0.178387 0.983960i \(-0.557088\pi\)
\(332\) 4.30815 + 4.30815i 0.236440 + 0.236440i
\(333\) 0 0
\(334\) 15.0833 0.825319
\(335\) −29.2047 −1.59562
\(336\) 0 0
\(337\) 26.3468i 1.43520i −0.696456 0.717600i \(-0.745241\pi\)
0.696456 0.717600i \(-0.254759\pi\)
\(338\) −17.2822 + 11.8577i −0.940028 + 0.644971i
\(339\) 0 0
\(340\) −6.73290 6.73290i −0.365143 0.365143i
\(341\) 26.6232i 1.44173i
\(342\) 0 0
\(343\) 5.60288 + 5.60288i 0.302527 + 0.302527i
\(344\) −0.841400 + 0.841400i −0.0453652 + 0.0453652i
\(345\) 0 0
\(346\) 5.87168 5.87168i 0.315664 0.315664i
\(347\) 0.164998i 0.00885753i −0.999990 0.00442877i \(-0.998590\pi\)
0.999990 0.00442877i \(-0.00140972\pi\)
\(348\) 0 0
\(349\) 25.4287 25.4287i 1.36117 1.36117i 0.488739 0.872430i \(-0.337457\pi\)
0.872430 0.488739i \(-0.162543\pi\)
\(350\) −72.1045 −3.85415
\(351\) 0 0
\(352\) −9.67729 −0.515801
\(353\) −8.52107 + 8.52107i −0.453531 + 0.453531i −0.896525 0.442994i \(-0.853916\pi\)
0.442994 + 0.896525i \(0.353916\pi\)
\(354\) 0 0
\(355\) 11.8888i 0.630992i
\(356\) 0.909551 0.909551i 0.0482061 0.0482061i
\(357\) 0 0
\(358\) 28.4637 28.4637i 1.50436 1.50436i
\(359\) 20.2377 + 20.2377i 1.06810 + 1.06810i 0.997505 + 0.0705983i \(0.0224908\pi\)
0.0705983 + 0.997505i \(0.477509\pi\)
\(360\) 0 0
\(361\) 8.21342i 0.432285i
\(362\) 14.7077 + 14.7077i 0.773017 + 0.773017i
\(363\) 0 0
\(364\) 5.52091 + 6.64350i 0.289374 + 0.348214i
\(365\) 20.3006i 1.06258i
\(366\) 0 0
\(367\) −6.88506 −0.359397 −0.179699 0.983722i \(-0.557512\pi\)
−0.179699 + 0.983722i \(0.557512\pi\)
\(368\) −3.65592 −0.190578
\(369\) 0 0
\(370\) −18.5401 18.5401i −0.963852 0.963852i
\(371\) 29.3834 + 29.3834i 1.52551 + 1.52551i
\(372\) 0 0
\(373\) 32.1812 1.66628 0.833140 0.553062i \(-0.186541\pi\)
0.833140 + 0.553062i \(0.186541\pi\)
\(374\) −18.7523 −0.969660
\(375\) 0 0
\(376\) 10.1778i 0.524879i
\(377\) −1.12977 + 12.2422i −0.0581864 + 0.630507i
\(378\) 0 0
\(379\) 14.4969 + 14.4969i 0.744657 + 0.744657i 0.973470 0.228813i \(-0.0734845\pi\)
−0.228813 + 0.973470i \(0.573484\pi\)
\(380\) 7.91876i 0.406224i
\(381\) 0 0
\(382\) 5.40228 + 5.40228i 0.276404 + 0.276404i
\(383\) 19.6199 19.6199i 1.00253 1.00253i 0.00253237 0.999997i \(-0.499194\pi\)
0.999997 0.00253237i \(-0.000806078\pi\)
\(384\) 0 0
\(385\) −33.4976 + 33.4976i −1.70719 + 1.70719i
\(386\) 30.2596i 1.54017i
\(387\) 0 0
\(388\) 1.24193 1.24193i 0.0630493 0.0630493i
\(389\) −5.17424 −0.262345 −0.131172 0.991360i \(-0.541874\pi\)
−0.131172 + 0.991360i \(0.541874\pi\)
\(390\) 0 0
\(391\) −2.98336 −0.150875
\(392\) −14.3429 + 14.3429i −0.724427 + 0.724427i
\(393\) 0 0
\(394\) 25.9305i 1.30636i
\(395\) 16.4791 16.4791i 0.829153 0.829153i
\(396\) 0 0
\(397\) −26.9826 + 26.9826i −1.35422 + 1.35422i −0.473336 + 0.880882i \(0.656950\pi\)
−0.880882 + 0.473336i \(0.843050\pi\)
\(398\) −3.93140 3.93140i −0.197063 0.197063i
\(399\) 0 0
\(400\) 54.1394i 2.70697i
\(401\) 11.4444 + 11.4444i 0.571508 + 0.571508i 0.932550 0.361041i \(-0.117579\pi\)
−0.361041 + 0.932550i \(0.617579\pi\)
\(402\) 0 0
\(403\) 20.8304 + 25.0660i 1.03764 + 1.24863i
\(404\) 5.94888i 0.295968i
\(405\) 0 0
\(406\) 21.9772 1.09071
\(407\) −11.9053 −0.590125
\(408\) 0 0
\(409\) −16.7065 16.7065i −0.826084 0.826084i 0.160888 0.986973i \(-0.448564\pi\)
−0.986973 + 0.160888i \(0.948564\pi\)
\(410\) −13.5090 13.5090i −0.667163 0.667163i
\(411\) 0 0
\(412\) −5.35588 −0.263865
\(413\) 40.7494 2.00514
\(414\) 0 0
\(415\) 40.9036i 2.00788i
\(416\) −9.11126 + 7.57167i −0.446716 + 0.371232i
\(417\) 0 0
\(418\) −11.0276 11.0276i −0.539376 0.539376i
\(419\) 39.8507i 1.94683i 0.229040 + 0.973417i \(0.426441\pi\)
−0.229040 + 0.973417i \(0.573559\pi\)
\(420\) 0 0
\(421\) −1.73565 1.73565i −0.0845905 0.0845905i 0.663545 0.748136i \(-0.269051\pi\)
−0.748136 + 0.663545i \(0.769051\pi\)
\(422\) −13.0515 + 13.0515i −0.635339 + 0.635339i
\(423\) 0 0
\(424\) −16.5983 + 16.5983i −0.806084 + 0.806084i
\(425\) 44.1797i 2.14303i
\(426\) 0 0
\(427\) −8.23357 + 8.23357i −0.398450 + 0.398450i
\(428\) −7.40186 −0.357782
\(429\) 0 0
\(430\) 3.41784 0.164823
\(431\) 5.07206 5.07206i 0.244313 0.244313i −0.574319 0.818632i \(-0.694733\pi\)
0.818632 + 0.574319i \(0.194733\pi\)
\(432\) 0 0
\(433\) 10.4803i 0.503650i 0.967773 + 0.251825i \(0.0810308\pi\)
−0.967773 + 0.251825i \(0.918969\pi\)
\(434\) 41.1966 41.1966i 1.97750 1.97750i
\(435\) 0 0
\(436\) −5.17075 + 5.17075i −0.247634 + 0.247634i
\(437\) −1.75441 1.75441i −0.0839246 0.0839246i
\(438\) 0 0
\(439\) 2.71763i 0.129705i 0.997895 + 0.0648526i \(0.0206577\pi\)
−0.997895 + 0.0648526i \(0.979342\pi\)
\(440\) −18.9223 18.9223i −0.902087 0.902087i
\(441\) 0 0
\(442\) −17.6555 + 14.6721i −0.839786 + 0.697882i
\(443\) 4.55328i 0.216333i −0.994133 0.108166i \(-0.965502\pi\)
0.994133 0.108166i \(-0.0344980\pi\)
\(444\) 0 0
\(445\) 8.63571 0.409372
\(446\) −9.79719 −0.463910
\(447\) 0 0
\(448\) −12.3860 12.3860i −0.585181 0.585181i
\(449\) −28.2655 28.2655i −1.33393 1.33393i −0.901822 0.432107i \(-0.857770\pi\)
−0.432107 0.901822i \(-0.642230\pi\)
\(450\) 0 0
\(451\) −8.67468 −0.408475
\(452\) 6.55238 0.308198
\(453\) 0 0
\(454\) 1.61746i 0.0759110i
\(455\) −5.32921 + 57.7473i −0.249837 + 2.70723i
\(456\) 0 0
\(457\) 6.20457 + 6.20457i 0.290237 + 0.290237i 0.837174 0.546937i \(-0.184206\pi\)
−0.546937 + 0.837174i \(0.684206\pi\)
\(458\) 31.3402i 1.46443i
\(459\) 0 0
\(460\) 1.28796 + 1.28796i 0.0600516 + 0.0600516i
\(461\) 24.9610 24.9610i 1.16255 1.16255i 0.178632 0.983916i \(-0.442833\pi\)
0.983916 0.178632i \(-0.0571671\pi\)
\(462\) 0 0
\(463\) −0.184419 + 0.184419i −0.00857068 + 0.00857068i −0.711379 0.702808i \(-0.751929\pi\)
0.702808 + 0.711379i \(0.251929\pi\)
\(464\) 16.5015i 0.766064i
\(465\) 0 0
\(466\) −26.9721 + 26.9721i −1.24946 + 1.24946i
\(467\) 3.26530 0.151100 0.0755500 0.997142i \(-0.475929\pi\)
0.0755500 + 0.997142i \(0.475929\pi\)
\(468\) 0 0
\(469\) 29.0190 1.33997
\(470\) 20.6715 20.6715i 0.953506 0.953506i
\(471\) 0 0
\(472\) 23.0188i 1.05953i
\(473\) 1.09737 1.09737i 0.0504569 0.0504569i
\(474\) 0 0
\(475\) 25.9805 25.9805i 1.19207 1.19207i
\(476\) 6.69010 + 6.69010i 0.306640 + 0.306640i
\(477\) 0 0
\(478\) 24.3130i 1.11205i
\(479\) −15.2846 15.2846i −0.698369 0.698369i 0.265690 0.964059i \(-0.414400\pi\)
−0.964059 + 0.265690i \(0.914400\pi\)
\(480\) 0 0
\(481\) −11.2090 + 9.31492i −0.511085 + 0.424724i
\(482\) 29.8954i 1.36170i
\(483\) 0 0
\(484\) −1.39352 −0.0633418
\(485\) 11.7914 0.535422
\(486\) 0 0
\(487\) 11.7321 + 11.7321i 0.531630 + 0.531630i 0.921057 0.389427i \(-0.127327\pi\)
−0.389427 + 0.921057i \(0.627327\pi\)
\(488\) −4.65104 4.65104i −0.210543 0.210543i
\(489\) 0 0
\(490\) 58.2621 2.63202
\(491\) −25.7233 −1.16087 −0.580437 0.814305i \(-0.697118\pi\)
−0.580437 + 0.814305i \(0.697118\pi\)
\(492\) 0 0
\(493\) 13.4658i 0.606469i
\(494\) −19.0107 1.75441i −0.855333 0.0789345i
\(495\) 0 0
\(496\) 30.9323 + 30.9323i 1.38890 + 1.38890i
\(497\) 11.8132i 0.529896i
\(498\) 0 0
\(499\) 16.0744 + 16.0744i 0.719589 + 0.719589i 0.968521 0.248932i \(-0.0800794\pi\)
−0.248932 + 0.968521i \(0.580079\pi\)
\(500\) −10.5485 + 10.5485i −0.471745 + 0.471745i
\(501\) 0 0
\(502\) 22.7553 22.7553i 1.01562 1.01562i
\(503\) 18.0242i 0.803658i 0.915715 + 0.401829i \(0.131625\pi\)
−0.915715 + 0.401829i \(0.868375\pi\)
\(504\) 0 0
\(505\) 28.2407 28.2407i 1.25670 1.25670i
\(506\) 3.58721 0.159471
\(507\) 0 0
\(508\) −3.94583 −0.175068
\(509\) 22.7730 22.7730i 1.00940 1.00940i 0.00944076 0.999955i \(-0.496995\pi\)
0.999955 0.00944076i \(-0.00300513\pi\)
\(510\) 0 0
\(511\) 20.1716i 0.892339i
\(512\) 4.21201 4.21201i 0.186146 0.186146i
\(513\) 0 0
\(514\) −4.38000 + 4.38000i −0.193194 + 0.193194i
\(515\) −25.4256 25.4256i −1.12039 1.12039i
\(516\) 0 0
\(517\) 13.2740i 0.583790i
\(518\) 18.4222 + 18.4222i 0.809426 + 0.809426i
\(519\) 0 0
\(520\) −32.6207 3.01041i −1.43051 0.132015i
\(521\) 34.8024i 1.52472i −0.647152 0.762361i \(-0.724040\pi\)
0.647152 0.762361i \(-0.275960\pi\)
\(522\) 0 0
\(523\) −0.671646 −0.0293690 −0.0146845 0.999892i \(-0.504674\pi\)
−0.0146845 + 0.999892i \(0.504674\pi\)
\(524\) −1.10735 −0.0483747
\(525\) 0 0
\(526\) 19.2948 + 19.2948i 0.841294 + 0.841294i
\(527\) 25.2418 + 25.2418i 1.09955 + 1.09955i
\(528\) 0 0
\(529\) −22.4293 −0.975187
\(530\) 67.4237 2.92870
\(531\) 0 0
\(532\) 7.86842i 0.341139i
\(533\) −8.16729 + 6.78721i −0.353764 + 0.293987i
\(534\) 0 0
\(535\) −35.1384 35.1384i −1.51916 1.51916i
\(536\) 16.3925i 0.708047i
\(537\) 0 0
\(538\) −14.9808 14.9808i −0.645870 0.645870i
\(539\) 18.7062 18.7062i 0.805734 0.805734i
\(540\) 0 0
\(541\) 23.7311 23.7311i 1.02028 1.02028i 0.0204881 0.999790i \(-0.493478\pi\)
0.999790 0.0204881i \(-0.00652201\pi\)
\(542\) 7.87649i 0.338324i
\(543\) 0 0
\(544\) −9.17517 + 9.17517i −0.393382 + 0.393382i
\(545\) −49.0936 −2.10294
\(546\) 0 0
\(547\) −12.5878 −0.538217 −0.269108 0.963110i \(-0.586729\pi\)
−0.269108 + 0.963110i \(0.586729\pi\)
\(548\) −0.558749 + 0.558749i −0.0238686 + 0.0238686i
\(549\) 0 0
\(550\) 53.1219i 2.26512i
\(551\) −7.91876 + 7.91876i −0.337350 + 0.337350i
\(552\) 0 0
\(553\) −16.3743 + 16.3743i −0.696308 + 0.696308i
\(554\) 2.71703 + 2.71703i 0.115435 + 0.115435i
\(555\) 0 0
\(556\) 0.958758i 0.0406604i
\(557\) −9.28336 9.28336i −0.393349 0.393349i 0.482530 0.875879i \(-0.339718\pi\)
−0.875879 + 0.482530i \(0.839718\pi\)
\(558\) 0 0
\(559\) 0.174583 1.89178i 0.00738406 0.0800136i
\(560\) 77.8386i 3.28928i
\(561\) 0 0
\(562\) −47.4576 −2.00188
\(563\) −24.7006 −1.04100 −0.520502 0.853860i \(-0.674255\pi\)
−0.520502 + 0.853860i \(0.674255\pi\)
\(564\) 0 0
\(565\) 31.1057 + 31.1057i 1.30863 + 1.30863i
\(566\) −33.2943 33.2943i −1.39946 1.39946i
\(567\) 0 0
\(568\) −6.67314 −0.279999
\(569\) −11.6163 −0.486980 −0.243490 0.969903i \(-0.578292\pi\)
−0.243490 + 0.969903i \(0.578292\pi\)
\(570\) 0 0
\(571\) 4.79069i 0.200484i 0.994963 + 0.100242i \(0.0319617\pi\)
−0.994963 + 0.100242i \(0.968038\pi\)
\(572\) 4.89449 4.06744i 0.204649 0.170068i
\(573\) 0 0
\(574\) 13.4231 + 13.4231i 0.560271 + 0.560271i
\(575\) 8.45130i 0.352443i
\(576\) 0 0
\(577\) −10.9082 10.9082i −0.454116 0.454116i 0.442602 0.896718i \(-0.354055\pi\)
−0.896718 + 0.442602i \(0.854055\pi\)
\(578\) 1.60095 1.60095i 0.0665907 0.0665907i
\(579\) 0 0
\(580\) 5.81340 5.81340i 0.241388 0.241388i
\(581\) 40.6436i 1.68618i
\(582\) 0 0
\(583\) 21.6477 21.6477i 0.896557 0.896557i
\(584\) 11.3947 0.471515
\(585\) 0 0
\(586\) 53.9015 2.22665
\(587\) 21.9578 21.9578i 0.906296 0.906296i −0.0896746 0.995971i \(-0.528583\pi\)
0.995971 + 0.0896746i \(0.0285827\pi\)
\(588\) 0 0
\(589\) 29.6876i 1.22326i
\(590\) 46.7522 46.7522i 1.92476 1.92476i
\(591\) 0 0
\(592\) −13.8323 + 13.8323i −0.568502 + 0.568502i
\(593\) 24.5051 + 24.5051i 1.00630 + 1.00630i 0.999980 + 0.00632392i \(0.00201298\pi\)
0.00632392 + 0.999980i \(0.497987\pi\)
\(594\) 0 0
\(595\) 63.5190i 2.60402i
\(596\) 6.36279 + 6.36279i 0.260630 + 0.260630i
\(597\) 0 0
\(598\) 3.37739 2.80669i 0.138112 0.114774i
\(599\) 23.0963i 0.943689i 0.881682 + 0.471844i \(0.156412\pi\)
−0.881682 + 0.471844i \(0.843588\pi\)
\(600\) 0 0
\(601\) 18.0484 0.736209 0.368105 0.929784i \(-0.380007\pi\)
0.368105 + 0.929784i \(0.380007\pi\)
\(602\) −3.39611 −0.138415
\(603\) 0 0
\(604\) 2.80408 + 2.80408i 0.114096 + 0.114096i
\(605\) −6.61536 6.61536i −0.268953 0.268953i
\(606\) 0 0
\(607\) −5.55379 −0.225421 −0.112711 0.993628i \(-0.535953\pi\)
−0.112711 + 0.993628i \(0.535953\pi\)
\(608\) −10.7912 −0.437640
\(609\) 0 0
\(610\) 18.8929i 0.764952i
\(611\) −10.3858 12.4976i −0.420165 0.505599i
\(612\) 0 0
\(613\) −15.8678 15.8678i −0.640894 0.640894i 0.309881 0.950775i \(-0.399711\pi\)
−0.950775 + 0.309881i \(0.899711\pi\)
\(614\) 23.9608i 0.966978i
\(615\) 0 0
\(616\) 18.8021 + 18.8021i 0.757557 + 0.757557i
\(617\) 15.6265 15.6265i 0.629098 0.629098i −0.318743 0.947841i \(-0.603261\pi\)
0.947841 + 0.318743i \(0.103261\pi\)
\(618\) 0 0
\(619\) 30.6482 30.6482i 1.23185 1.23185i 0.268602 0.963251i \(-0.413438\pi\)
0.963251 0.268602i \(-0.0865617\pi\)
\(620\) 21.7946i 0.875292i
\(621\) 0 0
\(622\) 5.64866 5.64866i 0.226490 0.226490i
\(623\) −8.58081 −0.343783
\(624\) 0 0
\(625\) −44.2169 −1.76868
\(626\) −4.90296 + 4.90296i −0.195962 + 0.195962i
\(627\) 0 0
\(628\) 2.67525i 0.106754i
\(629\) −11.2876 + 11.2876i −0.450066 + 0.450066i
\(630\) 0 0
\(631\) −11.2885 + 11.2885i −0.449389 + 0.449389i −0.895151 0.445762i \(-0.852933\pi\)
0.445762 + 0.895151i \(0.352933\pi\)
\(632\) −9.24966 9.24966i −0.367932 0.367932i
\(633\) 0 0
\(634\) 43.2216i 1.71655i
\(635\) −18.7318 18.7318i −0.743348 0.743348i
\(636\) 0 0
\(637\) 2.97602 32.2481i 0.117914 1.27772i
\(638\) 16.1914i 0.641022i
\(639\) 0 0
\(640\) −54.8599 −2.16853
\(641\) −20.8879 −0.825021 −0.412510 0.910953i \(-0.635348\pi\)
−0.412510 + 0.910953i \(0.635348\pi\)
\(642\) 0 0
\(643\) 32.4927 + 32.4927i 1.28139 + 1.28139i 0.939879 + 0.341507i \(0.110937\pi\)
0.341507 + 0.939879i \(0.389063\pi\)
\(644\) −1.27978 1.27978i −0.0504302 0.0504302i
\(645\) 0 0
\(646\) −20.9108 −0.822724
\(647\) −11.9714 −0.470646 −0.235323 0.971917i \(-0.575615\pi\)
−0.235323 + 0.971917i \(0.575615\pi\)
\(648\) 0 0
\(649\) 30.0214i 1.17844i
\(650\) 41.5634 + 50.0147i 1.63025 + 1.96174i
\(651\) 0 0
\(652\) −3.08495 3.08495i −0.120816 0.120816i
\(653\) 9.71059i 0.380005i −0.981784 0.190002i \(-0.939150\pi\)
0.981784 0.190002i \(-0.0608496\pi\)
\(654\) 0 0
\(655\) −5.25684 5.25684i −0.205402 0.205402i
\(656\) −10.0787 + 10.0787i −0.393508 + 0.393508i
\(657\) 0 0
\(658\) −20.5401 + 20.5401i −0.800737 + 0.800737i
\(659\) 29.0022i 1.12977i 0.825171 + 0.564884i \(0.191079\pi\)
−0.825171 + 0.564884i \(0.808921\pi\)
\(660\) 0 0
\(661\) 22.9631 22.9631i 0.893160 0.893160i −0.101659 0.994819i \(-0.532415\pi\)
0.994819 + 0.101659i \(0.0324151\pi\)
\(662\) 48.2160 1.87397
\(663\) 0 0
\(664\) 22.9590 0.890984
\(665\) −37.3532 + 37.3532i −1.44850 + 1.44850i
\(666\) 0 0
\(667\) 2.57593i 0.0997403i
\(668\) −3.96445 + 3.96445i −0.153389 + 0.153389i
\(669\) 0 0
\(670\) 33.2938 33.2938i 1.28625 1.28625i
\(671\) 6.06595 + 6.06595i 0.234173 + 0.234173i
\(672\) 0 0
\(673\) 12.5669i 0.484420i 0.970224 + 0.242210i \(0.0778723\pi\)
−0.970224 + 0.242210i \(0.922128\pi\)
\(674\) 30.0358 + 30.0358i 1.15693 + 1.15693i
\(675\) 0 0
\(676\) 1.42578 7.65906i 0.0548376 0.294579i
\(677\) 21.1632i 0.813367i 0.913569 + 0.406684i \(0.133315\pi\)
−0.913569 + 0.406684i \(0.866685\pi\)
\(678\) 0 0
\(679\) −11.7165 −0.449638
\(680\) −35.8811 −1.37598
\(681\) 0 0
\(682\) −30.3509 30.3509i −1.16220 1.16220i
\(683\) −6.59843 6.59843i −0.252482 0.252482i 0.569506 0.821987i \(-0.307135\pi\)
−0.821987 + 0.569506i \(0.807135\pi\)
\(684\) 0 0
\(685\) −5.30503 −0.202695
\(686\) −12.7748 −0.487743
\(687\) 0 0
\(688\) 2.54996i 0.0972163i
\(689\) 3.44399 37.3191i 0.131206 1.42174i
\(690\) 0 0
\(691\) −34.7891 34.7891i −1.32344 1.32344i −0.910974 0.412465i \(-0.864668\pi\)
−0.412465 0.910974i \(-0.635332\pi\)
\(692\) 3.08660i 0.117335i
\(693\) 0 0
\(694\) 0.188100 + 0.188100i 0.00714018 + 0.00714018i
\(695\) −4.55145 + 4.55145i −0.172646 + 0.172646i
\(696\) 0 0
\(697\) −8.22458 + 8.22458i −0.311528 + 0.311528i
\(698\) 57.9784i 2.19451i
\(699\) 0 0
\(700\) 18.9518 18.9518i 0.716311 0.716311i
\(701\) −31.6224 −1.19436 −0.597181 0.802106i \(-0.703713\pi\)
−0.597181 + 0.802106i \(0.703713\pi\)
\(702\) 0 0
\(703\) −13.2757 −0.500701
\(704\) −9.12515 + 9.12515i −0.343917 + 0.343917i
\(705\) 0 0
\(706\) 19.4283i 0.731195i
\(707\) −28.0612 + 28.0612i −1.05535 + 1.05535i
\(708\) 0 0
\(709\) −7.91321 + 7.91321i −0.297187 + 0.297187i −0.839911 0.542724i \(-0.817393\pi\)
0.542724 + 0.839911i \(0.317393\pi\)
\(710\) 13.5534 + 13.5534i 0.508652 + 0.508652i
\(711\) 0 0
\(712\) 4.84719i 0.181656i
\(713\) −4.82861 4.82861i −0.180833 0.180833i
\(714\) 0 0
\(715\) 42.5444 + 3.92621i 1.59107 + 0.146832i
\(716\) 14.9627i 0.559183i
\(717\) 0 0
\(718\) −46.1426 −1.72203
\(719\) −7.86279 −0.293233 −0.146616 0.989193i \(-0.546838\pi\)
−0.146616 + 0.989193i \(0.546838\pi\)
\(720\) 0 0
\(721\) 25.2640 + 25.2640i 0.940880 + 0.940880i
\(722\) 9.36344 + 9.36344i 0.348471 + 0.348471i
\(723\) 0 0
\(724\) −7.73146 −0.287337
\(725\) 38.1461 1.41671
\(726\) 0 0
\(727\) 8.92509i 0.331013i −0.986209 0.165507i \(-0.947074\pi\)
0.986209 0.165507i \(-0.0529259\pi\)
\(728\) 32.4134 + 2.99127i 1.20132 + 0.110864i
\(729\) 0 0
\(730\) −23.1431 23.1431i −0.856564 0.856564i
\(731\) 2.08085i 0.0769632i
\(732\) 0 0
\(733\) 13.8333 + 13.8333i 0.510944 + 0.510944i 0.914816 0.403872i \(-0.132336\pi\)
−0.403872 + 0.914816i \(0.632336\pi\)
\(734\) 7.84909 7.84909i 0.289715 0.289715i
\(735\) 0 0
\(736\) 1.75515 1.75515i 0.0646959 0.0646959i
\(737\) 21.3793i 0.787517i
\(738\) 0 0
\(739\) 10.3041 10.3041i 0.379042 0.379042i −0.491714 0.870757i \(-0.663630\pi\)
0.870757 + 0.491714i \(0.163630\pi\)
\(740\) 9.74607 0.358273
\(741\) 0 0
\(742\) −66.9951 −2.45947
\(743\) 1.22694 1.22694i 0.0450122 0.0450122i −0.684242 0.729255i \(-0.739867\pi\)
0.729255 + 0.684242i \(0.239867\pi\)
\(744\) 0 0
\(745\) 60.4113i 2.21330i
\(746\) −36.6871 + 36.6871i −1.34321 + 1.34321i
\(747\) 0 0
\(748\) 4.92883 4.92883i 0.180216 0.180216i
\(749\) 34.9150 + 34.9150i 1.27577 + 1.27577i
\(750\) 0 0
\(751\) 50.9443i 1.85898i −0.368842 0.929492i \(-0.620246\pi\)
0.368842 0.929492i \(-0.379754\pi\)
\(752\) −15.4225 15.4225i −0.562400 0.562400i
\(753\) 0 0
\(754\) −12.6684 15.2443i −0.461355 0.555165i
\(755\) 26.6232i 0.968918i
\(756\) 0 0
\(757\) 13.7057 0.498143 0.249071 0.968485i \(-0.419875\pi\)
0.249071 + 0.968485i \(0.419875\pi\)
\(758\) −33.0535 −1.20056
\(759\) 0 0
\(760\) −21.1004 21.1004i −0.765391 0.765391i
\(761\) 20.9931 + 20.9931i 0.761000 + 0.761000i 0.976503 0.215503i \(-0.0691392\pi\)
−0.215503 + 0.976503i \(0.569139\pi\)
\(762\) 0 0
\(763\) 48.7815 1.76601
\(764\) −2.83985 −0.102742
\(765\) 0 0
\(766\) 44.7340i 1.61631i
\(767\) −23.4893 28.2655i −0.848148 1.02061i
\(768\) 0 0
\(769\) −5.06281 5.06281i −0.182570 0.182570i 0.609905 0.792475i \(-0.291208\pi\)
−0.792475 + 0.609905i \(0.791208\pi\)
\(770\) 76.3756i 2.75239i
\(771\) 0 0
\(772\) 7.95337 + 7.95337i 0.286248 + 0.286248i
\(773\) −11.2488 + 11.2488i −0.404592 + 0.404592i −0.879848 0.475256i \(-0.842355\pi\)
0.475256 + 0.879848i \(0.342355\pi\)
\(774\) 0 0
\(775\) 71.5054 71.5054i 2.56855 2.56855i
\(776\) 6.61850i 0.237590i
\(777\) 0 0
\(778\) 5.89873 5.89873i 0.211480 0.211480i
\(779\) −9.67316 −0.346577
\(780\) 0 0
\(781\) 8.70320 0.311425
\(782\) 3.40108 3.40108i 0.121622 0.121622i
\(783\) 0 0
\(784\) 43.4678i 1.55242i
\(785\) −12.7000 + 12.7000i −0.453283 + 0.453283i
\(786\) 0 0
\(787\) −16.4021 + 16.4021i −0.584673 + 0.584673i −0.936184 0.351511i \(-0.885668\pi\)
0.351511 + 0.936184i \(0.385668\pi\)
\(788\) 6.81552 + 6.81552i 0.242793 + 0.242793i
\(789\) 0 0
\(790\) 37.5729i 1.33678i
\(791\) −30.9080 30.9080i −1.09896 1.09896i
\(792\) 0 0
\(793\) 10.4572 + 0.965048i 0.371348 + 0.0342698i
\(794\) 61.5213i 2.18331i
\(795\) 0 0
\(796\) 2.06664 0.0732501
\(797\) 51.6968 1.83119 0.915597 0.402096i \(-0.131718\pi\)
0.915597 + 0.402096i \(0.131718\pi\)
\(798\) 0 0
\(799\) −12.5853 12.5853i −0.445235 0.445235i
\(800\) 25.9916 + 25.9916i 0.918940 + 0.918940i
\(801\) 0 0
\(802\) −26.0937 −0.921402
\(803\) −14.8611 −0.524437
\(804\) 0 0
\(805\) 12.1508i 0.428259i
\(806\) −52.3227 4.82861i −1.84299 0.170080i
\(807\) 0 0
\(808\) −15.8514 15.8514i −0.557651 0.557651i
\(809\) 33.3494i 1.17250i 0.810129 + 0.586252i \(0.199397\pi\)
−0.810129 + 0.586252i \(0.800603\pi\)
\(810\) 0 0
\(811\) −14.8364 14.8364i −0.520978 0.520978i 0.396889 0.917867i \(-0.370090\pi\)
−0.917867 + 0.396889i \(0.870090\pi\)
\(812\) −5.77645 + 5.77645i −0.202714 + 0.202714i
\(813\) 0 0
\(814\) 13.5723 13.5723i 0.475708 0.475708i
\(815\) 29.2900i 1.02598i
\(816\) 0 0
\(817\) 1.22368 1.22368i 0.0428110 0.0428110i
\(818\) 38.0914 1.33184
\(819\) 0 0
\(820\) 7.10136 0.247990
\(821\) 19.3172 19.3172i 0.674174 0.674174i −0.284502 0.958675i \(-0.591828\pi\)
0.958675 + 0.284502i \(0.0918282\pi\)
\(822\) 0 0
\(823\) 43.3067i 1.50958i −0.655968 0.754788i \(-0.727739\pi\)
0.655968 0.754788i \(-0.272261\pi\)
\(824\) −14.2713 + 14.2713i −0.497165 + 0.497165i
\(825\) 0 0
\(826\) −46.4550 + 46.4550i −1.61638 + 1.61638i
\(827\) −0.987036 0.987036i −0.0343226 0.0343226i 0.689737 0.724060i \(-0.257726\pi\)
−0.724060 + 0.689737i \(0.757726\pi\)
\(828\) 0 0
\(829\) 32.5598i 1.13085i 0.824800 + 0.565424i \(0.191288\pi\)
−0.824800 + 0.565424i \(0.808712\pi\)
\(830\) −46.6308 46.6308i −1.61858 1.61858i
\(831\) 0 0
\(832\) −1.45174 + 15.7311i −0.0503302 + 0.545377i
\(833\) 35.4713i 1.22901i
\(834\) 0 0
\(835\) −37.6404 −1.30260
\(836\) 5.79693 0.200491
\(837\) 0 0
\(838\) −45.4305 45.4305i −1.56937 1.56937i
\(839\) 22.3969 + 22.3969i 0.773227 + 0.773227i 0.978669 0.205442i \(-0.0658632\pi\)
−0.205442 + 0.978669i \(0.565863\pi\)
\(840\) 0 0
\(841\) 17.3732 0.599076
\(842\) 3.95735 0.136379
\(843\) 0 0
\(844\) 6.86088i 0.236161i
\(845\) 43.1279 29.5909i 1.48364 1.01796i
\(846\) 0 0
\(847\) 6.57331 + 6.57331i 0.225862 + 0.225862i
\(848\) 50.3030i 1.72741i
\(849\) 0 0
\(850\) 50.3656 + 50.3656i 1.72753 + 1.72753i
\(851\) 2.15925 2.15925i 0.0740181 0.0740181i
\(852\) 0 0
\(853\) 8.37348 8.37348i 0.286703 0.286703i −0.549072 0.835775i \(-0.685019\pi\)
0.835775 + 0.549072i \(0.185019\pi\)
\(854\) 18.7728i 0.642393i
\(855\) 0 0
\(856\) −19.7230 + 19.7230i −0.674120 + 0.674120i
\(857\) 41.8824 1.43067 0.715337 0.698779i \(-0.246273\pi\)
0.715337 + 0.698779i \(0.246273\pi\)
\(858\) 0 0
\(859\) 17.4849 0.596578 0.298289 0.954476i \(-0.403584\pi\)
0.298289 + 0.954476i \(0.403584\pi\)
\(860\) −0.898338 + 0.898338i −0.0306331 + 0.0306331i
\(861\) 0 0
\(862\) 11.5645i 0.393888i
\(863\) 25.9343 25.9343i 0.882814 0.882814i −0.111006 0.993820i \(-0.535407\pi\)
0.993820 + 0.111006i \(0.0354073\pi\)
\(864\) 0 0
\(865\) −14.6528 + 14.6528i −0.498211 + 0.498211i
\(866\) −11.9477 11.9477i −0.406000 0.406000i
\(867\) 0 0
\(868\) 21.6561i 0.735055i
\(869\) 12.0635 + 12.0635i 0.409227 + 0.409227i
\(870\) 0 0
\(871\) −16.7275 20.1288i −0.566790 0.682039i
\(872\) 27.5561i 0.933166i
\(873\) 0 0
\(874\) 4.00011 0.135306
\(875\) 99.5161 3.36426
\(876\) 0 0
\(877\) −19.4440 19.4440i −0.656576 0.656576i 0.297993 0.954568i \(-0.403683\pi\)
−0.954568 + 0.297993i \(0.903683\pi\)
\(878\) −3.09814 3.09814i −0.104557 0.104557i
\(879\) 0 0
\(880\) 57.3463 1.93314
\(881\) −38.6717 −1.30288 −0.651442 0.758698i \(-0.725836\pi\)
−0.651442 + 0.758698i \(0.725836\pi\)
\(882\) 0 0
\(883\) 32.1536i 1.08206i −0.841005 0.541028i \(-0.818035\pi\)
0.841005 0.541028i \(-0.181965\pi\)
\(884\) 0.784140 8.49693i 0.0263735 0.285783i
\(885\) 0 0
\(886\) 5.19082 + 5.19082i 0.174389 + 0.174389i
\(887\) 15.4017i 0.517140i −0.965993 0.258570i \(-0.916749\pi\)
0.965993 0.258570i \(-0.0832512\pi\)
\(888\) 0 0
\(889\) 18.6127 + 18.6127i 0.624250 + 0.624250i
\(890\) −9.84486 + 9.84486i −0.330000 + 0.330000i
\(891\) 0 0
\(892\) 2.57507 2.57507i 0.0862199 0.0862199i
\(893\) 14.8019i 0.495327i
\(894\) 0 0
\(895\) −71.0315 + 71.0315i −2.37432 + 2.37432i
\(896\) 54.5112 1.82109
\(897\) 0 0
\(898\) 64.4462 2.15060
\(899\) −21.7946 + 21.7946i −0.726891 + 0.726891i
\(900\) 0 0
\(901\) 41.0490i 1.36754i
\(902\) 9.88928 9.88928i 0.329277 0.329277i
\(903\) 0 0
\(904\) 17.4595 17.4595i 0.580695 0.580695i
\(905\) −36.7031 36.7031i −1.22005 1.22005i
\(906\) 0 0
\(907\) 41.1690i 1.36699i −0.729953 0.683497i \(-0.760458\pi\)
0.729953 0.683497i \(-0.239542\pi\)
\(908\) −0.425129 0.425129i −0.0141084 0.0141084i
\(909\) 0 0
\(910\) −59.7575 71.9083i −1.98094 2.38374i
\(911\) 18.6022i 0.616319i −0.951335 0.308159i \(-0.900287\pi\)
0.951335 0.308159i \(-0.0997130\pi\)
\(912\) 0 0
\(913\) −29.9435 −0.990985
\(914\) −14.1466 −0.467929
\(915\) 0 0
\(916\) −8.23739 8.23739i −0.272171 0.272171i
\(917\) 5.22342 + 5.22342i 0.172493 + 0.172493i
\(918\) 0 0
\(919\) −3.42602 −0.113014 −0.0565071 0.998402i \(-0.517996\pi\)
−0.0565071 + 0.998402i \(0.517996\pi\)
\(920\) 6.86383 0.226294
\(921\) 0 0
\(922\) 56.9119i 1.87429i
\(923\) 8.19415 6.80953i 0.269714 0.224138i
\(924\) 0 0
\(925\) 31.9757 + 31.9757i 1.05135 + 1.05135i
\(926\) 0.420482i 0.0138179i
\(927\) 0 0
\(928\) −7.92214 7.92214i −0.260057 0.260057i
\(929\) −12.4259 + 12.4259i −0.407682 + 0.407682i −0.880929 0.473248i \(-0.843082\pi\)
0.473248 + 0.880929i \(0.343082\pi\)
\(930\) 0 0
\(931\) 20.8594 20.8594i 0.683639 0.683639i
\(932\) 14.1786i 0.464434i
\(933\) 0 0
\(934\) −3.72250 + 3.72250i −0.121804 + 0.121804i
\(935\) 46.7966 1.53041
\(936\) 0 0
\(937\) 13.8756 0.453298 0.226649 0.973977i \(-0.427223\pi\)
0.226649 + 0.973977i \(0.427223\pi\)
\(938\) −33.0822 + 33.0822i −1.08017 + 1.08017i
\(939\) 0 0
\(940\) 10.8665i 0.354427i
\(941\) −24.9933 + 24.9933i −0.814759 + 0.814759i −0.985343 0.170585i \(-0.945434\pi\)
0.170585 + 0.985343i \(0.445434\pi\)
\(942\) 0 0
\(943\) 1.57331 1.57331i 0.0512341 0.0512341i
\(944\) −34.8806 34.8806i −1.13527 1.13527i
\(945\) 0 0
\(946\) 2.50203i 0.0813480i
\(947\) 42.4253 + 42.4253i 1.37864 + 1.37864i 0.846925 + 0.531712i \(0.178451\pi\)
0.531712 + 0.846925i \(0.321549\pi\)
\(948\) 0 0
\(949\) −13.9919 + 11.6276i −0.454195 + 0.377447i
\(950\) 59.2364i 1.92188i
\(951\) 0 0
\(952\) 35.6530 1.15552
\(953\) −49.0629 −1.58930 −0.794652 0.607065i \(-0.792347\pi\)
−0.794652 + 0.607065i \(0.792347\pi\)
\(954\) 0 0
\(955\) −13.4814 13.4814i −0.436249 0.436249i
\(956\) −6.39039 6.39039i −0.206680 0.206680i
\(957\) 0 0
\(958\) 34.8493 1.12593
\(959\) 5.27130 0.170219
\(960\) 0 0
\(961\) 50.7086i 1.63576i
\(962\) 2.15925 23.3976i 0.0696170 0.754368i
\(963\) 0 0
\(964\) 7.85765 + 7.85765i 0.253078 + 0.253078i
\(965\) 75.5131i 2.43085i
\(966\) 0 0
\(967\) 23.7884 + 23.7884i 0.764985 + 0.764985i 0.977219 0.212234i \(-0.0680740\pi\)
−0.212234 + 0.977219i \(0.568074\pi\)
\(968\) −3.71318 + 3.71318i −0.119346 + 0.119346i
\(969\) 0 0
\(970\) −13.4425 + 13.4425i −0.431611 + 0.431611i
\(971\) 14.8419i 0.476300i −0.971228 0.238150i \(-0.923459\pi\)
0.971228 0.238150i \(-0.0765410\pi\)
\(972\) 0 0
\(973\) 4.52252 4.52252i 0.144985 0.144985i
\(974\) −26.7495 −0.857109
\(975\) 0 0
\(976\) 14.0955 0.451186
\(977\) −29.6113 + 29.6113i −0.947351 + 0.947351i −0.998682 0.0513308i \(-0.983654\pi\)
0.0513308 + 0.998682i \(0.483654\pi\)
\(978\) 0 0
\(979\) 6.32178i 0.202045i
\(980\) −15.3135 + 15.3135i −0.489172 + 0.489172i
\(981\) 0 0
\(982\) 29.3250 29.3250i 0.935797 0.935797i
\(983\) −23.4450 23.4450i −0.747779 0.747779i 0.226283 0.974062i \(-0.427343\pi\)
−0.974062 + 0.226283i \(0.927343\pi\)
\(984\) 0 0
\(985\) 64.7097i 2.06182i
\(986\) −15.3513 15.3513i −0.488884 0.488884i
\(987\) 0 0
\(988\) 5.45787 4.53562i 0.173638 0.144297i
\(989\) 0.398055i 0.0126574i
\(990\) 0 0
\(991\) 18.6854 0.593560 0.296780 0.954946i \(-0.404087\pi\)
0.296780 + 0.954946i \(0.404087\pi\)
\(992\) −29.7003 −0.942986
\(993\) 0 0
\(994\) −13.4673 13.4673i −0.427156 0.427156i
\(995\) 9.81083 + 9.81083i 0.311024 + 0.311024i
\(996\) 0 0
\(997\) 45.8968 1.45357 0.726783 0.686867i \(-0.241014\pi\)
0.726783 + 0.686867i \(0.241014\pi\)
\(998\) −36.6502 −1.16014
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.i.b.242.3 yes 16
3.2 odd 2 inner 351.2.i.b.242.6 yes 16
13.5 odd 4 inner 351.2.i.b.161.6 yes 16
39.5 even 4 inner 351.2.i.b.161.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.i.b.161.3 16 39.5 even 4 inner
351.2.i.b.161.6 yes 16 13.5 odd 4 inner
351.2.i.b.242.3 yes 16 1.1 even 1 trivial
351.2.i.b.242.6 yes 16 3.2 odd 2 inner