Properties

Label 351.2.e.c.118.6
Level $351$
Weight $2$
Character 351.118
Analytic conductor $2.803$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(118,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 3 x^{10} - x^{9} - 2 x^{8} + 9 x^{7} + 24 x^{6} + 27 x^{5} - 18 x^{4} - 27 x^{3} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.6
Root \(-1.29386 - 1.15149i\) of defining polynomial
Character \(\chi\) \(=\) 351.118
Dual form 351.2.e.c.235.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.10275 + 1.91002i) q^{2} +(-1.43212 + 2.48050i) q^{4} +(-1.80370 + 3.12410i) q^{5} +(0.540062 + 0.935414i) q^{7} -1.90608 q^{8} -7.95614 q^{10} +(-2.14415 - 3.71378i) q^{11} +(0.500000 - 0.866025i) q^{13} +(-1.19111 + 2.06306i) q^{14} +(0.762304 + 1.32035i) q^{16} +2.31911 q^{17} +1.50171 q^{19} +(-5.16624 - 8.94818i) q^{20} +(4.72893 - 8.19074i) q^{22} +(-3.54380 + 6.13804i) q^{23} +(-4.00668 - 6.93978i) q^{25} +2.20550 q^{26} -3.09373 q^{28} +(2.86719 + 4.96611i) q^{29} +(-1.22224 + 2.11699i) q^{31} +(-3.58735 + 6.21347i) q^{32} +(2.55740 + 4.42954i) q^{34} -3.89644 q^{35} +6.00066 q^{37} +(1.65602 + 2.86830i) q^{38} +(3.43801 - 5.95480i) q^{40} +(5.29070 - 9.16376i) q^{41} +(3.67650 + 6.36788i) q^{43} +12.2827 q^{44} -15.6317 q^{46} +(-0.992308 - 1.71873i) q^{47} +(2.91667 - 5.05181i) q^{49} +(8.83675 - 15.3057i) q^{50} +(1.43212 + 2.48050i) q^{52} +11.2772 q^{53} +15.4696 q^{55} +(-1.02940 - 1.78298i) q^{56} +(-6.32359 + 10.9528i) q^{58} +(1.84760 - 3.20014i) q^{59} +(0.840995 + 1.45665i) q^{61} -5.39132 q^{62} -12.7746 q^{64} +(1.80370 + 3.12410i) q^{65} +(2.46583 - 4.27094i) q^{67} +(-3.32124 + 5.75255i) q^{68} +(-4.29681 - 7.44229i) q^{70} -7.07217 q^{71} -3.54440 q^{73} +(6.61723 + 11.4614i) q^{74} +(-2.15063 + 3.72501i) q^{76} +(2.31595 - 4.01134i) q^{77} +(-2.03514 - 3.52496i) q^{79} -5.49988 q^{80} +23.3373 q^{82} +(-7.31845 - 12.6759i) q^{83} +(-4.18298 + 7.24513i) q^{85} +(-8.10853 + 14.0444i) q^{86} +(4.08693 + 7.07877i) q^{88} -6.03027 q^{89} +1.08012 q^{91} +(-10.1503 - 17.5808i) q^{92} +(2.18854 - 3.79066i) q^{94} +(-2.70864 + 4.69151i) q^{95} +(0.0682304 + 0.118178i) q^{97} +12.8654 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 6 q^{4} - 3 q^{5} + 12 q^{8} - 12 q^{10} - 7 q^{11} + 6 q^{13} - 13 q^{14} - 6 q^{16} + 28 q^{17} - 6 q^{19} - 17 q^{20} + 3 q^{22} - 17 q^{23} - 3 q^{25} - 4 q^{26} + 30 q^{28} - 14 q^{29}+ \cdots + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.10275 + 1.91002i 0.779763 + 1.35059i 0.932078 + 0.362257i \(0.117994\pi\)
−0.152315 + 0.988332i \(0.548673\pi\)
\(3\) 0 0
\(4\) −1.43212 + 2.48050i −0.716060 + 1.24025i
\(5\) −1.80370 + 3.12410i −0.806640 + 1.39714i 0.108538 + 0.994092i \(0.465383\pi\)
−0.915178 + 0.403049i \(0.867950\pi\)
\(6\) 0 0
\(7\) 0.540062 + 0.935414i 0.204124 + 0.353553i 0.949853 0.312696i \(-0.101232\pi\)
−0.745729 + 0.666249i \(0.767899\pi\)
\(8\) −1.90608 −0.673902
\(9\) 0 0
\(10\) −7.95614 −2.51595
\(11\) −2.14415 3.71378i −0.646485 1.11975i −0.983956 0.178409i \(-0.942905\pi\)
0.337471 0.941336i \(-0.390429\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) −1.19111 + 2.06306i −0.318337 + 0.551376i
\(15\) 0 0
\(16\) 0.762304 + 1.32035i 0.190576 + 0.330087i
\(17\) 2.31911 0.562466 0.281233 0.959640i \(-0.409257\pi\)
0.281233 + 0.959640i \(0.409257\pi\)
\(18\) 0 0
\(19\) 1.50171 0.344517 0.172258 0.985052i \(-0.444894\pi\)
0.172258 + 0.985052i \(0.444894\pi\)
\(20\) −5.16624 8.94818i −1.15521 2.00087i
\(21\) 0 0
\(22\) 4.72893 8.19074i 1.00821 1.74627i
\(23\) −3.54380 + 6.13804i −0.738933 + 1.27987i 0.214043 + 0.976824i \(0.431337\pi\)
−0.952976 + 0.303045i \(0.901997\pi\)
\(24\) 0 0
\(25\) −4.00668 6.93978i −0.801337 1.38796i
\(26\) 2.20550 0.432535
\(27\) 0 0
\(28\) −3.09373 −0.584661
\(29\) 2.86719 + 4.96611i 0.532423 + 0.922184i 0.999283 + 0.0378531i \(0.0120519\pi\)
−0.466860 + 0.884331i \(0.654615\pi\)
\(30\) 0 0
\(31\) −1.22224 + 2.11699i −0.219521 + 0.380222i −0.954662 0.297693i \(-0.903783\pi\)
0.735140 + 0.677915i \(0.237116\pi\)
\(32\) −3.58735 + 6.21347i −0.634159 + 1.09840i
\(33\) 0 0
\(34\) 2.55740 + 4.42954i 0.438590 + 0.759660i
\(35\) −3.89644 −0.658619
\(36\) 0 0
\(37\) 6.00066 0.986502 0.493251 0.869887i \(-0.335808\pi\)
0.493251 + 0.869887i \(0.335808\pi\)
\(38\) 1.65602 + 2.86830i 0.268641 + 0.465300i
\(39\) 0 0
\(40\) 3.43801 5.95480i 0.543597 0.941537i
\(41\) 5.29070 9.16376i 0.826268 1.43114i −0.0746779 0.997208i \(-0.523793\pi\)
0.900946 0.433931i \(-0.142874\pi\)
\(42\) 0 0
\(43\) 3.67650 + 6.36788i 0.560661 + 0.971093i 0.997439 + 0.0715239i \(0.0227862\pi\)
−0.436778 + 0.899569i \(0.643880\pi\)
\(44\) 12.2827 1.85169
\(45\) 0 0
\(46\) −15.6317 −2.30477
\(47\) −0.992308 1.71873i −0.144743 0.250702i 0.784534 0.620086i \(-0.212902\pi\)
−0.929277 + 0.369384i \(0.879569\pi\)
\(48\) 0 0
\(49\) 2.91667 5.05181i 0.416667 0.721688i
\(50\) 8.83675 15.3057i 1.24971 2.16455i
\(51\) 0 0
\(52\) 1.43212 + 2.48050i 0.198599 + 0.343984i
\(53\) 11.2772 1.54904 0.774520 0.632550i \(-0.217992\pi\)
0.774520 + 0.632550i \(0.217992\pi\)
\(54\) 0 0
\(55\) 15.4696 2.08592
\(56\) −1.02940 1.78298i −0.137560 0.238260i
\(57\) 0 0
\(58\) −6.32359 + 10.9528i −0.830328 + 1.43817i
\(59\) 1.84760 3.20014i 0.240537 0.416623i −0.720330 0.693631i \(-0.756010\pi\)
0.960867 + 0.277009i \(0.0893430\pi\)
\(60\) 0 0
\(61\) 0.840995 + 1.45665i 0.107678 + 0.186504i 0.914829 0.403841i \(-0.132325\pi\)
−0.807151 + 0.590345i \(0.798992\pi\)
\(62\) −5.39132 −0.684698
\(63\) 0 0
\(64\) −12.7746 −1.59682
\(65\) 1.80370 + 3.12410i 0.223722 + 0.387497i
\(66\) 0 0
\(67\) 2.46583 4.27094i 0.301249 0.521778i −0.675170 0.737662i \(-0.735930\pi\)
0.976419 + 0.215884i \(0.0692633\pi\)
\(68\) −3.32124 + 5.75255i −0.402759 + 0.697600i
\(69\) 0 0
\(70\) −4.29681 7.44229i −0.513567 0.889523i
\(71\) −7.07217 −0.839313 −0.419656 0.907683i \(-0.637849\pi\)
−0.419656 + 0.907683i \(0.637849\pi\)
\(72\) 0 0
\(73\) −3.54440 −0.414840 −0.207420 0.978252i \(-0.566507\pi\)
−0.207420 + 0.978252i \(0.566507\pi\)
\(74\) 6.61723 + 11.4614i 0.769237 + 1.33236i
\(75\) 0 0
\(76\) −2.15063 + 3.72501i −0.246695 + 0.427288i
\(77\) 2.31595 4.01134i 0.263927 0.457134i
\(78\) 0 0
\(79\) −2.03514 3.52496i −0.228971 0.396589i 0.728532 0.685011i \(-0.240203\pi\)
−0.957503 + 0.288422i \(0.906869\pi\)
\(80\) −5.49988 −0.614905
\(81\) 0 0
\(82\) 23.3373 2.57717
\(83\) −7.31845 12.6759i −0.803304 1.39136i −0.917430 0.397897i \(-0.869740\pi\)
0.114126 0.993466i \(-0.463593\pi\)
\(84\) 0 0
\(85\) −4.18298 + 7.24513i −0.453708 + 0.785844i
\(86\) −8.10853 + 14.0444i −0.874365 + 1.51444i
\(87\) 0 0
\(88\) 4.08693 + 7.07877i 0.435668 + 0.754599i
\(89\) −6.03027 −0.639207 −0.319604 0.947551i \(-0.603550\pi\)
−0.319604 + 0.947551i \(0.603550\pi\)
\(90\) 0 0
\(91\) 1.08012 0.113228
\(92\) −10.1503 17.5808i −1.05824 1.83293i
\(93\) 0 0
\(94\) 2.18854 3.79066i 0.225730 0.390976i
\(95\) −2.70864 + 4.69151i −0.277901 + 0.481339i
\(96\) 0 0
\(97\) 0.0682304 + 0.118178i 0.00692775 + 0.0119992i 0.869468 0.493988i \(-0.164461\pi\)
−0.862541 + 0.505988i \(0.831128\pi\)
\(98\) 12.8654 1.29960
\(99\) 0 0
\(100\) 22.9522 2.29522
\(101\) −5.76417 9.98383i −0.573556 0.993428i −0.996197 0.0871309i \(-0.972230\pi\)
0.422641 0.906297i \(-0.361103\pi\)
\(102\) 0 0
\(103\) −5.43445 + 9.41274i −0.535472 + 0.927465i 0.463668 + 0.886009i \(0.346533\pi\)
−0.999140 + 0.0414559i \(0.986800\pi\)
\(104\) −0.953042 + 1.65072i −0.0934534 + 0.161866i
\(105\) 0 0
\(106\) 12.4359 + 21.5396i 1.20788 + 2.09212i
\(107\) 10.7559 1.03981 0.519905 0.854224i \(-0.325967\pi\)
0.519905 + 0.854224i \(0.325967\pi\)
\(108\) 0 0
\(109\) 6.01305 0.575946 0.287973 0.957639i \(-0.407019\pi\)
0.287973 + 0.957639i \(0.407019\pi\)
\(110\) 17.0591 + 29.5473i 1.62653 + 2.81723i
\(111\) 0 0
\(112\) −0.823383 + 1.42614i −0.0778023 + 0.134758i
\(113\) −5.43613 + 9.41565i −0.511388 + 0.885750i 0.488525 + 0.872550i \(0.337535\pi\)
−0.999913 + 0.0132002i \(0.995798\pi\)
\(114\) 0 0
\(115\) −12.7839 22.1424i −1.19211 2.06479i
\(116\) −16.4246 −1.52499
\(117\) 0 0
\(118\) 8.14978 0.750248
\(119\) 1.25246 + 2.16932i 0.114813 + 0.198862i
\(120\) 0 0
\(121\) −3.69475 + 6.39950i −0.335887 + 0.581773i
\(122\) −1.85482 + 3.21263i −0.167927 + 0.290858i
\(123\) 0 0
\(124\) −3.50080 6.06356i −0.314381 0.544523i
\(125\) 10.8704 0.972281
\(126\) 0 0
\(127\) 1.94126 0.172259 0.0861293 0.996284i \(-0.472550\pi\)
0.0861293 + 0.996284i \(0.472550\pi\)
\(128\) −6.91250 11.9728i −0.610984 1.05826i
\(129\) 0 0
\(130\) −3.97807 + 6.89022i −0.348900 + 0.604312i
\(131\) 2.12838 3.68646i 0.185957 0.322087i −0.757942 0.652322i \(-0.773795\pi\)
0.943899 + 0.330235i \(0.107128\pi\)
\(132\) 0 0
\(133\) 0.811018 + 1.40472i 0.0703242 + 0.121805i
\(134\) 10.8768 0.939610
\(135\) 0 0
\(136\) −4.42041 −0.379047
\(137\) −1.17422 2.03380i −0.100320 0.173760i 0.811496 0.584357i \(-0.198653\pi\)
−0.911817 + 0.410598i \(0.865320\pi\)
\(138\) 0 0
\(139\) −5.31461 + 9.20517i −0.450779 + 0.780773i −0.998435 0.0559314i \(-0.982187\pi\)
0.547655 + 0.836704i \(0.315521\pi\)
\(140\) 5.58017 9.66514i 0.471611 0.816854i
\(141\) 0 0
\(142\) −7.79885 13.5080i −0.654465 1.13357i
\(143\) −4.28830 −0.358606
\(144\) 0 0
\(145\) −20.6862 −1.71790
\(146\) −3.90859 6.76987i −0.323477 0.560278i
\(147\) 0 0
\(148\) −8.59366 + 14.8847i −0.706394 + 1.22351i
\(149\) 3.87302 6.70826i 0.317290 0.549562i −0.662632 0.748945i \(-0.730561\pi\)
0.979922 + 0.199383i \(0.0638939\pi\)
\(150\) 0 0
\(151\) −2.66826 4.62157i −0.217140 0.376098i 0.736792 0.676119i \(-0.236340\pi\)
−0.953932 + 0.300021i \(0.903006\pi\)
\(152\) −2.86239 −0.232171
\(153\) 0 0
\(154\) 10.2156 0.823200
\(155\) −4.40912 7.63682i −0.354149 0.613405i
\(156\) 0 0
\(157\) 1.49491 2.58926i 0.119307 0.206646i −0.800186 0.599752i \(-0.795266\pi\)
0.919493 + 0.393106i \(0.128599\pi\)
\(158\) 4.48850 7.77431i 0.357086 0.618491i
\(159\) 0 0
\(160\) −12.9410 22.4145i −1.02308 1.77202i
\(161\) −7.65548 −0.603336
\(162\) 0 0
\(163\) −7.48075 −0.585937 −0.292969 0.956122i \(-0.594643\pi\)
−0.292969 + 0.956122i \(0.594643\pi\)
\(164\) 15.1538 + 26.2472i 1.18332 + 2.04956i
\(165\) 0 0
\(166\) 16.1409 27.9568i 1.25277 2.16987i
\(167\) 7.01589 12.1519i 0.542906 0.940341i −0.455830 0.890067i \(-0.650657\pi\)
0.998735 0.0502735i \(-0.0160093\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) −18.4511 −1.41514
\(171\) 0 0
\(172\) −21.0608 −1.60587
\(173\) 8.45872 + 14.6509i 0.643104 + 1.11389i 0.984736 + 0.174055i \(0.0556872\pi\)
−0.341632 + 0.939834i \(0.610979\pi\)
\(174\) 0 0
\(175\) 4.32771 7.49582i 0.327144 0.566631i
\(176\) 3.26899 5.66205i 0.246409 0.426793i
\(177\) 0 0
\(178\) −6.64988 11.5179i −0.498430 0.863306i
\(179\) 17.5324 1.31043 0.655216 0.755441i \(-0.272577\pi\)
0.655216 + 0.755441i \(0.272577\pi\)
\(180\) 0 0
\(181\) −4.80757 −0.357344 −0.178672 0.983909i \(-0.557180\pi\)
−0.178672 + 0.983909i \(0.557180\pi\)
\(182\) 1.19111 + 2.06306i 0.0882907 + 0.152924i
\(183\) 0 0
\(184\) 6.75478 11.6996i 0.497969 0.862507i
\(185\) −10.8234 + 18.7467i −0.795752 + 1.37828i
\(186\) 0 0
\(187\) −4.97251 8.61264i −0.363626 0.629819i
\(188\) 5.68441 0.414579
\(189\) 0 0
\(190\) −11.9478 −0.866787
\(191\) −13.1907 22.8469i −0.954444 1.65315i −0.735634 0.677379i \(-0.763116\pi\)
−0.218810 0.975767i \(-0.570218\pi\)
\(192\) 0 0
\(193\) 7.34991 12.7304i 0.529058 0.916356i −0.470368 0.882471i \(-0.655879\pi\)
0.999426 0.0338850i \(-0.0107880\pi\)
\(194\) −0.150482 + 0.260643i −0.0108040 + 0.0187131i
\(195\) 0 0
\(196\) 8.35403 + 14.4696i 0.596717 + 1.03354i
\(197\) −6.81721 −0.485706 −0.242853 0.970063i \(-0.578083\pi\)
−0.242853 + 0.970063i \(0.578083\pi\)
\(198\) 0 0
\(199\) −12.5005 −0.886139 −0.443070 0.896487i \(-0.646111\pi\)
−0.443070 + 0.896487i \(0.646111\pi\)
\(200\) 7.63707 + 13.2278i 0.540023 + 0.935347i
\(201\) 0 0
\(202\) 12.7129 22.0194i 0.894475 1.54928i
\(203\) −3.09692 + 5.36402i −0.217361 + 0.376480i
\(204\) 0 0
\(205\) 19.0857 + 33.0574i 1.33300 + 2.30883i
\(206\) −23.9714 −1.67016
\(207\) 0 0
\(208\) 1.52461 0.105713
\(209\) −3.21990 5.57703i −0.222725 0.385771i
\(210\) 0 0
\(211\) 2.37149 4.10754i 0.163260 0.282775i −0.772776 0.634679i \(-0.781132\pi\)
0.936036 + 0.351904i \(0.114466\pi\)
\(212\) −16.1503 + 27.9731i −1.10921 + 1.92120i
\(213\) 0 0
\(214\) 11.8611 + 20.5439i 0.810805 + 1.40436i
\(215\) −26.5252 −1.80901
\(216\) 0 0
\(217\) −2.64035 −0.179238
\(218\) 6.63090 + 11.4850i 0.449101 + 0.777866i
\(219\) 0 0
\(220\) −22.1544 + 38.3725i −1.49365 + 2.58707i
\(221\) 1.15955 2.00840i 0.0780000 0.135100i
\(222\) 0 0
\(223\) −7.44457 12.8944i −0.498525 0.863471i 0.501473 0.865173i \(-0.332792\pi\)
−0.999999 + 0.00170202i \(0.999458\pi\)
\(224\) −7.74956 −0.517789
\(225\) 0 0
\(226\) −23.9788 −1.59505
\(227\) −0.727113 1.25940i −0.0482602 0.0835891i 0.840886 0.541212i \(-0.182034\pi\)
−0.889146 + 0.457623i \(0.848701\pi\)
\(228\) 0 0
\(229\) 5.51424 9.55095i 0.364391 0.631144i −0.624287 0.781195i \(-0.714610\pi\)
0.988678 + 0.150051i \(0.0479437\pi\)
\(230\) 28.1949 48.8351i 1.85912 3.22009i
\(231\) 0 0
\(232\) −5.46510 9.46583i −0.358801 0.621462i
\(233\) 26.5412 1.73877 0.869386 0.494134i \(-0.164515\pi\)
0.869386 + 0.494134i \(0.164515\pi\)
\(234\) 0 0
\(235\) 7.15931 0.467022
\(236\) 5.29198 + 9.16597i 0.344478 + 0.596654i
\(237\) 0 0
\(238\) −2.76230 + 4.78445i −0.179054 + 0.310130i
\(239\) −5.53531 + 9.58744i −0.358049 + 0.620160i −0.987635 0.156772i \(-0.949891\pi\)
0.629586 + 0.776931i \(0.283225\pi\)
\(240\) 0 0
\(241\) 5.96370 + 10.3294i 0.384156 + 0.665377i 0.991652 0.128946i \(-0.0411593\pi\)
−0.607496 + 0.794323i \(0.707826\pi\)
\(242\) −16.2976 −1.04765
\(243\) 0 0
\(244\) −4.81762 −0.308417
\(245\) 10.5216 + 18.2239i 0.672200 + 1.16428i
\(246\) 0 0
\(247\) 0.750857 1.30052i 0.0477759 0.0827502i
\(248\) 2.32970 4.03515i 0.147936 0.256232i
\(249\) 0 0
\(250\) 11.9874 + 20.7628i 0.758149 + 1.31315i
\(251\) 11.9196 0.752361 0.376181 0.926546i \(-0.377237\pi\)
0.376181 + 0.926546i \(0.377237\pi\)
\(252\) 0 0
\(253\) 30.3937 1.91084
\(254\) 2.14072 + 3.70784i 0.134321 + 0.232650i
\(255\) 0 0
\(256\) 2.47094 4.27979i 0.154434 0.267487i
\(257\) 7.22167 12.5083i 0.450476 0.780246i −0.547940 0.836518i \(-0.684588\pi\)
0.998416 + 0.0562712i \(0.0179211\pi\)
\(258\) 0 0
\(259\) 3.24072 + 5.61310i 0.201369 + 0.348781i
\(260\) −10.3325 −0.640793
\(261\) 0 0
\(262\) 9.38828 0.580010
\(263\) −4.16501 7.21401i −0.256826 0.444835i 0.708564 0.705646i \(-0.249343\pi\)
−0.965390 + 0.260811i \(0.916010\pi\)
\(264\) 0 0
\(265\) −20.3407 + 35.2311i −1.24952 + 2.16423i
\(266\) −1.78870 + 3.09812i −0.109672 + 0.189958i
\(267\) 0 0
\(268\) 7.06272 + 12.2330i 0.431424 + 0.747249i
\(269\) −19.7008 −1.20118 −0.600588 0.799559i \(-0.705067\pi\)
−0.600588 + 0.799559i \(0.705067\pi\)
\(270\) 0 0
\(271\) 2.28480 0.138792 0.0693958 0.997589i \(-0.477893\pi\)
0.0693958 + 0.997589i \(0.477893\pi\)
\(272\) 1.76786 + 3.06203i 0.107193 + 0.185663i
\(273\) 0 0
\(274\) 2.58974 4.48556i 0.156452 0.270983i
\(275\) −17.1819 + 29.7598i −1.03610 + 1.79459i
\(276\) 0 0
\(277\) 8.58154 + 14.8637i 0.515615 + 0.893071i 0.999836 + 0.0181250i \(0.00576968\pi\)
−0.484221 + 0.874946i \(0.660897\pi\)
\(278\) −23.4428 −1.40600
\(279\) 0 0
\(280\) 7.42695 0.443845
\(281\) 8.98863 + 15.5688i 0.536217 + 0.928755i 0.999103 + 0.0423371i \(0.0134803\pi\)
−0.462887 + 0.886417i \(0.653186\pi\)
\(282\) 0 0
\(283\) 4.57565 7.92525i 0.271994 0.471107i −0.697378 0.716703i \(-0.745650\pi\)
0.969372 + 0.245596i \(0.0789836\pi\)
\(284\) 10.1282 17.5426i 0.600998 1.04096i
\(285\) 0 0
\(286\) −4.72893 8.19074i −0.279627 0.484329i
\(287\) 11.4292 0.674645
\(288\) 0 0
\(289\) −11.6217 −0.683632
\(290\) −22.8117 39.5111i −1.33955 2.32017i
\(291\) 0 0
\(292\) 5.07600 8.79189i 0.297050 0.514506i
\(293\) −1.80863 + 3.13263i −0.105661 + 0.183010i −0.914008 0.405696i \(-0.867029\pi\)
0.808347 + 0.588706i \(0.200363\pi\)
\(294\) 0 0
\(295\) 6.66505 + 11.5442i 0.388054 + 0.672129i
\(296\) −11.4378 −0.664806
\(297\) 0 0
\(298\) 17.0839 0.989643
\(299\) 3.54380 + 6.13804i 0.204943 + 0.354972i
\(300\) 0 0
\(301\) −3.97107 + 6.87810i −0.228889 + 0.396447i
\(302\) 5.88486 10.1929i 0.338636 0.586534i
\(303\) 0 0
\(304\) 1.14476 + 1.98279i 0.0656566 + 0.113721i
\(305\) −6.06762 −0.347431
\(306\) 0 0
\(307\) −29.7837 −1.69985 −0.849923 0.526907i \(-0.823352\pi\)
−0.849923 + 0.526907i \(0.823352\pi\)
\(308\) 6.63343 + 11.4894i 0.377974 + 0.654671i
\(309\) 0 0
\(310\) 9.72433 16.8430i 0.552305 0.956620i
\(311\) −8.46917 + 14.6690i −0.480243 + 0.831805i −0.999743 0.0226654i \(-0.992785\pi\)
0.519500 + 0.854470i \(0.326118\pi\)
\(312\) 0 0
\(313\) −14.1018 24.4251i −0.797084 1.38059i −0.921508 0.388360i \(-0.873042\pi\)
0.124424 0.992229i \(-0.460292\pi\)
\(314\) 6.59406 0.372124
\(315\) 0 0
\(316\) 11.6583 0.655828
\(317\) 16.9186 + 29.3038i 0.950241 + 1.64587i 0.744901 + 0.667175i \(0.232497\pi\)
0.205341 + 0.978691i \(0.434170\pi\)
\(318\) 0 0
\(319\) 12.2954 21.2962i 0.688408 1.19236i
\(320\) 23.0416 39.9091i 1.28806 2.23099i
\(321\) 0 0
\(322\) −8.44209 14.6221i −0.470459 0.814859i
\(323\) 3.48263 0.193779
\(324\) 0 0
\(325\) −8.01337 −0.444502
\(326\) −8.24940 14.2884i −0.456892 0.791360i
\(327\) 0 0
\(328\) −10.0845 + 17.4669i −0.556824 + 0.964448i
\(329\) 1.07181 1.85644i 0.0590911 0.102349i
\(330\) 0 0
\(331\) −5.96014 10.3233i −0.327599 0.567418i 0.654436 0.756118i \(-0.272906\pi\)
−0.982035 + 0.188699i \(0.939573\pi\)
\(332\) 41.9236 2.30086
\(333\) 0 0
\(334\) 30.9471 1.69335
\(335\) 8.89523 + 15.4070i 0.485998 + 0.841774i
\(336\) 0 0
\(337\) 4.59197 7.95352i 0.250141 0.433256i −0.713424 0.700733i \(-0.752857\pi\)
0.963564 + 0.267477i \(0.0861899\pi\)
\(338\) 1.10275 1.91002i 0.0599818 0.103891i
\(339\) 0 0
\(340\) −11.9811 20.7518i −0.649764 1.12542i
\(341\) 10.4827 0.567669
\(342\) 0 0
\(343\) 13.8616 0.748455
\(344\) −7.00772 12.1377i −0.377831 0.654422i
\(345\) 0 0
\(346\) −18.6557 + 32.3127i −1.00294 + 1.73714i
\(347\) −3.38728 + 5.86693i −0.181838 + 0.314953i −0.942507 0.334187i \(-0.891538\pi\)
0.760668 + 0.649141i \(0.224871\pi\)
\(348\) 0 0
\(349\) 17.4803 + 30.2768i 0.935700 + 1.62068i 0.773381 + 0.633942i \(0.218564\pi\)
0.162319 + 0.986738i \(0.448103\pi\)
\(350\) 19.0896 1.02038
\(351\) 0 0
\(352\) 30.7672 1.63990
\(353\) −8.80119 15.2441i −0.468440 0.811362i 0.530910 0.847429i \(-0.321850\pi\)
−0.999349 + 0.0360669i \(0.988517\pi\)
\(354\) 0 0
\(355\) 12.7561 22.0942i 0.677023 1.17264i
\(356\) 8.63607 14.9581i 0.457711 0.792778i
\(357\) 0 0
\(358\) 19.3339 + 33.4872i 1.02183 + 1.76986i
\(359\) 0.923928 0.0487631 0.0243815 0.999703i \(-0.492238\pi\)
0.0243815 + 0.999703i \(0.492238\pi\)
\(360\) 0 0
\(361\) −16.7449 −0.881308
\(362\) −5.30156 9.18256i −0.278644 0.482625i
\(363\) 0 0
\(364\) −1.54687 + 2.67925i −0.0810778 + 0.140431i
\(365\) 6.39303 11.0731i 0.334627 0.579590i
\(366\) 0 0
\(367\) −12.4238 21.5187i −0.648518 1.12327i −0.983477 0.181034i \(-0.942056\pi\)
0.334959 0.942233i \(-0.391278\pi\)
\(368\) −10.8058 −0.563292
\(369\) 0 0
\(370\) −47.7420 −2.48199
\(371\) 6.09037 + 10.5488i 0.316196 + 0.547668i
\(372\) 0 0
\(373\) −2.79864 + 4.84739i −0.144908 + 0.250988i −0.929339 0.369228i \(-0.879622\pi\)
0.784431 + 0.620217i \(0.212955\pi\)
\(374\) 10.9669 18.9952i 0.567084 0.982218i
\(375\) 0 0
\(376\) 1.89142 + 3.27604i 0.0975426 + 0.168949i
\(377\) 5.73438 0.295335
\(378\) 0 0
\(379\) 7.69687 0.395361 0.197681 0.980266i \(-0.436659\pi\)
0.197681 + 0.980266i \(0.436659\pi\)
\(380\) −7.75821 13.4376i −0.397988 0.689335i
\(381\) 0 0
\(382\) 29.0921 50.3890i 1.48848 2.57812i
\(383\) 10.7668 18.6487i 0.550159 0.952903i −0.448104 0.893982i \(-0.647900\pi\)
0.998263 0.0589217i \(-0.0187662\pi\)
\(384\) 0 0
\(385\) 8.35455 + 14.4705i 0.425787 + 0.737486i
\(386\) 32.4205 1.65016
\(387\) 0 0
\(388\) −0.390856 −0.0198427
\(389\) 3.06018 + 5.30039i 0.155157 + 0.268740i 0.933116 0.359575i \(-0.117078\pi\)
−0.777959 + 0.628315i \(0.783745\pi\)
\(390\) 0 0
\(391\) −8.21844 + 14.2348i −0.415625 + 0.719883i
\(392\) −5.55941 + 9.62918i −0.280793 + 0.486347i
\(393\) 0 0
\(394\) −7.51769 13.0210i −0.378736 0.655989i
\(395\) 14.6831 0.738789
\(396\) 0 0
\(397\) −22.0318 −1.10574 −0.552871 0.833267i \(-0.686468\pi\)
−0.552871 + 0.833267i \(0.686468\pi\)
\(398\) −13.7850 23.8763i −0.690979 1.19681i
\(399\) 0 0
\(400\) 6.10862 10.5804i 0.305431 0.529022i
\(401\) −3.50825 + 6.07647i −0.175194 + 0.303445i −0.940228 0.340545i \(-0.889389\pi\)
0.765035 + 0.643989i \(0.222722\pi\)
\(402\) 0 0
\(403\) 1.22224 + 2.11699i 0.0608842 + 0.105455i
\(404\) 33.0199 1.64280
\(405\) 0 0
\(406\) −13.6605 −0.677960
\(407\) −12.8663 22.2851i −0.637759 1.10463i
\(408\) 0 0
\(409\) −18.2267 + 31.5695i −0.901251 + 1.56101i −0.0753798 + 0.997155i \(0.524017\pi\)
−0.825872 + 0.563858i \(0.809316\pi\)
\(410\) −42.0935 + 72.9081i −2.07885 + 3.60068i
\(411\) 0 0
\(412\) −15.5656 26.9603i −0.766860 1.32824i
\(413\) 3.99128 0.196398
\(414\) 0 0
\(415\) 52.8012 2.59191
\(416\) 3.58735 + 6.21347i 0.175884 + 0.304640i
\(417\) 0 0
\(418\) 7.10149 12.3001i 0.347345 0.601620i
\(419\) −2.74594 + 4.75612i −0.134148 + 0.232351i −0.925272 0.379305i \(-0.876163\pi\)
0.791124 + 0.611656i \(0.209496\pi\)
\(420\) 0 0
\(421\) 3.54583 + 6.14156i 0.172813 + 0.299321i 0.939402 0.342817i \(-0.111381\pi\)
−0.766589 + 0.642138i \(0.778048\pi\)
\(422\) 10.4607 0.509217
\(423\) 0 0
\(424\) −21.4952 −1.04390
\(425\) −9.29192 16.0941i −0.450725 0.780678i
\(426\) 0 0
\(427\) −0.908378 + 1.57336i −0.0439595 + 0.0761401i
\(428\) −15.4037 + 26.6800i −0.744566 + 1.28963i
\(429\) 0 0
\(430\) −29.2507 50.6638i −1.41060 2.44322i
\(431\) −6.55791 −0.315883 −0.157942 0.987448i \(-0.550486\pi\)
−0.157942 + 0.987448i \(0.550486\pi\)
\(432\) 0 0
\(433\) 12.0920 0.581104 0.290552 0.956859i \(-0.406161\pi\)
0.290552 + 0.956859i \(0.406161\pi\)
\(434\) −2.91164 5.04312i −0.139763 0.242077i
\(435\) 0 0
\(436\) −8.61141 + 14.9154i −0.412412 + 0.714318i
\(437\) −5.32177 + 9.21757i −0.254575 + 0.440936i
\(438\) 0 0
\(439\) 11.8761 + 20.5699i 0.566813 + 0.981750i 0.996878 + 0.0789517i \(0.0251573\pi\)
−0.430065 + 0.902798i \(0.641509\pi\)
\(440\) −29.4864 −1.40571
\(441\) 0 0
\(442\) 5.11479 0.243286
\(443\) 7.86463 + 13.6219i 0.373660 + 0.647198i 0.990125 0.140184i \(-0.0447694\pi\)
−0.616466 + 0.787382i \(0.711436\pi\)
\(444\) 0 0
\(445\) 10.8768 18.8392i 0.515610 0.893063i
\(446\) 16.4190 28.4386i 0.777463 1.34661i
\(447\) 0 0
\(448\) −6.89907 11.9495i −0.325950 0.564562i
\(449\) −17.3369 −0.818179 −0.409089 0.912494i \(-0.634154\pi\)
−0.409089 + 0.912494i \(0.634154\pi\)
\(450\) 0 0
\(451\) −45.3762 −2.13668
\(452\) −15.5704 26.9687i −0.732369 1.26850i
\(453\) 0 0
\(454\) 1.60365 2.77760i 0.0752630 0.130359i
\(455\) −1.94822 + 3.37442i −0.0913340 + 0.158195i
\(456\) 0 0
\(457\) 2.99601 + 5.18925i 0.140148 + 0.242743i 0.927552 0.373694i \(-0.121909\pi\)
−0.787404 + 0.616437i \(0.788576\pi\)
\(458\) 24.3234 1.13656
\(459\) 0 0
\(460\) 73.2324 3.41448
\(461\) −4.99213 8.64662i −0.232507 0.402713i 0.726039 0.687654i \(-0.241359\pi\)
−0.958545 + 0.284941i \(0.908026\pi\)
\(462\) 0 0
\(463\) 2.56267 4.43868i 0.119098 0.206283i −0.800313 0.599583i \(-0.795333\pi\)
0.919410 + 0.393300i \(0.128667\pi\)
\(464\) −4.37134 + 7.57138i −0.202934 + 0.351492i
\(465\) 0 0
\(466\) 29.2683 + 50.6942i 1.35583 + 2.34837i
\(467\) −7.49976 −0.347047 −0.173524 0.984830i \(-0.555515\pi\)
−0.173524 + 0.984830i \(0.555515\pi\)
\(468\) 0 0
\(469\) 5.32679 0.245968
\(470\) 7.89494 + 13.6744i 0.364166 + 0.630755i
\(471\) 0 0
\(472\) −3.52168 + 6.09974i −0.162099 + 0.280763i
\(473\) 15.7659 27.3074i 0.724918 1.25559i
\(474\) 0 0
\(475\) −6.01689 10.4216i −0.276074 0.478174i
\(476\) −7.17469 −0.328852
\(477\) 0 0
\(478\) −24.4163 −1.11677
\(479\) 13.3053 + 23.0455i 0.607936 + 1.05298i 0.991580 + 0.129495i \(0.0413355\pi\)
−0.383644 + 0.923481i \(0.625331\pi\)
\(480\) 0 0
\(481\) 3.00033 5.19672i 0.136803 0.236950i
\(482\) −13.1530 + 22.7816i −0.599100 + 1.03767i
\(483\) 0 0
\(484\) −10.5827 18.3297i −0.481030 0.833168i
\(485\) −0.492269 −0.0223528
\(486\) 0 0
\(487\) −37.2926 −1.68989 −0.844945 0.534853i \(-0.820367\pi\)
−0.844945 + 0.534853i \(0.820367\pi\)
\(488\) −1.60301 2.77649i −0.0725647 0.125686i
\(489\) 0 0
\(490\) −23.2054 + 40.1929i −1.04831 + 1.81573i
\(491\) −4.82831 + 8.36288i −0.217899 + 0.377411i −0.954165 0.299280i \(-0.903254\pi\)
0.736267 + 0.676691i \(0.236587\pi\)
\(492\) 0 0
\(493\) 6.64931 + 11.5169i 0.299470 + 0.518697i
\(494\) 3.31203 0.149015
\(495\) 0 0
\(496\) −3.72688 −0.167342
\(497\) −3.81941 6.61541i −0.171324 0.296742i
\(498\) 0 0
\(499\) −18.2175 + 31.5536i −0.815526 + 1.41253i 0.0934229 + 0.995627i \(0.470219\pi\)
−0.908949 + 0.416907i \(0.863114\pi\)
\(500\) −15.5678 + 26.9642i −0.696212 + 1.20587i
\(501\) 0 0
\(502\) 13.1444 + 22.7668i 0.586663 + 1.01613i
\(503\) −14.4772 −0.645504 −0.322752 0.946484i \(-0.604608\pi\)
−0.322752 + 0.946484i \(0.604608\pi\)
\(504\) 0 0
\(505\) 41.5874 1.85061
\(506\) 33.5167 + 58.0527i 1.49000 + 2.58076i
\(507\) 0 0
\(508\) −2.78011 + 4.81529i −0.123347 + 0.213644i
\(509\) 9.37473 16.2375i 0.415528 0.719715i −0.579956 0.814648i \(-0.696930\pi\)
0.995484 + 0.0949327i \(0.0302636\pi\)
\(510\) 0 0
\(511\) −1.91419 3.31548i −0.0846789 0.146668i
\(512\) −16.7507 −0.740282
\(513\) 0 0
\(514\) 31.8548 1.40506
\(515\) −19.6042 33.9556i −0.863866 1.49626i
\(516\) 0 0
\(517\) −4.25531 + 7.37042i −0.187148 + 0.324150i
\(518\) −7.14742 + 12.3797i −0.314040 + 0.543933i
\(519\) 0 0
\(520\) −3.43801 5.95480i −0.150767 0.261135i
\(521\) −38.6095 −1.69151 −0.845756 0.533571i \(-0.820850\pi\)
−0.845756 + 0.533571i \(0.820850\pi\)
\(522\) 0 0
\(523\) 9.50729 0.415725 0.207862 0.978158i \(-0.433349\pi\)
0.207862 + 0.978158i \(0.433349\pi\)
\(524\) 6.09618 + 10.5589i 0.266313 + 0.461267i
\(525\) 0 0
\(526\) 9.18594 15.9105i 0.400526 0.693731i
\(527\) −2.83451 + 4.90951i −0.123473 + 0.213862i
\(528\) 0 0
\(529\) −13.6170 23.5853i −0.592044 1.02545i
\(530\) −89.7228 −3.89731
\(531\) 0 0
\(532\) −4.64590 −0.201425
\(533\) −5.29070 9.16376i −0.229166 0.396926i
\(534\) 0 0
\(535\) −19.4004 + 33.6025i −0.838752 + 1.45276i
\(536\) −4.70007 + 8.14076i −0.203012 + 0.351627i
\(537\) 0 0
\(538\) −21.7250 37.6289i −0.936633 1.62230i
\(539\) −25.0151 −1.07748
\(540\) 0 0
\(541\) −0.834277 −0.0358684 −0.0179342 0.999839i \(-0.505709\pi\)
−0.0179342 + 0.999839i \(0.505709\pi\)
\(542\) 2.51956 + 4.36401i 0.108225 + 0.187450i
\(543\) 0 0
\(544\) −8.31944 + 14.4097i −0.356693 + 0.617810i
\(545\) −10.8457 + 18.7854i −0.464581 + 0.804678i
\(546\) 0 0
\(547\) 19.4741 + 33.7301i 0.832653 + 1.44220i 0.895927 + 0.444200i \(0.146512\pi\)
−0.0632748 + 0.997996i \(0.520154\pi\)
\(548\) 6.72648 0.287341
\(549\) 0 0
\(550\) −75.7892 −3.23166
\(551\) 4.30569 + 7.45768i 0.183429 + 0.317708i
\(552\) 0 0
\(553\) 2.19820 3.80740i 0.0934770 0.161907i
\(554\) −18.9266 + 32.7818i −0.804114 + 1.39277i
\(555\) 0 0
\(556\) −15.2223 26.3658i −0.645570 1.11816i
\(557\) 33.4957 1.41926 0.709630 0.704575i \(-0.248862\pi\)
0.709630 + 0.704575i \(0.248862\pi\)
\(558\) 0 0
\(559\) 7.35300 0.310999
\(560\) −2.97027 5.14467i −0.125517 0.217402i
\(561\) 0 0
\(562\) −19.8244 + 34.3369i −0.836244 + 1.44842i
\(563\) 8.96646 15.5304i 0.377891 0.654527i −0.612864 0.790189i \(-0.709983\pi\)
0.990755 + 0.135661i \(0.0433159\pi\)
\(564\) 0 0
\(565\) −19.6103 33.9661i −0.825012 1.42896i
\(566\) 20.1832 0.848363
\(567\) 0 0
\(568\) 13.4802 0.565615
\(569\) 14.2900 + 24.7510i 0.599069 + 1.03762i 0.992959 + 0.118460i \(0.0377957\pi\)
−0.393890 + 0.919157i \(0.628871\pi\)
\(570\) 0 0
\(571\) 8.40266 14.5538i 0.351640 0.609059i −0.634897 0.772597i \(-0.718957\pi\)
0.986537 + 0.163538i \(0.0522906\pi\)
\(572\) 6.14136 10.6371i 0.256783 0.444761i
\(573\) 0 0
\(574\) 12.6036 + 21.8300i 0.526063 + 0.911168i
\(575\) 56.7955 2.36854
\(576\) 0 0
\(577\) −5.34187 −0.222385 −0.111193 0.993799i \(-0.535467\pi\)
−0.111193 + 0.993799i \(0.535467\pi\)
\(578\) −12.8159 22.1978i −0.533071 0.923306i
\(579\) 0 0
\(580\) 29.6251 51.3122i 1.23012 2.13063i
\(581\) 7.90483 13.6916i 0.327947 0.568022i
\(582\) 0 0
\(583\) −24.1800 41.8809i −1.00143 1.73453i
\(584\) 6.75591 0.279562
\(585\) 0 0
\(586\) −7.97785 −0.329562
\(587\) −1.14969 1.99131i −0.0474526 0.0821903i 0.841324 0.540532i \(-0.181777\pi\)
−0.888776 + 0.458342i \(0.848444\pi\)
\(588\) 0 0
\(589\) −1.83546 + 3.17911i −0.0756287 + 0.130993i
\(590\) −14.6998 + 25.4608i −0.605180 + 1.04820i
\(591\) 0 0
\(592\) 4.57432 + 7.92296i 0.188004 + 0.325632i
\(593\) 5.45698 0.224091 0.112046 0.993703i \(-0.464260\pi\)
0.112046 + 0.993703i \(0.464260\pi\)
\(594\) 0 0
\(595\) −9.03626 −0.370451
\(596\) 11.0932 + 19.2141i 0.454397 + 0.787039i
\(597\) 0 0
\(598\) −7.81585 + 13.5375i −0.319614 + 0.553588i
\(599\) −11.6453 + 20.1703i −0.475815 + 0.824136i −0.999616 0.0277047i \(-0.991180\pi\)
0.523801 + 0.851841i \(0.324514\pi\)
\(600\) 0 0
\(601\) −11.5387 19.9857i −0.470675 0.815232i 0.528763 0.848770i \(-0.322656\pi\)
−0.999437 + 0.0335372i \(0.989323\pi\)
\(602\) −17.5164 −0.713916
\(603\) 0 0
\(604\) 15.2851 0.621941
\(605\) −13.3285 23.0856i −0.541879 0.938562i
\(606\) 0 0
\(607\) 16.9477 29.3542i 0.687885 1.19145i −0.284636 0.958636i \(-0.591873\pi\)
0.972521 0.232816i \(-0.0747940\pi\)
\(608\) −5.38717 + 9.33085i −0.218478 + 0.378416i
\(609\) 0 0
\(610\) −6.69107 11.5893i −0.270914 0.469236i
\(611\) −1.98462 −0.0802889
\(612\) 0 0
\(613\) 15.1947 0.613708 0.306854 0.951757i \(-0.400724\pi\)
0.306854 + 0.951757i \(0.400724\pi\)
\(614\) −32.8440 56.8875i −1.32548 2.29579i
\(615\) 0 0
\(616\) −4.41439 + 7.64594i −0.177861 + 0.308064i
\(617\) −8.53434 + 14.7819i −0.343580 + 0.595097i −0.985095 0.172013i \(-0.944973\pi\)
0.641515 + 0.767110i \(0.278306\pi\)
\(618\) 0 0
\(619\) 19.3273 + 33.4759i 0.776830 + 1.34551i 0.933760 + 0.357899i \(0.116507\pi\)
−0.156930 + 0.987610i \(0.550160\pi\)
\(620\) 25.2576 1.01437
\(621\) 0 0
\(622\) −37.3576 −1.49790
\(623\) −3.25672 5.64080i −0.130478 0.225994i
\(624\) 0 0
\(625\) 0.426392 0.738532i 0.0170557 0.0295413i
\(626\) 31.1017 53.8697i 1.24307 2.15306i
\(627\) 0 0
\(628\) 4.28179 + 7.41627i 0.170862 + 0.295941i
\(629\) 13.9162 0.554873
\(630\) 0 0
\(631\) 23.3989 0.931494 0.465747 0.884918i \(-0.345786\pi\)
0.465747 + 0.884918i \(0.345786\pi\)
\(632\) 3.87914 + 6.71888i 0.154304 + 0.267263i
\(633\) 0 0
\(634\) −37.3139 + 64.6296i −1.48193 + 2.56677i
\(635\) −3.50145 + 6.06468i −0.138951 + 0.240670i
\(636\) 0 0
\(637\) −2.91667 5.05181i −0.115563 0.200160i
\(638\) 54.2349 2.14718
\(639\) 0 0
\(640\) 49.8723 1.97138
\(641\) 15.6824 + 27.1628i 0.619419 + 1.07286i 0.989592 + 0.143902i \(0.0459650\pi\)
−0.370173 + 0.928963i \(0.620702\pi\)
\(642\) 0 0
\(643\) 15.0268 26.0272i 0.592599 1.02641i −0.401282 0.915954i \(-0.631435\pi\)
0.993881 0.110457i \(-0.0352313\pi\)
\(644\) 10.9636 18.9895i 0.432025 0.748289i
\(645\) 0 0
\(646\) 3.84048 + 6.65190i 0.151102 + 0.261716i
\(647\) −23.3783 −0.919096 −0.459548 0.888153i \(-0.651989\pi\)
−0.459548 + 0.888153i \(0.651989\pi\)
\(648\) 0 0
\(649\) −15.8461 −0.622015
\(650\) −8.83675 15.3057i −0.346606 0.600339i
\(651\) 0 0
\(652\) 10.7133 18.5560i 0.419566 0.726710i
\(653\) 17.6818 30.6257i 0.691941 1.19848i −0.279260 0.960215i \(-0.590089\pi\)
0.971201 0.238261i \(-0.0765774\pi\)
\(654\) 0 0
\(655\) 7.67791 + 13.2985i 0.300001 + 0.519617i
\(656\) 16.1325 0.629868
\(657\) 0 0
\(658\) 4.72778 0.184308
\(659\) −10.7773 18.6668i −0.419823 0.727155i 0.576098 0.817380i \(-0.304575\pi\)
−0.995921 + 0.0902257i \(0.971241\pi\)
\(660\) 0 0
\(661\) 25.0618 43.4083i 0.974790 1.68839i 0.294164 0.955755i \(-0.404959\pi\)
0.680626 0.732631i \(-0.261708\pi\)
\(662\) 13.1451 22.7680i 0.510899 0.884904i
\(663\) 0 0
\(664\) 13.9496 + 24.1614i 0.541348 + 0.937643i
\(665\) −5.85134 −0.226905
\(666\) 0 0
\(667\) −40.6429 −1.57370
\(668\) 20.0952 + 34.8059i 0.777506 + 1.34668i
\(669\) 0 0
\(670\) −19.6185 + 33.9802i −0.757927 + 1.31277i
\(671\) 3.60644 6.24653i 0.139225 0.241145i
\(672\) 0 0
\(673\) −21.5733 37.3661i −0.831591 1.44036i −0.896776 0.442485i \(-0.854097\pi\)
0.0651846 0.997873i \(-0.479236\pi\)
\(674\) 20.2552 0.780201
\(675\) 0 0
\(676\) 2.86424 0.110163
\(677\) −5.49875 9.52411i −0.211334 0.366041i 0.740798 0.671728i \(-0.234447\pi\)
−0.952132 + 0.305686i \(0.901114\pi\)
\(678\) 0 0
\(679\) −0.0736972 + 0.127647i −0.00282824 + 0.00489866i
\(680\) 7.97310 13.8098i 0.305755 0.529582i
\(681\) 0 0
\(682\) 11.5598 + 20.0221i 0.442647 + 0.766687i
\(683\) 40.6682 1.55613 0.778063 0.628186i \(-0.216202\pi\)
0.778063 + 0.628186i \(0.216202\pi\)
\(684\) 0 0
\(685\) 8.47176 0.323689
\(686\) 15.2859 + 26.4759i 0.583618 + 1.01086i
\(687\) 0 0
\(688\) −5.60522 + 9.70853i −0.213697 + 0.370134i
\(689\) 5.63859 9.76632i 0.214813 0.372067i
\(690\) 0 0
\(691\) 8.12733 + 14.0770i 0.309178 + 0.535513i 0.978183 0.207746i \(-0.0666127\pi\)
−0.669005 + 0.743258i \(0.733279\pi\)
\(692\) −48.4556 −1.84201
\(693\) 0 0
\(694\) −14.9413 −0.567164
\(695\) −19.1719 33.2068i −0.727233 1.25961i
\(696\) 0 0
\(697\) 12.2697 21.2517i 0.464748 0.804967i
\(698\) −38.5529 + 66.7756i −1.45925 + 2.52749i
\(699\) 0 0
\(700\) 12.3956 + 21.4698i 0.468510 + 0.811483i
\(701\) −21.6993 −0.819571 −0.409786 0.912182i \(-0.634396\pi\)
−0.409786 + 0.912182i \(0.634396\pi\)
\(702\) 0 0
\(703\) 9.01126 0.339866
\(704\) 27.3906 + 47.4420i 1.03232 + 1.78804i
\(705\) 0 0
\(706\) 19.4110 33.6209i 0.730544 1.26534i
\(707\) 6.22601 10.7838i 0.234153 0.405565i
\(708\) 0 0
\(709\) −7.00438 12.1319i −0.263055 0.455625i 0.703997 0.710203i \(-0.251397\pi\)
−0.967052 + 0.254578i \(0.918063\pi\)
\(710\) 56.2672 2.11167
\(711\) 0 0
\(712\) 11.4942 0.430763
\(713\) −8.66276 15.0043i −0.324423 0.561917i
\(714\) 0 0
\(715\) 7.73481 13.3971i 0.289266 0.501023i
\(716\) −25.1085 + 43.4892i −0.938348 + 1.62527i
\(717\) 0 0
\(718\) 1.01886 + 1.76472i 0.0380236 + 0.0658589i
\(719\) −9.73722 −0.363137 −0.181569 0.983378i \(-0.558117\pi\)
−0.181569 + 0.983378i \(0.558117\pi\)
\(720\) 0 0
\(721\) −11.7397 −0.437211
\(722\) −18.4654 31.9830i −0.687211 1.19029i
\(723\) 0 0
\(724\) 6.88502 11.9252i 0.255880 0.443197i
\(725\) 22.9758 39.7953i 0.853301 1.47796i
\(726\) 0 0
\(727\) −5.44289 9.42737i −0.201866 0.349642i 0.747264 0.664527i \(-0.231367\pi\)
−0.949130 + 0.314886i \(0.898034\pi\)
\(728\) −2.05881 −0.0763044
\(729\) 0 0
\(730\) 28.1997 1.04372
\(731\) 8.52619 + 14.7678i 0.315353 + 0.546207i
\(732\) 0 0
\(733\) −3.73133 + 6.46285i −0.137820 + 0.238711i −0.926671 0.375873i \(-0.877343\pi\)
0.788851 + 0.614584i \(0.210676\pi\)
\(734\) 27.4008 47.4595i 1.01138 1.75176i
\(735\) 0 0
\(736\) −25.4257 44.0385i −0.937203 1.62328i
\(737\) −21.1484 −0.779011
\(738\) 0 0
\(739\) −28.4029 −1.04482 −0.522408 0.852695i \(-0.674966\pi\)
−0.522408 + 0.852695i \(0.674966\pi\)
\(740\) −31.0008 53.6950i −1.13961 1.97387i
\(741\) 0 0
\(742\) −13.4323 + 23.2655i −0.493116 + 0.854103i
\(743\) −0.712939 + 1.23485i −0.0261552 + 0.0453021i −0.878807 0.477178i \(-0.841660\pi\)
0.852652 + 0.522480i \(0.174993\pi\)
\(744\) 0 0
\(745\) 13.9715 + 24.1994i 0.511877 + 0.886598i
\(746\) −12.3448 −0.451976
\(747\) 0 0
\(748\) 28.4849 1.04151
\(749\) 5.80884 + 10.0612i 0.212250 + 0.367628i
\(750\) 0 0
\(751\) 14.6709 25.4107i 0.535348 0.927250i −0.463799 0.885941i \(-0.653514\pi\)
0.999146 0.0413090i \(-0.0131528\pi\)
\(752\) 1.51288 2.62039i 0.0551691 0.0955556i
\(753\) 0 0
\(754\) 6.32359 + 10.9528i 0.230292 + 0.398877i
\(755\) 19.2510 0.700616
\(756\) 0 0
\(757\) 15.3490 0.557868 0.278934 0.960310i \(-0.410019\pi\)
0.278934 + 0.960310i \(0.410019\pi\)
\(758\) 8.48773 + 14.7012i 0.308288 + 0.533971i
\(759\) 0 0
\(760\) 5.16290 8.94241i 0.187278 0.324375i
\(761\) −7.47611 + 12.9490i −0.271009 + 0.469401i −0.969120 0.246588i \(-0.920691\pi\)
0.698112 + 0.715989i \(0.254024\pi\)
\(762\) 0 0
\(763\) 3.24742 + 5.62469i 0.117564 + 0.203628i
\(764\) 75.5626 2.73376
\(765\) 0 0
\(766\) 47.4925 1.71597
\(767\) −1.84760 3.20014i −0.0667131 0.115550i
\(768\) 0 0
\(769\) −1.04194 + 1.80469i −0.0375733 + 0.0650789i −0.884201 0.467107i \(-0.845296\pi\)
0.846627 + 0.532186i \(0.178629\pi\)
\(770\) −18.4260 + 31.9147i −0.664026 + 1.15013i
\(771\) 0 0
\(772\) 21.0519 + 36.4630i 0.757675 + 1.31233i
\(773\) 5.99812 0.215737 0.107869 0.994165i \(-0.465597\pi\)
0.107869 + 0.994165i \(0.465597\pi\)
\(774\) 0 0
\(775\) 19.5886 0.703642
\(776\) −0.130053 0.225258i −0.00466862 0.00808629i
\(777\) 0 0
\(778\) −6.74923 + 11.6900i −0.241972 + 0.419107i
\(779\) 7.94511 13.7613i 0.284663 0.493051i
\(780\) 0 0
\(781\) 15.1638 + 26.2645i 0.542603 + 0.939816i
\(782\) −36.2516 −1.29635
\(783\) 0 0
\(784\) 8.89355 0.317627
\(785\) 5.39275 + 9.34052i 0.192476 + 0.333377i
\(786\) 0 0
\(787\) 8.69989 15.0687i 0.310118 0.537139i −0.668270 0.743919i \(-0.732965\pi\)
0.978388 + 0.206779i \(0.0662982\pi\)
\(788\) 9.76306 16.9101i 0.347795 0.602398i
\(789\) 0 0
\(790\) 16.1918 + 28.0451i 0.576080 + 0.997800i
\(791\) −11.7434 −0.417547
\(792\) 0 0
\(793\) 1.68199 0.0597292
\(794\) −24.2956 42.0811i −0.862217 1.49340i
\(795\) 0 0
\(796\) 17.9023 31.0076i 0.634529 1.09904i
\(797\) −1.97250 + 3.41647i −0.0698696 + 0.121018i −0.898844 0.438269i \(-0.855592\pi\)
0.828974 + 0.559287i \(0.188925\pi\)
\(798\) 0 0
\(799\) −2.30127 3.98591i −0.0814130 0.141011i
\(800\) 57.4935 2.03270
\(801\) 0 0
\(802\) −15.4749 −0.546438
\(803\) 7.59971 + 13.1631i 0.268188 + 0.464515i
\(804\) 0 0
\(805\) 13.8082 23.9165i 0.486675 0.842946i
\(806\) −2.69566 + 4.66902i −0.0949505 + 0.164459i
\(807\) 0 0
\(808\) 10.9870 + 19.0300i 0.386521 + 0.669474i
\(809\) −37.3431 −1.31291 −0.656457 0.754364i \(-0.727946\pi\)
−0.656457 + 0.754364i \(0.727946\pi\)
\(810\) 0 0
\(811\) −27.1179 −0.952240 −0.476120 0.879380i \(-0.657957\pi\)
−0.476120 + 0.879380i \(0.657957\pi\)
\(812\) −8.87031 15.3638i −0.311287 0.539165i
\(813\) 0 0
\(814\) 28.3767 49.1498i 0.994601 1.72270i
\(815\) 13.4930 23.3706i 0.472641 0.818638i
\(816\) 0 0
\(817\) 5.52105 + 9.56274i 0.193157 + 0.334558i
\(818\) −80.3980 −2.81105
\(819\) 0 0
\(820\) −109.332 −3.81804
\(821\) −19.0569 33.0076i −0.665092 1.15197i −0.979260 0.202605i \(-0.935059\pi\)
0.314169 0.949367i \(-0.398274\pi\)
\(822\) 0 0
\(823\) −11.3736 + 19.6997i −0.396460 + 0.686688i −0.993286 0.115682i \(-0.963095\pi\)
0.596827 + 0.802370i \(0.296428\pi\)
\(824\) 10.3585 17.9415i 0.360856 0.625021i
\(825\) 0 0
\(826\) 4.40139 + 7.62342i 0.153144 + 0.265253i
\(827\) −50.3300 −1.75014 −0.875072 0.483992i \(-0.839186\pi\)
−0.875072 + 0.483992i \(0.839186\pi\)
\(828\) 0 0
\(829\) 21.3190 0.740438 0.370219 0.928945i \(-0.379283\pi\)
0.370219 + 0.928945i \(0.379283\pi\)
\(830\) 58.2266 + 100.851i 2.02107 + 3.50060i
\(831\) 0 0
\(832\) −6.38729 + 11.0631i −0.221440 + 0.383545i
\(833\) 6.76406 11.7157i 0.234361 0.405925i
\(834\) 0 0
\(835\) 25.3092 + 43.8367i 0.875859 + 1.51703i
\(836\) 18.4451 0.637938
\(837\) 0 0
\(838\) −12.1124 −0.418415
\(839\) −15.7723 27.3184i −0.544520 0.943136i −0.998637 0.0521939i \(-0.983379\pi\)
0.454117 0.890942i \(-0.349955\pi\)
\(840\) 0 0
\(841\) −1.94153 + 3.36283i −0.0669493 + 0.115960i
\(842\) −7.82034 + 13.5452i −0.269507 + 0.466799i
\(843\) 0 0
\(844\) 6.79252 + 11.7650i 0.233808 + 0.404968i
\(845\) 3.60740 0.124098
\(846\) 0 0
\(847\) −7.98158 −0.274250
\(848\) 8.59664 + 14.8898i 0.295210 + 0.511318i
\(849\) 0 0
\(850\) 20.4934 35.4955i 0.702916 1.21749i
\(851\) −21.2651 + 36.8322i −0.728959 + 1.26259i
\(852\) 0 0
\(853\) −17.8409 30.9014i −0.610861 1.05804i −0.991096 0.133153i \(-0.957490\pi\)
0.380234 0.924890i \(-0.375843\pi\)
\(854\) −4.00686 −0.137112
\(855\) 0 0
\(856\) −20.5016 −0.700730
\(857\) 16.5013 + 28.5812i 0.563675 + 0.976314i 0.997172 + 0.0751589i \(0.0239464\pi\)
−0.433496 + 0.901155i \(0.642720\pi\)
\(858\) 0 0
\(859\) −6.12815 + 10.6143i −0.209090 + 0.362154i −0.951428 0.307871i \(-0.900383\pi\)
0.742338 + 0.670025i \(0.233717\pi\)
\(860\) 37.9873 65.7960i 1.29536 2.24362i
\(861\) 0 0
\(862\) −7.23174 12.5257i −0.246314 0.426628i
\(863\) −33.7379 −1.14845 −0.574227 0.818696i \(-0.694697\pi\)
−0.574227 + 0.818696i \(0.694697\pi\)
\(864\) 0 0
\(865\) −61.0280 −2.07502
\(866\) 13.3345 + 23.0960i 0.453123 + 0.784833i
\(867\) 0 0
\(868\) 3.78129 6.54939i 0.128345 0.222301i
\(869\) −8.72728 + 15.1161i −0.296053 + 0.512778i
\(870\) 0 0
\(871\) −2.46583 4.27094i −0.0835513 0.144715i
\(872\) −11.4614 −0.388131
\(873\) 0 0
\(874\) −23.4743 −0.794031
\(875\) 5.87071 + 10.1684i 0.198466 + 0.343753i
\(876\) 0 0
\(877\) −16.3367 + 28.2961i −0.551653 + 0.955491i 0.446503 + 0.894782i \(0.352669\pi\)
−0.998156 + 0.0607085i \(0.980664\pi\)
\(878\) −26.1927 + 45.3670i −0.883960 + 1.53106i
\(879\) 0 0
\(880\) 11.7926 + 20.4253i 0.397527 + 0.688537i
\(881\) 12.9456 0.436150 0.218075 0.975932i \(-0.430022\pi\)
0.218075 + 0.975932i \(0.430022\pi\)
\(882\) 0 0
\(883\) −13.0620 −0.439570 −0.219785 0.975548i \(-0.570536\pi\)
−0.219785 + 0.975548i \(0.570536\pi\)
\(884\) 3.32124 + 5.75255i 0.111705 + 0.193479i
\(885\) 0 0
\(886\) −17.3455 + 30.0432i −0.582732 + 1.00932i
\(887\) −4.42406 + 7.66270i −0.148545 + 0.257288i −0.930690 0.365809i \(-0.880792\pi\)
0.782145 + 0.623097i \(0.214126\pi\)
\(888\) 0 0
\(889\) 1.04840 + 1.81588i 0.0351621 + 0.0609026i
\(890\) 47.9776 1.60821
\(891\) 0 0
\(892\) 42.6461 1.42790
\(893\) −1.49016 2.58104i −0.0498664 0.0863711i
\(894\) 0 0
\(895\) −31.6232 + 54.7730i −1.05705 + 1.83086i
\(896\) 7.46635 12.9321i 0.249433 0.432031i
\(897\) 0 0
\(898\) −19.1183 33.1138i −0.637985 1.10502i
\(899\) −14.0176 −0.467513
\(900\) 0 0
\(901\) 26.1530 0.871282
\(902\) −50.0386 86.6695i −1.66610 2.88578i
\(903\) 0 0
\(904\) 10.3617 17.9470i 0.344626 0.596909i
\(905\) 8.67143 15.0194i 0.288248 0.499260i
\(906\) 0 0
\(907\) 13.0067 + 22.5283i 0.431880 + 0.748039i 0.997035 0.0769462i \(-0.0245170\pi\)
−0.565155 + 0.824985i \(0.691184\pi\)
\(908\) 4.16525 0.138229
\(909\) 0 0
\(910\) −8.59361 −0.284875
\(911\) 23.4978 + 40.6994i 0.778517 + 1.34843i 0.932796 + 0.360404i \(0.117361\pi\)
−0.154279 + 0.988027i \(0.549305\pi\)
\(912\) 0 0
\(913\) −31.3837 + 54.3581i −1.03865 + 1.79899i
\(914\) −6.60772 + 11.4449i −0.218564 + 0.378564i
\(915\) 0 0
\(916\) 15.7941 + 27.3562i 0.521852 + 0.903875i
\(917\) 4.59782 0.151833
\(918\) 0 0
\(919\) −46.2304 −1.52500 −0.762500 0.646988i \(-0.776028\pi\)
−0.762500 + 0.646988i \(0.776028\pi\)
\(920\) 24.3672 + 42.2052i 0.803363 + 1.39147i
\(921\) 0 0
\(922\) 11.0102 19.0701i 0.362600 0.628042i
\(923\) −3.53609 + 6.12468i −0.116392 + 0.201596i
\(924\) 0 0
\(925\) −24.0427 41.6432i −0.790520 1.36922i
\(926\) 11.3040 0.371471
\(927\) 0 0
\(928\) −41.1424 −1.35057
\(929\) 14.2698 + 24.7160i 0.468176 + 0.810905i 0.999339 0.0363651i \(-0.0115779\pi\)
−0.531162 + 0.847270i \(0.678245\pi\)
\(930\) 0 0
\(931\) 4.38000 7.58638i 0.143549 0.248633i
\(932\) −38.0102 + 65.8356i −1.24507 + 2.15652i
\(933\) 0 0
\(934\) −8.27037 14.3247i −0.270615 0.468718i
\(935\) 35.8757 1.17326
\(936\) 0 0
\(937\) 36.6972 1.19884 0.599422 0.800433i \(-0.295397\pi\)
0.599422 + 0.800433i \(0.295397\pi\)
\(938\) 5.87413 + 10.1743i 0.191797 + 0.332202i
\(939\) 0 0
\(940\) −10.2530 + 17.7587i −0.334416 + 0.579225i
\(941\) 21.6316 37.4671i 0.705171 1.22139i −0.261458 0.965215i \(-0.584203\pi\)
0.966630 0.256178i \(-0.0824633\pi\)
\(942\) 0 0
\(943\) 37.4983 + 64.9490i 1.22111 + 2.11503i
\(944\) 5.63374 0.183363
\(945\) 0 0
\(946\) 69.5436 2.26106
\(947\) −28.5717 49.4876i −0.928454 1.60813i −0.785909 0.618342i \(-0.787805\pi\)
−0.142545 0.989788i \(-0.545529\pi\)
\(948\) 0 0
\(949\) −1.77220 + 3.06954i −0.0575280 + 0.0996414i
\(950\) 13.2703 22.9848i 0.430544 0.745724i
\(951\) 0 0
\(952\) −2.38729 4.13492i −0.0773727 0.134013i
\(953\) 27.3044 0.884475 0.442237 0.896898i \(-0.354185\pi\)
0.442237 + 0.896898i \(0.354185\pi\)
\(954\) 0 0
\(955\) 95.1683 3.07957
\(956\) −15.8545 27.4607i −0.512770 0.888143i
\(957\) 0 0
\(958\) −29.3449 + 50.8269i −0.948091 + 1.64214i
\(959\) 1.26830 2.19676i 0.0409555 0.0709371i
\(960\) 0 0
\(961\) 12.5122 + 21.6718i 0.403621 + 0.699092i
\(962\) 13.2345 0.426696
\(963\) 0 0
\(964\) −34.1629 −1.10031
\(965\) 26.5141 + 45.9238i 0.853519 + 1.47834i
\(966\) 0 0
\(967\) 19.6390 34.0157i 0.631547 1.09387i −0.355689 0.934604i \(-0.615754\pi\)
0.987236 0.159267i \(-0.0509130\pi\)
\(968\) 7.04251 12.1980i 0.226355 0.392058i
\(969\) 0 0
\(970\) −0.542850 0.940244i −0.0174299 0.0301894i
\(971\) 36.9378 1.18539 0.592695 0.805427i \(-0.298064\pi\)
0.592695 + 0.805427i \(0.298064\pi\)
\(972\) 0 0
\(973\) −11.4809 −0.368060
\(974\) −41.1245 71.2297i −1.31771 2.28235i
\(975\) 0 0
\(976\) −1.28219 + 2.22081i −0.0410418 + 0.0710865i
\(977\) −26.4680 + 45.8438i −0.846785 + 1.46667i 0.0372771 + 0.999305i \(0.488132\pi\)
−0.884062 + 0.467370i \(0.845202\pi\)
\(978\) 0 0
\(979\) 12.9298 + 22.3951i 0.413238 + 0.715749i
\(980\) −60.2728 −1.92534
\(981\) 0 0
\(982\) −21.2977 −0.679637
\(983\) 11.4293 + 19.7962i 0.364539 + 0.631400i 0.988702 0.149894i \(-0.0478932\pi\)
−0.624163 + 0.781294i \(0.714560\pi\)
\(984\) 0 0
\(985\) 12.2962 21.2977i 0.391790 0.678600i
\(986\) −14.6651 + 25.4007i −0.467031 + 0.808922i
\(987\) 0 0
\(988\) 2.15063 + 3.72501i 0.0684208 + 0.118508i
\(989\) −52.1151 −1.65716
\(990\) 0 0
\(991\) 28.2013 0.895845 0.447923 0.894072i \(-0.352164\pi\)
0.447923 + 0.894072i \(0.352164\pi\)
\(992\) −8.76922 15.1887i −0.278423 0.482243i
\(993\) 0 0
\(994\) 8.42372 14.5903i 0.267184 0.462776i
\(995\) 22.5472 39.0530i 0.714796 1.23806i
\(996\) 0 0
\(997\) 0.838584 + 1.45247i 0.0265582 + 0.0460002i 0.878999 0.476824i \(-0.158212\pi\)
−0.852441 + 0.522824i \(0.824879\pi\)
\(998\) −80.3574 −2.54367
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.e.c.118.6 12
3.2 odd 2 117.2.e.c.40.1 12
9.2 odd 6 117.2.e.c.79.1 yes 12
9.4 even 3 1053.2.a.m.1.1 6
9.5 odd 6 1053.2.a.l.1.6 6
9.7 even 3 inner 351.2.e.c.235.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.c.40.1 12 3.2 odd 2
117.2.e.c.79.1 yes 12 9.2 odd 6
351.2.e.c.118.6 12 1.1 even 1 trivial
351.2.e.c.235.6 12 9.7 even 3 inner
1053.2.a.l.1.6 6 9.5 odd 6
1053.2.a.m.1.1 6 9.4 even 3