Properties

Label 350.3.i.b.199.8
Level $350$
Weight $3$
Character 350.199
Analytic conductor $9.537$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,3,Mod(199,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.199"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 350.i (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.53680925261\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: 16.0.11007531417600000000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 7x^{12} + 48x^{8} - 7x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{16} \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 199.8
Root \(1.56290 - 0.418778i\) of defining polynomial
Character \(\chi\) \(=\) 350.199
Dual form 350.3.i.b.299.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 - 0.707107i) q^{2} +(2.16226 - 3.74514i) q^{3} +(1.00000 - 1.73205i) q^{4} -6.11578i q^{6} +(-6.91361 - 1.09634i) q^{7} -2.82843i q^{8} +(-4.85071 - 8.40167i) q^{9} +(3.49028 - 6.04534i) q^{11} +(-4.32451 - 7.49028i) q^{12} -22.0427 q^{13} +(-9.24264 + 3.54593i) q^{14} +(-2.00000 - 3.46410i) q^{16} +(-0.410964 + 0.711810i) q^{17} +(-11.8818 - 6.85993i) q^{18} +(32.0456 - 18.5016i) q^{19} +(-19.0549 + 23.5219i) q^{21} -9.87199i q^{22} +(4.92302 - 2.84231i) q^{23} +(-10.5928 - 6.11578i) q^{24} +(-26.9967 + 15.5865i) q^{26} -3.03326 q^{27} +(-8.81253 + 10.8784i) q^{28} +23.1260 q^{29} +(-6.45601 - 3.72738i) q^{31} +(-4.89898 - 2.82843i) q^{32} +(-15.0937 - 26.1431i) q^{33} +1.16238i q^{34} -19.4028 q^{36} +(33.3397 - 19.2487i) q^{37} +(26.1651 - 45.3194i) q^{38} +(-47.6619 + 82.5529i) q^{39} +59.8867i q^{41} +(-6.70498 + 42.2822i) q^{42} -30.2482i q^{43} +(-6.98055 - 12.0907i) q^{44} +(4.01963 - 6.96220i) q^{46} +(31.8629 + 55.1881i) q^{47} -17.2981 q^{48} +(46.5961 + 15.1593i) q^{49} +(1.77722 + 3.07823i) q^{51} +(-22.0427 + 38.1790i) q^{52} +(-16.6595 - 9.61837i) q^{53} +(-3.71497 + 2.14484i) q^{54} +(-3.10092 + 19.5546i) q^{56} -160.020i q^{57} +(28.3235 - 16.3526i) q^{58} +(-67.4057 - 38.9167i) q^{59} +(-13.3160 + 7.68798i) q^{61} -10.5426 q^{62} +(24.3248 + 63.4039i) q^{63} -8.00000 q^{64} +(-36.9720 - 21.3458i) q^{66} +(-39.5693 - 22.8453i) q^{67} +(0.821928 + 1.42362i) q^{68} -24.5832i q^{69} +98.8553 q^{71} +(-23.7635 + 13.7199i) q^{72} +(9.42281 - 16.3208i) q^{73} +(27.2218 - 47.1495i) q^{74} -74.0062i q^{76} +(-30.7582 + 37.9686i) q^{77} +134.808i q^{78} +(25.2828 + 43.7911i) q^{79} +(37.0977 - 64.2550i) q^{81} +(42.3463 + 73.3460i) q^{82} +34.9833 q^{83} +(21.6861 + 56.5260i) q^{84} +(-21.3887 - 37.0463i) q^{86} +(50.0044 - 86.6101i) q^{87} +(-17.0988 - 9.87199i) q^{88} +(71.6107 - 41.3445i) q^{89} +(152.395 + 24.1663i) q^{91} -11.3692i q^{92} +(-27.9191 + 16.1191i) q^{93} +(78.0478 + 45.0609i) q^{94} +(-21.1857 + 12.2316i) q^{96} -177.301 q^{97} +(67.7876 - 14.3821i) q^{98} -67.7212 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4} - 24 q^{9} - 16 q^{11} - 80 q^{14} - 32 q^{16} + 8 q^{21} + 48 q^{24} - 192 q^{26} + 240 q^{29} - 144 q^{31} - 96 q^{36} - 48 q^{39} + 32 q^{44} + 40 q^{46} - 48 q^{49} + 112 q^{51} - 360 q^{54}+ \cdots - 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 0.707107i 0.612372 0.353553i
\(3\) 2.16226 3.74514i 0.720752 1.24838i −0.239947 0.970786i \(-0.577130\pi\)
0.960699 0.277593i \(-0.0895367\pi\)
\(4\) 1.00000 1.73205i 0.250000 0.433013i
\(5\) 0 0
\(6\) 6.11578i 1.01930i
\(7\) −6.91361 1.09634i −0.987659 0.156620i
\(8\) 2.82843i 0.353553i
\(9\) −4.85071 8.40167i −0.538967 0.933519i
\(10\) 0 0
\(11\) 3.49028 6.04534i 0.317298 0.549576i −0.662625 0.748951i \(-0.730558\pi\)
0.979923 + 0.199375i \(0.0638912\pi\)
\(12\) −4.32451 7.49028i −0.360376 0.624190i
\(13\) −22.0427 −1.69559 −0.847796 0.530323i \(-0.822071\pi\)
−0.847796 + 0.530323i \(0.822071\pi\)
\(14\) −9.24264 + 3.54593i −0.660189 + 0.253280i
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.125000 0.216506i
\(17\) −0.410964 + 0.711810i −0.0241744 + 0.0418712i −0.877859 0.478918i \(-0.841029\pi\)
0.853685 + 0.520789i \(0.174362\pi\)
\(18\) −11.8818 6.85993i −0.660097 0.381107i
\(19\) 32.0456 18.5016i 1.68661 0.973766i 0.729530 0.683948i \(-0.239739\pi\)
0.957082 0.289818i \(-0.0935946\pi\)
\(20\) 0 0
\(21\) −19.0549 + 23.5219i −0.907378 + 1.12009i
\(22\) 9.87199i 0.448727i
\(23\) 4.92302 2.84231i 0.214044 0.123579i −0.389145 0.921176i \(-0.627230\pi\)
0.603190 + 0.797598i \(0.293896\pi\)
\(24\) −10.5928 6.11578i −0.441369 0.254824i
\(25\) 0 0
\(26\) −26.9967 + 15.5865i −1.03833 + 0.599482i
\(27\) −3.03326 −0.112343
\(28\) −8.81253 + 10.8784i −0.314733 + 0.388514i
\(29\) 23.1260 0.797449 0.398725 0.917071i \(-0.369453\pi\)
0.398725 + 0.917071i \(0.369453\pi\)
\(30\) 0 0
\(31\) −6.45601 3.72738i −0.208259 0.120238i 0.392243 0.919862i \(-0.371699\pi\)
−0.600502 + 0.799623i \(0.705032\pi\)
\(32\) −4.89898 2.82843i −0.153093 0.0883883i
\(33\) −15.0937 26.1431i −0.457386 0.792216i
\(34\) 1.16238i 0.0341877i
\(35\) 0 0
\(36\) −19.4028 −0.538967
\(37\) 33.3397 19.2487i 0.901074 0.520235i 0.0235257 0.999723i \(-0.492511\pi\)
0.877549 + 0.479488i \(0.159178\pi\)
\(38\) 26.1651 45.3194i 0.688557 1.19261i
\(39\) −47.6619 + 82.5529i −1.22210 + 2.11674i
\(40\) 0 0
\(41\) 59.8867i 1.46065i 0.683099 + 0.730326i \(0.260632\pi\)
−0.683099 + 0.730326i \(0.739368\pi\)
\(42\) −6.70498 + 42.2822i −0.159642 + 1.00672i
\(43\) 30.2482i 0.703446i −0.936104 0.351723i \(-0.885596\pi\)
0.936104 0.351723i \(-0.114404\pi\)
\(44\) −6.98055 12.0907i −0.158649 0.274788i
\(45\) 0 0
\(46\) 4.01963 6.96220i 0.0873832 0.151352i
\(47\) 31.8629 + 55.1881i 0.677934 + 1.17422i 0.975602 + 0.219546i \(0.0704577\pi\)
−0.297668 + 0.954669i \(0.596209\pi\)
\(48\) −17.2981 −0.360376
\(49\) 46.5961 + 15.1593i 0.950940 + 0.309374i
\(50\) 0 0
\(51\) 1.77722 + 3.07823i 0.0348474 + 0.0603575i
\(52\) −22.0427 + 38.1790i −0.423898 + 0.734212i
\(53\) −16.6595 9.61837i −0.314330 0.181479i 0.334532 0.942384i \(-0.391422\pi\)
−0.648863 + 0.760906i \(0.724755\pi\)
\(54\) −3.71497 + 2.14484i −0.0687957 + 0.0397192i
\(55\) 0 0
\(56\) −3.10092 + 19.5546i −0.0553735 + 0.349190i
\(57\) 160.020i 2.80738i
\(58\) 28.3235 16.3526i 0.488336 0.281941i
\(59\) −67.4057 38.9167i −1.14247 0.659605i −0.195428 0.980718i \(-0.562610\pi\)
−0.947041 + 0.321113i \(0.895943\pi\)
\(60\) 0 0
\(61\) −13.3160 + 7.68798i −0.218295 + 0.126032i −0.605160 0.796104i \(-0.706891\pi\)
0.386866 + 0.922136i \(0.373558\pi\)
\(62\) −10.5426 −0.170042
\(63\) 24.3248 + 63.4039i 0.386108 + 1.00641i
\(64\) −8.00000 −0.125000
\(65\) 0 0
\(66\) −36.9720 21.3458i −0.560181 0.323421i
\(67\) −39.5693 22.8453i −0.590586 0.340975i 0.174743 0.984614i \(-0.444091\pi\)
−0.765329 + 0.643639i \(0.777424\pi\)
\(68\) 0.821928 + 1.42362i 0.0120872 + 0.0209356i
\(69\) 24.5832i 0.356278i
\(70\) 0 0
\(71\) 98.8553 1.39233 0.696164 0.717883i \(-0.254889\pi\)
0.696164 + 0.717883i \(0.254889\pi\)
\(72\) −23.7635 + 13.7199i −0.330049 + 0.190554i
\(73\) 9.42281 16.3208i 0.129080 0.223573i −0.794241 0.607603i \(-0.792131\pi\)
0.923320 + 0.384031i \(0.125464\pi\)
\(74\) 27.2218 47.1495i 0.367862 0.637156i
\(75\) 0 0
\(76\) 74.0062i 0.973766i
\(77\) −30.7582 + 37.9686i −0.399457 + 0.493098i
\(78\) 134.808i 1.72831i
\(79\) 25.2828 + 43.7911i 0.320035 + 0.554317i 0.980495 0.196544i \(-0.0629719\pi\)
−0.660460 + 0.750861i \(0.729639\pi\)
\(80\) 0 0
\(81\) 37.0977 64.2550i 0.457996 0.793272i
\(82\) 42.3463 + 73.3460i 0.516419 + 0.894463i
\(83\) 34.9833 0.421486 0.210743 0.977542i \(-0.432412\pi\)
0.210743 + 0.977542i \(0.432412\pi\)
\(84\) 21.6861 + 56.5260i 0.258168 + 0.672929i
\(85\) 0 0
\(86\) −21.3887 37.0463i −0.248706 0.430771i
\(87\) 50.0044 86.6101i 0.574763 0.995519i
\(88\) −17.0988 9.87199i −0.194304 0.112182i
\(89\) 71.6107 41.3445i 0.804615 0.464545i −0.0404675 0.999181i \(-0.512885\pi\)
0.845082 + 0.534636i \(0.179551\pi\)
\(90\) 0 0
\(91\) 152.395 + 24.1663i 1.67467 + 0.265563i
\(92\) 11.3692i 0.123579i
\(93\) −27.9191 + 16.1191i −0.300206 + 0.173324i
\(94\) 78.0478 + 45.0609i 0.830296 + 0.479372i
\(95\) 0 0
\(96\) −21.1857 + 12.2316i −0.220684 + 0.127412i
\(97\) −177.301 −1.82785 −0.913923 0.405887i \(-0.866962\pi\)
−0.913923 + 0.405887i \(0.866962\pi\)
\(98\) 67.7876 14.3821i 0.691710 0.146756i
\(99\) −67.7212 −0.684052
\(100\) 0 0
\(101\) −43.8387 25.3103i −0.434046 0.250597i 0.267023 0.963690i \(-0.413960\pi\)
−0.701069 + 0.713094i \(0.747293\pi\)
\(102\) 4.35328 + 2.51337i 0.0426792 + 0.0246409i
\(103\) 64.9638 + 112.521i 0.630716 + 1.09243i 0.987406 + 0.158209i \(0.0505721\pi\)
−0.356690 + 0.934223i \(0.616095\pi\)
\(104\) 62.3461i 0.599482i
\(105\) 0 0
\(106\) −27.2049 −0.256650
\(107\) 106.156 61.2895i 0.992117 0.572799i 0.0862104 0.996277i \(-0.472524\pi\)
0.905906 + 0.423478i \(0.139191\pi\)
\(108\) −3.03326 + 5.25376i −0.0280857 + 0.0486459i
\(109\) 3.48287 6.03251i 0.0319530 0.0553442i −0.849607 0.527417i \(-0.823161\pi\)
0.881560 + 0.472073i \(0.156494\pi\)
\(110\) 0 0
\(111\) 166.483i 1.49984i
\(112\) 10.0294 + 26.1421i 0.0895482 + 0.233412i
\(113\) 118.975i 1.05287i −0.850214 0.526437i \(-0.823528\pi\)
0.850214 0.526437i \(-0.176472\pi\)
\(114\) −113.152 195.984i −0.992557 1.71916i
\(115\) 0 0
\(116\) 23.1260 40.0554i 0.199362 0.345306i
\(117\) 106.923 + 185.195i 0.913868 + 1.58287i
\(118\) −110.073 −0.932822
\(119\) 3.62163 4.47063i 0.0304339 0.0375683i
\(120\) 0 0
\(121\) 36.1359 + 62.5893i 0.298644 + 0.517267i
\(122\) −10.8724 + 18.8316i −0.0891184 + 0.154358i
\(123\) 224.284 + 129.490i 1.82345 + 1.05277i
\(124\) −12.9120 + 7.45476i −0.104129 + 0.0601191i
\(125\) 0 0
\(126\) 74.6250 + 60.4534i 0.592262 + 0.479789i
\(127\) 201.068i 1.58321i 0.611031 + 0.791607i \(0.290755\pi\)
−0.611031 + 0.791607i \(0.709245\pi\)
\(128\) −9.79796 + 5.65685i −0.0765466 + 0.0441942i
\(129\) −113.284 65.4044i −0.878168 0.507010i
\(130\) 0 0
\(131\) −130.427 + 75.3022i −0.995628 + 0.574826i −0.906952 0.421234i \(-0.861597\pi\)
−0.0886762 + 0.996061i \(0.528264\pi\)
\(132\) −60.3750 −0.457386
\(133\) −241.835 + 92.7797i −1.81831 + 0.697592i
\(134\) −64.6164 −0.482212
\(135\) 0 0
\(136\) 2.01330 + 1.16238i 0.0148037 + 0.00854692i
\(137\) 163.221 + 94.2355i 1.19139 + 0.687851i 0.958622 0.284681i \(-0.0918877\pi\)
0.232770 + 0.972532i \(0.425221\pi\)
\(138\) −17.3829 30.1081i −0.125963 0.218175i
\(139\) 54.0378i 0.388761i −0.980926 0.194381i \(-0.937730\pi\)
0.980926 0.194381i \(-0.0622697\pi\)
\(140\) 0 0
\(141\) 275.583 1.95449
\(142\) 121.073 69.9013i 0.852623 0.492262i
\(143\) −76.9350 + 133.255i −0.538007 + 0.931856i
\(144\) −19.4028 + 33.6067i −0.134742 + 0.233380i
\(145\) 0 0
\(146\) 26.6517i 0.182546i
\(147\) 157.526 141.730i 1.07161 0.964152i
\(148\) 76.9948i 0.520235i
\(149\) 45.6402 + 79.0511i 0.306310 + 0.530545i 0.977552 0.210694i \(-0.0675722\pi\)
−0.671242 + 0.741238i \(0.734239\pi\)
\(150\) 0 0
\(151\) −95.6003 + 165.584i −0.633114 + 1.09659i 0.353797 + 0.935322i \(0.384890\pi\)
−0.986911 + 0.161264i \(0.948443\pi\)
\(152\) −52.3303 90.6387i −0.344278 0.596307i
\(153\) 7.97386 0.0521167
\(154\) −10.8231 + 68.2511i −0.0702796 + 0.443189i
\(155\) 0 0
\(156\) 95.3239 + 165.106i 0.611050 + 1.05837i
\(157\) −8.44893 + 14.6340i −0.0538149 + 0.0932101i −0.891678 0.452670i \(-0.850471\pi\)
0.837863 + 0.545881i \(0.183805\pi\)
\(158\) 61.9299 + 35.7553i 0.391962 + 0.226299i
\(159\) −72.0442 + 41.5948i −0.453108 + 0.261602i
\(160\) 0 0
\(161\) −37.1520 + 14.2533i −0.230758 + 0.0885298i
\(162\) 104.928i 0.647704i
\(163\) 105.470 60.8933i 0.647057 0.373579i −0.140271 0.990113i \(-0.544797\pi\)
0.787328 + 0.616535i \(0.211464\pi\)
\(164\) 103.727 + 59.8867i 0.632481 + 0.365163i
\(165\) 0 0
\(166\) 42.8457 24.7370i 0.258106 0.149018i
\(167\) −201.448 −1.20627 −0.603137 0.797637i \(-0.706083\pi\)
−0.603137 + 0.797637i \(0.706083\pi\)
\(168\) 66.5299 + 53.8955i 0.396011 + 0.320807i
\(169\) 316.880 1.87503
\(170\) 0 0
\(171\) −310.888 179.491i −1.81806 1.04966i
\(172\) −52.3914 30.2482i −0.304601 0.175862i
\(173\) −92.1482 159.605i −0.532648 0.922574i −0.999273 0.0381186i \(-0.987864\pi\)
0.466625 0.884455i \(-0.345470\pi\)
\(174\) 141.434i 0.812838i
\(175\) 0 0
\(176\) −27.9222 −0.158649
\(177\) −291.497 + 168.296i −1.64687 + 0.950823i
\(178\) 58.4699 101.273i 0.328483 0.568949i
\(179\) −83.4294 + 144.504i −0.466086 + 0.807285i −0.999250 0.0387275i \(-0.987670\pi\)
0.533164 + 0.846012i \(0.321003\pi\)
\(180\) 0 0
\(181\) 154.927i 0.855953i −0.903790 0.427976i \(-0.859227\pi\)
0.903790 0.427976i \(-0.140773\pi\)
\(182\) 203.733 78.1617i 1.11941 0.429460i
\(183\) 66.4935i 0.363353i
\(184\) −8.03926 13.9244i −0.0436916 0.0756761i
\(185\) 0 0
\(186\) −22.7959 + 39.4836i −0.122558 + 0.212277i
\(187\) 2.86876 + 4.96883i 0.0153409 + 0.0265713i
\(188\) 127.452 0.677934
\(189\) 20.9708 + 3.32548i 0.110956 + 0.0175951i
\(190\) 0 0
\(191\) −67.6393 117.155i −0.354132 0.613375i 0.632837 0.774285i \(-0.281890\pi\)
−0.986969 + 0.160910i \(0.948557\pi\)
\(192\) −17.2981 + 29.9611i −0.0900940 + 0.156047i
\(193\) 92.2060 + 53.2351i 0.477751 + 0.275830i 0.719479 0.694514i \(-0.244381\pi\)
−0.241728 + 0.970344i \(0.577714\pi\)
\(194\) −217.149 + 125.371i −1.11932 + 0.646241i
\(195\) 0 0
\(196\) 72.8528 65.5474i 0.371698 0.334426i
\(197\) 237.675i 1.20647i −0.797563 0.603236i \(-0.793878\pi\)
0.797563 0.603236i \(-0.206122\pi\)
\(198\) −82.9412 + 47.8861i −0.418895 + 0.241849i
\(199\) 165.715 + 95.6753i 0.832736 + 0.480780i 0.854789 0.518976i \(-0.173687\pi\)
−0.0220524 + 0.999757i \(0.507020\pi\)
\(200\) 0 0
\(201\) −171.118 + 98.7949i −0.851332 + 0.491517i
\(202\) −71.5882 −0.354397
\(203\) −159.884 25.3540i −0.787608 0.124896i
\(204\) 7.10888 0.0348474
\(205\) 0 0
\(206\) 159.128 + 91.8726i 0.772466 + 0.445984i
\(207\) −47.7602 27.5744i −0.230726 0.133210i
\(208\) 44.0854 + 76.3581i 0.211949 + 0.367106i
\(209\) 258.302i 1.23590i
\(210\) 0 0
\(211\) 31.2440 0.148076 0.0740379 0.997255i \(-0.476411\pi\)
0.0740379 + 0.997255i \(0.476411\pi\)
\(212\) −33.3190 + 19.2367i −0.157165 + 0.0907393i
\(213\) 213.751 370.227i 1.00352 1.73815i
\(214\) 86.6764 150.128i 0.405030 0.701532i
\(215\) 0 0
\(216\) 8.57935i 0.0397192i
\(217\) 40.5479 + 32.8477i 0.186857 + 0.151372i
\(218\) 9.85105i 0.0451883i
\(219\) −40.7491 70.5795i −0.186069 0.322281i
\(220\) 0 0
\(221\) 9.05875 15.6902i 0.0409898 0.0709964i
\(222\) −117.721 203.899i −0.530275 0.918463i
\(223\) 109.738 0.492099 0.246049 0.969257i \(-0.420867\pi\)
0.246049 + 0.969257i \(0.420867\pi\)
\(224\) 30.7687 + 24.9256i 0.137360 + 0.111275i
\(225\) 0 0
\(226\) −84.1279 145.714i −0.372247 0.644751i
\(227\) −15.6299 + 27.0718i −0.0688543 + 0.119259i −0.898397 0.439184i \(-0.855268\pi\)
0.829543 + 0.558443i \(0.188601\pi\)
\(228\) −277.163 160.020i −1.21563 0.701844i
\(229\) −157.300 + 90.8171i −0.686899 + 0.396581i −0.802449 0.596720i \(-0.796470\pi\)
0.115550 + 0.993302i \(0.463137\pi\)
\(230\) 0 0
\(231\) 75.6905 + 197.291i 0.327665 + 0.854075i
\(232\) 65.4103i 0.281941i
\(233\) −184.132 + 106.309i −0.790266 + 0.456260i −0.840056 0.542499i \(-0.817478\pi\)
0.0497903 + 0.998760i \(0.484145\pi\)
\(234\) 261.906 + 151.211i 1.11926 + 0.646202i
\(235\) 0 0
\(236\) −134.811 + 77.8334i −0.571234 + 0.329802i
\(237\) 218.671 0.922664
\(238\) 1.27436 8.03626i 0.00535447 0.0337658i
\(239\) −173.604 −0.726378 −0.363189 0.931715i \(-0.618312\pi\)
−0.363189 + 0.931715i \(0.618312\pi\)
\(240\) 0 0
\(241\) −64.1746 37.0512i −0.266285 0.153739i 0.360913 0.932599i \(-0.382465\pi\)
−0.627198 + 0.778860i \(0.715798\pi\)
\(242\) 88.5146 + 51.1040i 0.365763 + 0.211173i
\(243\) −174.079 301.514i −0.716374 1.24080i
\(244\) 30.7519i 0.126032i
\(245\) 0 0
\(246\) 366.254 1.48884
\(247\) −706.372 + 407.824i −2.85980 + 1.65111i
\(248\) −10.5426 + 18.2604i −0.0425106 + 0.0736305i
\(249\) 75.6429 131.017i 0.303787 0.526174i
\(250\) 0 0
\(251\) 28.7841i 0.114678i −0.998355 0.0573389i \(-0.981738\pi\)
0.998355 0.0573389i \(-0.0182616\pi\)
\(252\) 134.144 + 21.2721i 0.532316 + 0.0844130i
\(253\) 39.6817i 0.156845i
\(254\) 142.177 + 246.257i 0.559750 + 0.969516i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.0312500 + 0.0541266i
\(257\) 44.2773 + 76.6906i 0.172285 + 0.298407i 0.939218 0.343320i \(-0.111552\pi\)
−0.766933 + 0.641727i \(0.778218\pi\)
\(258\) −184.991 −0.717021
\(259\) −251.601 + 96.5265i −0.971433 + 0.372689i
\(260\) 0 0
\(261\) −112.178 194.297i −0.429799 0.744434i
\(262\) −106.493 + 184.452i −0.406463 + 0.704015i
\(263\) −127.172 73.4230i −0.483545 0.279175i 0.238347 0.971180i \(-0.423394\pi\)
−0.721893 + 0.692005i \(0.756728\pi\)
\(264\) −73.9439 + 42.6915i −0.280091 + 0.161710i
\(265\) 0 0
\(266\) −230.581 + 284.635i −0.866846 + 1.07006i
\(267\) 357.589i 1.33929i
\(268\) −79.1385 + 45.6907i −0.295293 + 0.170488i
\(269\) −401.264 231.670i −1.49169 0.861226i −0.491732 0.870747i \(-0.663636\pi\)
−0.999955 + 0.00952123i \(0.996969\pi\)
\(270\) 0 0
\(271\) −219.843 + 126.927i −0.811230 + 0.468364i −0.847383 0.530982i \(-0.821823\pi\)
0.0361526 + 0.999346i \(0.488490\pi\)
\(272\) 3.28771 0.0120872
\(273\) 420.022 518.485i 1.53854 1.89921i
\(274\) 266.538 0.972768
\(275\) 0 0
\(276\) −42.5793 24.5832i −0.154273 0.0890695i
\(277\) 93.4084 + 53.9294i 0.337215 + 0.194691i 0.659040 0.752108i \(-0.270963\pi\)
−0.321825 + 0.946799i \(0.604296\pi\)
\(278\) −38.2105 66.1825i −0.137448 0.238067i
\(279\) 72.3217i 0.259218i
\(280\) 0 0
\(281\) 27.1043 0.0964566 0.0482283 0.998836i \(-0.484642\pi\)
0.0482283 + 0.998836i \(0.484642\pi\)
\(282\) 337.519 194.867i 1.19688 0.691016i
\(283\) −169.726 + 293.974i −0.599738 + 1.03878i 0.393122 + 0.919486i \(0.371395\pi\)
−0.992859 + 0.119290i \(0.961938\pi\)
\(284\) 98.8553 171.222i 0.348082 0.602896i
\(285\) 0 0
\(286\) 217.605i 0.760857i
\(287\) 65.6562 414.034i 0.228767 1.44263i
\(288\) 54.8795i 0.190554i
\(289\) 144.162 + 249.696i 0.498831 + 0.864001i
\(290\) 0 0
\(291\) −383.370 + 664.017i −1.31742 + 2.28185i
\(292\) −18.8456 32.6416i −0.0645398 0.111786i
\(293\) −99.0920 −0.338198 −0.169099 0.985599i \(-0.554086\pi\)
−0.169099 + 0.985599i \(0.554086\pi\)
\(294\) 92.7112 284.972i 0.315344 0.969291i
\(295\) 0 0
\(296\) −54.4436 94.2990i −0.183931 0.318578i
\(297\) −10.5869 + 18.3371i −0.0356462 + 0.0617410i
\(298\) 111.795 + 64.5450i 0.375152 + 0.216594i
\(299\) −108.517 + 62.6521i −0.362932 + 0.209539i
\(300\) 0 0
\(301\) −33.1623 + 209.124i −0.110174 + 0.694765i
\(302\) 270.398i 0.895359i
\(303\) −189.581 + 109.455i −0.625679 + 0.361236i
\(304\) −128.183 74.0062i −0.421653 0.243442i
\(305\) 0 0
\(306\) 9.76594 5.63837i 0.0319149 0.0184260i
\(307\) 335.904 1.09415 0.547075 0.837083i \(-0.315741\pi\)
0.547075 + 0.837083i \(0.315741\pi\)
\(308\) 35.0054 + 91.2433i 0.113654 + 0.296244i
\(309\) 561.873 1.81836
\(310\) 0 0
\(311\) −32.6670 18.8603i −0.105039 0.0606441i 0.446560 0.894753i \(-0.352649\pi\)
−0.551599 + 0.834109i \(0.685982\pi\)
\(312\) 233.495 + 134.808i 0.748381 + 0.432078i
\(313\) 146.482 + 253.714i 0.467993 + 0.810588i 0.999331 0.0365723i \(-0.0116439\pi\)
−0.531338 + 0.847160i \(0.678311\pi\)
\(314\) 23.8972i 0.0761057i
\(315\) 0 0
\(316\) 101.131 0.320035
\(317\) 235.294 135.847i 0.742253 0.428540i −0.0806350 0.996744i \(-0.525695\pi\)
0.822888 + 0.568204i \(0.192361\pi\)
\(318\) −58.8239 + 101.886i −0.184981 + 0.320396i
\(319\) 80.7162 139.805i 0.253029 0.438259i
\(320\) 0 0
\(321\) 530.094i 1.65138i
\(322\) −35.4231 + 43.7271i −0.110010 + 0.135798i
\(323\) 30.4139i 0.0941606i
\(324\) −74.1953 128.510i −0.228998 0.396636i
\(325\) 0 0
\(326\) 86.1161 149.158i 0.264160 0.457538i
\(327\) −15.0617 26.0877i −0.0460603 0.0797789i
\(328\) 169.385 0.516419
\(329\) −159.783 416.482i −0.485662 1.26590i
\(330\) 0 0
\(331\) −119.742 207.400i −0.361760 0.626586i 0.626491 0.779429i \(-0.284491\pi\)
−0.988251 + 0.152843i \(0.951157\pi\)
\(332\) 34.9833 60.5929i 0.105371 0.182509i
\(333\) −323.443 186.740i −0.971299 0.560780i
\(334\) −246.722 + 142.445i −0.738689 + 0.426482i
\(335\) 0 0
\(336\) 119.592 + 18.9645i 0.355929 + 0.0564421i
\(337\) 143.003i 0.424342i −0.977233 0.212171i \(-0.931947\pi\)
0.977233 0.212171i \(-0.0680533\pi\)
\(338\) 388.097 224.068i 1.14822 0.662923i
\(339\) −445.577 257.254i −1.31439 0.758861i
\(340\) 0 0
\(341\) −45.0665 + 26.0192i −0.132160 + 0.0763026i
\(342\) −507.678 −1.48444
\(343\) −305.527 155.891i −0.890751 0.454492i
\(344\) −85.5548 −0.248706
\(345\) 0 0
\(346\) −225.716 130.317i −0.652358 0.376639i
\(347\) 410.006 + 236.717i 1.18157 + 0.682183i 0.956378 0.292131i \(-0.0943643\pi\)
0.225197 + 0.974313i \(0.427698\pi\)
\(348\) −100.009 173.220i −0.287382 0.497759i
\(349\) 359.028i 1.02873i 0.857570 + 0.514366i \(0.171973\pi\)
−0.857570 + 0.514366i \(0.828027\pi\)
\(350\) 0 0
\(351\) 66.8612 0.190488
\(352\) −34.1976 + 19.7440i −0.0971522 + 0.0560909i
\(353\) −134.895 + 233.644i −0.382138 + 0.661882i −0.991368 0.131112i \(-0.958145\pi\)
0.609230 + 0.792994i \(0.291479\pi\)
\(354\) −238.006 + 412.238i −0.672333 + 1.16452i
\(355\) 0 0
\(356\) 165.378i 0.464545i
\(357\) −8.91221 23.2301i −0.0249642 0.0650704i
\(358\) 235.974i 0.659145i
\(359\) 67.6777 + 117.221i 0.188517 + 0.326522i 0.944756 0.327774i \(-0.106298\pi\)
−0.756239 + 0.654296i \(0.772965\pi\)
\(360\) 0 0
\(361\) 504.115 873.153i 1.39644 2.41871i
\(362\) −109.550 189.747i −0.302625 0.524162i
\(363\) 312.541 0.860994
\(364\) 194.252 239.789i 0.533659 0.658761i
\(365\) 0 0
\(366\) 47.0180 + 81.4376i 0.128465 + 0.222507i
\(367\) −319.093 + 552.685i −0.869463 + 1.50595i −0.00691734 + 0.999976i \(0.502202\pi\)
−0.862546 + 0.505979i \(0.831131\pi\)
\(368\) −19.6921 11.3692i −0.0535111 0.0308946i
\(369\) 503.149 290.493i 1.36355 0.787244i
\(370\) 0 0
\(371\) 104.632 + 84.7621i 0.282028 + 0.228469i
\(372\) 64.4764i 0.173324i
\(373\) 61.0189 35.2293i 0.163590 0.0944485i −0.415970 0.909378i \(-0.636558\pi\)
0.579560 + 0.814930i \(0.303225\pi\)
\(374\) 7.02699 + 4.05703i 0.0187887 + 0.0108477i
\(375\) 0 0
\(376\) 156.096 90.1219i 0.415148 0.239686i
\(377\) −509.760 −1.35215
\(378\) 28.0353 10.7557i 0.0741675 0.0284543i
\(379\) 81.1658 0.214158 0.107079 0.994251i \(-0.465850\pi\)
0.107079 + 0.994251i \(0.465850\pi\)
\(380\) 0 0
\(381\) 753.028 + 434.761i 1.97645 + 1.14110i
\(382\) −165.682 95.6563i −0.433722 0.250409i
\(383\) 274.336 + 475.164i 0.716281 + 1.24064i 0.962463 + 0.271412i \(0.0874907\pi\)
−0.246182 + 0.969224i \(0.579176\pi\)
\(384\) 48.9263i 0.127412i
\(385\) 0 0
\(386\) 150.572 0.390082
\(387\) −254.135 + 146.725i −0.656680 + 0.379135i
\(388\) −177.301 + 307.094i −0.456962 + 0.791481i
\(389\) 148.460 257.140i 0.381646 0.661030i −0.609652 0.792669i \(-0.708691\pi\)
0.991298 + 0.131640i \(0.0420242\pi\)
\(390\) 0 0
\(391\) 4.67234i 0.0119497i
\(392\) 42.8771 131.794i 0.109380 0.336208i
\(393\) 651.291i 1.65723i
\(394\) −168.062 291.091i −0.426552 0.738810i
\(395\) 0 0
\(396\) −67.7212 + 117.297i −0.171013 + 0.296203i
\(397\) 249.148 + 431.537i 0.627576 + 1.08699i 0.988037 + 0.154220i \(0.0492863\pi\)
−0.360460 + 0.932775i \(0.617380\pi\)
\(398\) 270.611 0.679926
\(399\) −175.437 + 1106.32i −0.439691 + 2.77273i
\(400\) 0 0
\(401\) 199.855 + 346.159i 0.498392 + 0.863240i 0.999998 0.00185592i \(-0.000590757\pi\)
−0.501606 + 0.865096i \(0.667257\pi\)
\(402\) −139.717 + 241.997i −0.347555 + 0.601983i
\(403\) 142.308 + 82.1615i 0.353121 + 0.203875i
\(404\) −87.6773 + 50.6205i −0.217023 + 0.125298i
\(405\) 0 0
\(406\) −213.746 + 82.0032i −0.526467 + 0.201978i
\(407\) 268.733i 0.660278i
\(408\) 8.70656 5.02673i 0.0213396 0.0123204i
\(409\) 253.322 + 146.255i 0.619369 + 0.357593i 0.776623 0.629965i \(-0.216931\pi\)
−0.157254 + 0.987558i \(0.550264\pi\)
\(410\) 0 0
\(411\) 705.850 407.523i 1.71740 0.991540i
\(412\) 259.855 0.630716
\(413\) 423.351 + 342.954i 1.02506 + 0.830398i
\(414\) −77.9921 −0.188387
\(415\) 0 0
\(416\) 107.987 + 62.3461i 0.259583 + 0.149870i
\(417\) −202.379 116.844i −0.485321 0.280200i
\(418\) −182.647 316.354i −0.436955 0.756828i
\(419\) 608.631i 1.45258i −0.687388 0.726291i \(-0.741243\pi\)
0.687388 0.726291i \(-0.258757\pi\)
\(420\) 0 0
\(421\) −224.488 −0.533226 −0.266613 0.963804i \(-0.585905\pi\)
−0.266613 + 0.963804i \(0.585905\pi\)
\(422\) 38.2659 22.0928i 0.0906775 0.0523527i
\(423\) 309.115 535.403i 0.730768 1.26573i
\(424\) −27.2049 + 47.1202i −0.0641624 + 0.111133i
\(425\) 0 0
\(426\) 604.578i 1.41920i
\(427\) 100.490 38.5529i 0.235340 0.0902878i
\(428\) 245.158i 0.572799i
\(429\) 332.707 + 576.265i 0.775540 + 1.34327i
\(430\) 0 0
\(431\) 14.5102 25.1325i 0.0336664 0.0583120i −0.848701 0.528873i \(-0.822615\pi\)
0.882368 + 0.470561i \(0.155948\pi\)
\(432\) 6.06652 + 10.5075i 0.0140429 + 0.0243230i
\(433\) −144.736 −0.334264 −0.167132 0.985935i \(-0.553451\pi\)
−0.167132 + 0.985935i \(0.553451\pi\)
\(434\) 72.8876 + 11.5583i 0.167944 + 0.0266320i
\(435\) 0 0
\(436\) −6.96575 12.0650i −0.0159765 0.0276721i
\(437\) 105.174 182.167i 0.240673 0.416858i
\(438\) −99.8145 57.6279i −0.227887 0.131571i
\(439\) 63.5971 36.7178i 0.144868 0.0836396i −0.425814 0.904811i \(-0.640012\pi\)
0.570682 + 0.821171i \(0.306679\pi\)
\(440\) 0 0
\(441\) −98.6602 465.018i −0.223719 1.05446i
\(442\) 25.6220i 0.0579683i
\(443\) 403.063 232.708i 0.909848 0.525301i 0.0294659 0.999566i \(-0.490619\pi\)
0.880382 + 0.474265i \(0.157286\pi\)
\(444\) −288.356 166.483i −0.649451 0.374961i
\(445\) 0 0
\(446\) 134.401 77.5965i 0.301348 0.173983i
\(447\) 394.743 0.883094
\(448\) 55.3089 + 8.77072i 0.123457 + 0.0195775i
\(449\) −763.116 −1.69959 −0.849795 0.527114i \(-0.823274\pi\)
−0.849795 + 0.527114i \(0.823274\pi\)
\(450\) 0 0
\(451\) 362.035 + 209.021i 0.802739 + 0.463462i
\(452\) −206.070 118.975i −0.455908 0.263219i
\(453\) 413.424 + 716.072i 0.912637 + 1.58073i
\(454\) 44.2081i 0.0973747i
\(455\) 0 0
\(456\) −452.606 −0.992557
\(457\) 243.288 140.463i 0.532360 0.307358i −0.209617 0.977784i \(-0.567222\pi\)
0.741977 + 0.670426i \(0.233888\pi\)
\(458\) −128.435 + 222.456i −0.280425 + 0.485711i
\(459\) 1.24656 2.15911i 0.00271582 0.00470393i
\(460\) 0 0
\(461\) 269.455i 0.584500i −0.956342 0.292250i \(-0.905596\pi\)
0.956342 0.292250i \(-0.0944039\pi\)
\(462\) 232.208 + 188.110i 0.502614 + 0.407165i
\(463\) 369.738i 0.798570i 0.916827 + 0.399285i \(0.130742\pi\)
−0.916827 + 0.399285i \(0.869258\pi\)
\(464\) −46.2520 80.1109i −0.0996811 0.172653i
\(465\) 0 0
\(466\) −150.343 + 260.402i −0.322625 + 0.558802i
\(467\) 145.295 + 251.659i 0.311125 + 0.538884i 0.978606 0.205742i \(-0.0659609\pi\)
−0.667481 + 0.744627i \(0.732628\pi\)
\(468\) 427.690 0.913868
\(469\) 248.520 + 201.325i 0.529894 + 0.429265i
\(470\) 0 0
\(471\) 36.5375 + 63.2848i 0.0775744 + 0.134363i
\(472\) −110.073 + 190.652i −0.233205 + 0.403924i
\(473\) −182.860 105.575i −0.386597 0.223202i
\(474\) 267.817 154.624i 0.565014 0.326211i
\(475\) 0 0
\(476\) −4.12172 10.7435i −0.00865907 0.0225703i
\(477\) 186.623i 0.391244i
\(478\) −212.621 + 122.757i −0.444814 + 0.256813i
\(479\) 520.829 + 300.701i 1.08733 + 0.627768i 0.932863 0.360231i \(-0.117302\pi\)
0.154462 + 0.987999i \(0.450635\pi\)
\(480\) 0 0
\(481\) −734.897 + 424.293i −1.52785 + 0.882107i
\(482\) −104.797 −0.217420
\(483\) −26.9515 + 169.959i −0.0558002 + 0.351881i
\(484\) 144.544 0.298644
\(485\) 0 0
\(486\) −426.405 246.185i −0.877376 0.506553i
\(487\) −38.6662 22.3240i −0.0793968 0.0458397i 0.459776 0.888035i \(-0.347930\pi\)
−0.539173 + 0.842195i \(0.681263\pi\)
\(488\) 21.7449 + 37.6632i 0.0445592 + 0.0771788i
\(489\) 526.668i 1.07703i
\(490\) 0 0
\(491\) 471.503 0.960291 0.480146 0.877189i \(-0.340584\pi\)
0.480146 + 0.877189i \(0.340584\pi\)
\(492\) 448.568 258.981i 0.911724 0.526384i
\(493\) −9.50396 + 16.4613i −0.0192778 + 0.0333902i
\(494\) −576.750 + 998.960i −1.16751 + 2.02219i
\(495\) 0 0
\(496\) 29.8191i 0.0601191i
\(497\) −683.447 108.379i −1.37515 0.218066i
\(498\) 213.951i 0.429620i
\(499\) −187.457 324.686i −0.375666 0.650673i 0.614760 0.788714i \(-0.289253\pi\)
−0.990426 + 0.138041i \(0.955919\pi\)
\(500\) 0 0
\(501\) −435.582 + 754.450i −0.869425 + 1.50589i
\(502\) −20.3535 35.2532i −0.0405447 0.0702255i
\(503\) 68.1151 0.135418 0.0677089 0.997705i \(-0.478431\pi\)
0.0677089 + 0.997705i \(0.478431\pi\)
\(504\) 179.333 68.8010i 0.355820 0.136510i
\(505\) 0 0
\(506\) −28.0592 48.6000i −0.0554530 0.0960474i
\(507\) 685.176 1186.76i 1.35143 2.34075i
\(508\) 348.260 + 201.068i 0.685552 + 0.395803i
\(509\) 290.425 167.677i 0.570580 0.329424i −0.186801 0.982398i \(-0.559812\pi\)
0.757381 + 0.652973i \(0.226479\pi\)
\(510\) 0 0
\(511\) −83.0388 + 102.505i −0.162503 + 0.200597i
\(512\) 22.6274i 0.0441942i
\(513\) −97.2027 + 56.1200i −0.189479 + 0.109396i
\(514\) 108.457 + 62.6176i 0.211006 + 0.121824i
\(515\) 0 0
\(516\) −226.567 + 130.809i −0.439084 + 0.253505i
\(517\) 444.841 0.860428
\(518\) −239.893 + 296.129i −0.463113 + 0.571678i
\(519\) −796.992 −1.53563
\(520\) 0 0
\(521\) 170.918 + 98.6797i 0.328058 + 0.189405i 0.654979 0.755647i \(-0.272678\pi\)
−0.326920 + 0.945052i \(0.606011\pi\)
\(522\) −274.778 158.643i −0.526394 0.303914i
\(523\) −100.434 173.956i −0.192034 0.332612i 0.753890 0.657000i \(-0.228175\pi\)
−0.945924 + 0.324388i \(0.894842\pi\)
\(524\) 301.209i 0.574826i
\(525\) 0 0
\(526\) −207.672 −0.394813
\(527\) 5.30638 3.06364i 0.0100690 0.00581336i
\(528\) −60.3750 + 104.573i −0.114347 + 0.198054i
\(529\) −248.343 + 430.142i −0.469457 + 0.813123i
\(530\) 0 0
\(531\) 755.093i 1.42202i
\(532\) −81.1359 + 511.650i −0.152511 + 0.961749i
\(533\) 1320.06i 2.47667i
\(534\) −252.854 437.956i −0.473509 0.820142i
\(535\) 0 0
\(536\) −64.6164 + 111.919i −0.120553 + 0.208804i
\(537\) 360.791 + 624.909i 0.671865 + 1.16370i
\(538\) −655.261 −1.21796
\(539\) 254.276 228.779i 0.471756 0.424450i
\(540\) 0 0
\(541\) 504.286 + 873.448i 0.932136 + 1.61451i 0.779663 + 0.626199i \(0.215390\pi\)
0.152473 + 0.988308i \(0.451276\pi\)
\(542\) −179.501 + 310.906i −0.331183 + 0.573626i
\(543\) −580.225 334.993i −1.06855 0.616930i
\(544\) 4.02661 2.32476i 0.00740185 0.00427346i
\(545\) 0 0
\(546\) 147.796 932.012i 0.270688 1.70698i
\(547\) 476.537i 0.871184i 0.900144 + 0.435592i \(0.143461\pi\)
−0.900144 + 0.435592i \(0.856539\pi\)
\(548\) 326.441 188.471i 0.595696 0.343925i
\(549\) 129.184 + 74.5842i 0.235307 + 0.135855i
\(550\) 0 0
\(551\) 741.088 427.867i 1.34499 0.776529i
\(552\) −69.5317 −0.125963
\(553\) −126.786 330.473i −0.229269 0.597600i
\(554\) 152.535 0.275335
\(555\) 0 0
\(556\) −93.5962 54.0378i −0.168338 0.0971903i
\(557\) −477.207 275.515i −0.856745 0.494642i 0.00617608 0.999981i \(-0.498034\pi\)
−0.862921 + 0.505339i \(0.831367\pi\)
\(558\) 51.1392 + 88.5757i 0.0916473 + 0.158738i
\(559\) 666.751i 1.19276i
\(560\) 0 0
\(561\) 24.8119 0.0442281
\(562\) 33.1959 19.1656i 0.0590674 0.0341026i
\(563\) −181.277 + 313.980i −0.321984 + 0.557692i −0.980897 0.194527i \(-0.937683\pi\)
0.658914 + 0.752219i \(0.271016\pi\)
\(564\) 275.583 477.324i 0.488622 0.846319i
\(565\) 0 0
\(566\) 480.057i 0.848157i
\(567\) −326.924 + 403.563i −0.576586 + 0.711751i
\(568\) 279.605i 0.492262i
\(569\) −137.129 237.514i −0.241000 0.417424i 0.719999 0.693975i \(-0.244142\pi\)
−0.960999 + 0.276550i \(0.910809\pi\)
\(570\) 0 0
\(571\) −68.1841 + 118.098i −0.119412 + 0.206827i −0.919535 0.393009i \(-0.871434\pi\)
0.800123 + 0.599836i \(0.204768\pi\)
\(572\) 153.870 + 266.511i 0.269004 + 0.465928i
\(573\) −585.014 −1.02097
\(574\) −212.354 553.512i −0.369955 0.964306i
\(575\) 0 0
\(576\) 38.8056 + 67.2133i 0.0673709 + 0.116690i
\(577\) 282.342 489.031i 0.489328 0.847541i −0.510596 0.859821i \(-0.670575\pi\)
0.999925 + 0.0122791i \(0.00390867\pi\)
\(578\) 353.124 + 203.876i 0.610941 + 0.352727i
\(579\) 398.746 230.216i 0.688680 0.397610i
\(580\) 0 0
\(581\) −241.861 38.3536i −0.416284 0.0660131i
\(582\) 1084.34i 1.86312i
\(583\) −116.293 + 67.1415i −0.199473 + 0.115166i
\(584\) −46.1622 26.6517i −0.0790448 0.0456365i
\(585\) 0 0
\(586\) −121.362 + 70.0686i −0.207103 + 0.119571i
\(587\) −282.316 −0.480947 −0.240473 0.970656i \(-0.577303\pi\)
−0.240473 + 0.970656i \(0.577303\pi\)
\(588\) −87.9578 414.574i −0.149588 0.705058i
\(589\) −275.849 −0.468335
\(590\) 0 0
\(591\) −890.126 513.914i −1.50613 0.869567i
\(592\) −133.359 76.9948i −0.225269 0.130059i
\(593\) −522.130 904.355i −0.880489 1.52505i −0.850798 0.525492i \(-0.823881\pi\)
−0.0296904 0.999559i \(-0.509452\pi\)
\(594\) 29.9443i 0.0504113i
\(595\) 0 0
\(596\) 182.561 0.306310
\(597\) 716.635 413.749i 1.20039 0.693047i
\(598\) −88.6034 + 153.466i −0.148166 + 0.256631i
\(599\) 446.783 773.850i 0.745881 1.29190i −0.203901 0.978992i \(-0.565362\pi\)
0.949782 0.312912i \(-0.101305\pi\)
\(600\) 0 0
\(601\) 158.211i 0.263246i −0.991300 0.131623i \(-0.957981\pi\)
0.991300 0.131623i \(-0.0420188\pi\)
\(602\) 107.258 + 279.573i 0.178169 + 0.464407i
\(603\) 443.264i 0.735098i
\(604\) 191.201 + 331.169i 0.316557 + 0.548293i
\(605\) 0 0
\(606\) −154.792 + 268.108i −0.255433 + 0.442422i
\(607\) −329.285 570.339i −0.542480 0.939602i −0.998761 0.0497666i \(-0.984152\pi\)
0.456281 0.889836i \(-0.349181\pi\)
\(608\) −209.321 −0.344278
\(609\) −440.665 + 543.967i −0.723588 + 0.893214i
\(610\) 0 0
\(611\) −702.344 1216.49i −1.14950 1.99099i
\(612\) 7.97386 13.8111i 0.0130292 0.0225672i
\(613\) −233.226 134.653i −0.380467 0.219663i 0.297555 0.954705i \(-0.403829\pi\)
−0.678021 + 0.735042i \(0.737162\pi\)
\(614\) 411.397 237.520i 0.670028 0.386841i
\(615\) 0 0
\(616\) 107.391 + 86.9972i 0.174337 + 0.141229i
\(617\) 595.352i 0.964914i −0.875920 0.482457i \(-0.839744\pi\)
0.875920 0.482457i \(-0.160256\pi\)
\(618\) 688.151 397.304i 1.11351 0.642887i
\(619\) −138.279 79.8352i −0.223390 0.128975i 0.384129 0.923280i \(-0.374502\pi\)
−0.607519 + 0.794305i \(0.707835\pi\)
\(620\) 0 0
\(621\) −14.9328 + 8.62145i −0.0240464 + 0.0138832i
\(622\) −53.3450 −0.0857637
\(623\) −540.416 + 207.330i −0.867442 + 0.332793i
\(624\) 381.295 0.611050
\(625\) 0 0
\(626\) 358.806 + 207.157i 0.573172 + 0.330921i
\(627\) −967.377 558.515i −1.54287 0.890774i
\(628\) 16.8979 + 29.2680i 0.0269074 + 0.0466050i
\(629\) 31.6421i 0.0503054i
\(630\) 0 0
\(631\) −671.814 −1.06468 −0.532341 0.846530i \(-0.678688\pi\)
−0.532341 + 0.846530i \(0.678688\pi\)
\(632\) 123.860 71.5105i 0.195981 0.113150i
\(633\) 67.5575 117.013i 0.106726 0.184855i
\(634\) 192.117 332.756i 0.303023 0.524852i
\(635\) 0 0
\(636\) 166.379i 0.261602i
\(637\) −1027.10 334.152i −1.61241 0.524572i
\(638\) 228.300i 0.357837i
\(639\) −479.518 830.549i −0.750419 1.29976i
\(640\) 0 0
\(641\) 349.371 605.129i 0.545041 0.944039i −0.453563 0.891224i \(-0.649847\pi\)
0.998604 0.0528149i \(-0.0168193\pi\)
\(642\) −374.833 649.230i −0.583852 1.01126i
\(643\) 965.126 1.50097 0.750486 0.660886i \(-0.229819\pi\)
0.750486 + 0.660886i \(0.229819\pi\)
\(644\) −12.4645 + 78.6024i −0.0193549 + 0.122053i
\(645\) 0 0
\(646\) 21.5059 + 37.2493i 0.0332908 + 0.0576614i
\(647\) 448.968 777.635i 0.693922 1.20191i −0.276620 0.960979i \(-0.589214\pi\)
0.970543 0.240929i \(-0.0774522\pi\)
\(648\) −181.741 104.928i −0.280464 0.161926i
\(649\) −470.529 + 271.660i −0.725006 + 0.418582i
\(650\) 0 0
\(651\) 210.694 80.8325i 0.323647 0.124167i
\(652\) 243.573i 0.373579i
\(653\) −627.141 + 362.080i −0.960399 + 0.554487i −0.896296 0.443456i \(-0.853752\pi\)
−0.0641035 + 0.997943i \(0.520419\pi\)
\(654\) −36.8936 21.3005i −0.0564122 0.0325696i
\(655\) 0 0
\(656\) 207.454 119.773i 0.316240 0.182582i
\(657\) −182.829 −0.278279
\(658\) −490.190 397.101i −0.744970 0.603497i
\(659\) −29.5936 −0.0449069 −0.0224534 0.999748i \(-0.507148\pi\)
−0.0224534 + 0.999748i \(0.507148\pi\)
\(660\) 0 0
\(661\) 435.031 + 251.166i 0.658141 + 0.379978i 0.791568 0.611080i \(-0.209265\pi\)
−0.133427 + 0.991059i \(0.542598\pi\)
\(662\) −293.308 169.341i −0.443063 0.255803i
\(663\) −39.1747 67.8525i −0.0590870 0.102342i
\(664\) 98.9478i 0.149018i
\(665\) 0 0
\(666\) −528.179 −0.793062
\(667\) 113.850 65.7312i 0.170689 0.0985476i
\(668\) −201.448 + 348.918i −0.301569 + 0.522332i
\(669\) 237.282 410.984i 0.354681 0.614326i
\(670\) 0 0
\(671\) 107.333i 0.159959i
\(672\) 159.880 61.3376i 0.237916 0.0912762i
\(673\) 454.895i 0.675921i −0.941160 0.337960i \(-0.890263\pi\)
0.941160 0.337960i \(-0.109737\pi\)
\(674\) −101.118 175.142i −0.150027 0.259855i
\(675\) 0 0
\(676\) 316.880 548.852i 0.468757 0.811911i
\(677\) 353.064 + 611.526i 0.521513 + 0.903287i 0.999687 + 0.0250221i \(0.00796563\pi\)
−0.478174 + 0.878265i \(0.658701\pi\)
\(678\) −727.624 −1.07319
\(679\) 1225.79 + 194.382i 1.80529 + 0.286277i
\(680\) 0 0
\(681\) 67.5918 + 117.073i 0.0992538 + 0.171913i
\(682\) −36.7967 + 63.7337i −0.0539541 + 0.0934512i
\(683\) 429.889 + 248.196i 0.629413 + 0.363392i 0.780525 0.625125i \(-0.214952\pi\)
−0.151112 + 0.988517i \(0.548285\pi\)
\(684\) −621.776 + 358.982i −0.909029 + 0.524828i
\(685\) 0 0
\(686\) −484.425 + 25.1140i −0.706158 + 0.0366093i
\(687\) 785.479i 1.14335i
\(688\) −104.783 + 60.4964i −0.152301 + 0.0879308i
\(689\) 367.220 + 212.015i 0.532976 + 0.307714i
\(690\) 0 0
\(691\) −229.329 + 132.403i −0.331879 + 0.191611i −0.656675 0.754173i \(-0.728038\pi\)
0.324796 + 0.945784i \(0.394704\pi\)
\(692\) −368.593 −0.532648
\(693\) 468.198 + 74.2454i 0.675611 + 0.107136i
\(694\) 669.538 0.964752
\(695\) 0 0
\(696\) −244.970 141.434i −0.351969 0.203209i
\(697\) −42.6280 24.6113i −0.0611593 0.0353103i
\(698\) 253.871 + 439.717i 0.363712 + 0.629968i
\(699\) 919.466i 1.31540i
\(700\) 0 0
\(701\) −1349.57 −1.92521 −0.962603 0.270915i \(-0.912674\pi\)
−0.962603 + 0.270915i \(0.912674\pi\)
\(702\) 81.8879 47.2780i 0.116649 0.0673475i
\(703\) 712.262 1233.67i 1.01318 1.75487i
\(704\) −27.9222 + 48.3627i −0.0396622 + 0.0686970i
\(705\) 0 0
\(706\) 381.540i 0.540425i
\(707\) 275.335 + 223.047i 0.389441 + 0.315484i
\(708\) 673.183i 0.950823i
\(709\) −426.332 738.429i −0.601315 1.04151i −0.992622 0.121248i \(-0.961310\pi\)
0.391308 0.920260i \(-0.372023\pi\)
\(710\) 0 0
\(711\) 245.279 424.835i 0.344977 0.597518i
\(712\) −116.940 202.546i −0.164241 0.284474i
\(713\) −42.3774 −0.0594354
\(714\) −27.3414 22.1491i −0.0382933 0.0310212i
\(715\) 0 0
\(716\) 166.859 + 289.008i 0.233043 + 0.403642i
\(717\) −375.377 + 650.172i −0.523539 + 0.906795i
\(718\) 165.776 + 95.7108i 0.230886 + 0.133302i
\(719\) 1161.76 670.740i 1.61579 0.932879i 0.627802 0.778373i \(-0.283955\pi\)
0.987992 0.154506i \(-0.0493786\pi\)
\(720\) 0 0
\(721\) −325.774 849.146i −0.451836 1.17773i
\(722\) 1425.85i 1.97487i
\(723\) −277.524 + 160.228i −0.383850 + 0.221616i
\(724\) −268.342 154.927i −0.370638 0.213988i
\(725\) 0 0
\(726\) 382.783 221.000i 0.527249 0.304407i
\(727\) 729.033 1.00280 0.501398 0.865217i \(-0.332819\pi\)
0.501398 + 0.865217i \(0.332819\pi\)
\(728\) 68.3525 431.037i 0.0938908 0.592084i
\(729\) −837.856 −1.14932
\(730\) 0 0
\(731\) 21.5310 + 12.4309i 0.0294541 + 0.0170054i
\(732\) 115.170 + 66.4935i 0.157336 + 0.0908381i
\(733\) 237.568 + 411.479i 0.324103 + 0.561363i 0.981330 0.192329i \(-0.0616042\pi\)
−0.657227 + 0.753692i \(0.728271\pi\)
\(734\) 902.531i 1.22961i
\(735\) 0 0
\(736\) −32.1570 −0.0436916
\(737\) −276.215 + 159.473i −0.374783 + 0.216381i
\(738\) 410.819 711.559i 0.556665 0.964173i
\(739\) −258.051 + 446.958i −0.349190 + 0.604815i −0.986106 0.166119i \(-0.946877\pi\)
0.636916 + 0.770933i \(0.280210\pi\)
\(740\) 0 0
\(741\) 3527.28i 4.76016i
\(742\) 188.084 + 29.8258i 0.253482 + 0.0401964i
\(743\) 292.423i 0.393570i −0.980447 0.196785i \(-0.936950\pi\)
0.980447 0.196785i \(-0.0630501\pi\)
\(744\) 45.5917 + 78.9672i 0.0612792 + 0.106139i
\(745\) 0 0
\(746\) 49.8218 86.2938i 0.0667852 0.115675i
\(747\) −169.694 293.918i −0.227167 0.393465i
\(748\) 11.4750 0.0153409
\(749\) −801.119 + 307.348i −1.06958 + 0.410345i
\(750\) 0 0
\(751\) 7.11394 + 12.3217i 0.00947262 + 0.0164071i 0.870723 0.491774i \(-0.163651\pi\)
−0.861250 + 0.508181i \(0.830318\pi\)
\(752\) 127.452 220.753i 0.169483 0.293554i
\(753\) −107.801 62.2387i −0.143161 0.0826543i
\(754\) −624.325 + 360.454i −0.828018 + 0.478056i
\(755\) 0 0
\(756\) 26.7307 32.9970i 0.0353580 0.0436468i
\(757\) 26.6276i 0.0351751i 0.999845 + 0.0175876i \(0.00559858\pi\)
−0.999845 + 0.0175876i \(0.994401\pi\)
\(758\) 99.4075 57.3929i 0.131144 0.0757163i
\(759\) −148.614 85.8021i −0.195802 0.113046i
\(760\) 0 0
\(761\) 300.850 173.696i 0.395336 0.228247i −0.289134 0.957289i \(-0.593367\pi\)
0.684469 + 0.729042i \(0.260034\pi\)
\(762\) 1229.69 1.61377
\(763\) −30.6929 + 37.8881i −0.0402266 + 0.0496567i
\(764\) −270.557 −0.354132
\(765\) 0 0
\(766\) 671.983 + 387.969i 0.877262 + 0.506488i
\(767\) 1485.80 + 857.828i 1.93716 + 1.11842i
\(768\) 34.5961 + 59.9222i 0.0450470 + 0.0780237i
\(769\) 641.651i 0.834396i −0.908816 0.417198i \(-0.863012\pi\)
0.908816 0.417198i \(-0.136988\pi\)
\(770\) 0 0
\(771\) 382.956 0.496700
\(772\) 184.412 106.470i 0.238876 0.137915i
\(773\) −214.517 + 371.554i −0.277512 + 0.480665i −0.970766 0.240029i \(-0.922843\pi\)
0.693254 + 0.720693i \(0.256176\pi\)
\(774\) −207.501 + 359.402i −0.268089 + 0.464343i
\(775\) 0 0
\(776\) 501.483i 0.646241i
\(777\) −182.521 + 1151.00i −0.234905 + 1.48133i
\(778\) 419.909i 0.539728i
\(779\) 1108.00 + 1919.11i 1.42233 + 2.46355i
\(780\) 0 0
\(781\) 345.032 597.613i 0.441783 0.765190i
\(782\) 3.30384 + 5.72243i 0.00422486 + 0.00731768i
\(783\) −70.1472 −0.0895878
\(784\) −40.6787 191.732i −0.0518861 0.244556i
\(785\) 0 0
\(786\) 460.532 + 797.665i 0.585919 + 1.01484i
\(787\) −430.010 + 744.799i −0.546392 + 0.946378i 0.452126 + 0.891954i \(0.350666\pi\)
−0.998518 + 0.0544240i \(0.982668\pi\)
\(788\) −411.665 237.675i −0.522418 0.301618i
\(789\) −549.959 + 317.519i −0.697033 + 0.402432i
\(790\) 0 0
\(791\) −130.437 + 822.546i −0.164901 + 1.03988i
\(792\) 191.544i 0.241849i
\(793\) 293.520 169.464i 0.370138 0.213699i
\(794\) 610.285 + 352.348i 0.768621 + 0.443764i
\(795\) 0 0
\(796\) 331.429 191.351i 0.416368 0.240390i
\(797\) 428.249 0.537326 0.268663 0.963234i \(-0.413418\pi\)
0.268663 + 0.963234i \(0.413418\pi\)
\(798\) 567.421 + 1479.01i 0.711053 + 1.85340i
\(799\) −52.3780 −0.0655544
\(800\) 0 0
\(801\) −694.725 401.100i −0.867322 0.500749i
\(802\) 489.543 + 282.638i 0.610403 + 0.352416i
\(803\) −65.7764 113.928i −0.0819134 0.141878i
\(804\) 395.180i 0.491517i
\(805\) 0 0
\(806\) 232.388 0.288322
\(807\) −1735.27 + 1001.86i −2.15027 + 1.24146i
\(808\) −71.5882 + 123.994i −0.0885993 + 0.153459i
\(809\) −260.622 + 451.410i −0.322153 + 0.557986i −0.980932 0.194351i \(-0.937740\pi\)
0.658779 + 0.752337i \(0.271073\pi\)
\(810\) 0 0
\(811\) 466.461i 0.575168i −0.957755 0.287584i \(-0.907148\pi\)
0.957755 0.287584i \(-0.0928520\pi\)
\(812\) −203.799 + 251.574i −0.250984 + 0.309820i
\(813\) 1097.79i 1.35030i
\(814\) −190.023 329.130i −0.233444 0.404336i
\(815\) 0 0
\(816\) 7.10888 12.3129i 0.00871186 0.0150894i
\(817\) −559.639 969.323i −0.684992 1.18644i
\(818\) 413.673 0.505713
\(819\) −536.184 1397.59i −0.654682 1.70646i
\(820\) 0 0
\(821\) −69.8347 120.957i −0.0850605 0.147329i 0.820356 0.571852i \(-0.193775\pi\)
−0.905417 + 0.424523i \(0.860442\pi\)
\(822\) 576.324 998.223i 0.701124 1.21438i
\(823\) 290.590 + 167.772i 0.353087 + 0.203855i 0.666044 0.745913i \(-0.267986\pi\)
−0.312957 + 0.949767i \(0.601320\pi\)
\(824\) 318.256 183.745i 0.386233 0.222992i
\(825\) 0 0
\(826\) 761.002 + 120.677i 0.921310 + 0.146098i
\(827\) 1444.99i 1.74727i 0.486583 + 0.873634i \(0.338243\pi\)
−0.486583 + 0.873634i \(0.661757\pi\)
\(828\) −95.5204 + 55.1488i −0.115363 + 0.0666048i
\(829\) −137.763 79.5378i −0.166180 0.0959442i 0.414603 0.910002i \(-0.363920\pi\)
−0.580783 + 0.814058i \(0.697254\pi\)
\(830\) 0 0
\(831\) 403.946 233.218i 0.486096 0.280648i
\(832\) 176.341 0.211949
\(833\) −29.9399 + 26.9376i −0.0359422 + 0.0323381i
\(834\) −330.484 −0.396263
\(835\) 0 0
\(836\) −447.392 258.302i −0.535158 0.308974i
\(837\) 19.5828 + 11.3061i 0.0233964 + 0.0135079i
\(838\) −430.367 745.418i −0.513565 0.889521i
\(839\) 529.134i 0.630672i −0.948980 0.315336i \(-0.897883\pi\)
0.948980 0.315336i \(-0.102117\pi\)
\(840\) 0 0
\(841\) −306.187 −0.364075
\(842\) −274.941 + 158.737i −0.326533 + 0.188524i
\(843\) 58.6065 101.509i 0.0695213 0.120414i
\(844\) 31.2440 54.1162i 0.0370189 0.0641187i
\(845\) 0 0
\(846\) 874.309i 1.03346i
\(847\) −181.211 472.335i −0.213944 0.557657i
\(848\) 76.9469i 0.0907393i
\(849\) 733.981 + 1271.29i 0.864524 + 1.49740i
\(850\) 0 0
\(851\) 109.421 189.524i 0.128580 0.222707i
\(852\) −427.501 740.454i −0.501762 0.869077i
\(853\) 465.605 0.545844 0.272922 0.962036i \(-0.412010\pi\)
0.272922 + 0.962036i \(0.412010\pi\)
\(854\) 95.8137 118.275i 0.112194 0.138495i
\(855\) 0 0
\(856\) −173.353 300.256i −0.202515 0.350766i
\(857\) −728.046 + 1261.01i −0.849528 + 1.47143i 0.0321012 + 0.999485i \(0.489780\pi\)
−0.881630 + 0.471942i \(0.843553\pi\)
\(858\) 814.961 + 470.518i 0.949838 + 0.548389i
\(859\) 251.769 145.359i 0.293095 0.169219i −0.346242 0.938145i \(-0.612542\pi\)
0.639337 + 0.768927i \(0.279209\pi\)
\(860\) 0 0
\(861\) −1408.65 1141.14i −1.63606 1.32536i
\(862\) 41.0411i 0.0476115i
\(863\) −625.465 + 361.112i −0.724756 + 0.418438i −0.816501 0.577344i \(-0.804089\pi\)
0.0917446 + 0.995783i \(0.470756\pi\)
\(864\) 14.8599 + 8.57935i 0.0171989 + 0.00992980i
\(865\) 0 0
\(866\) −177.265 + 102.344i −0.204694 + 0.118180i
\(867\) 1246.86 1.43813
\(868\) 97.4417 37.3834i 0.112260 0.0430684i
\(869\) 352.976 0.406186
\(870\) 0 0
\(871\) 872.213 + 503.572i 1.00139 + 0.578154i
\(872\) −17.0625 9.85105i −0.0195671 0.0112971i
\(873\) 860.035 + 1489.62i 0.985149 + 1.70633i
\(874\) 297.477i 0.340363i
\(875\) 0 0
\(876\) −162.996 −0.186069
\(877\) 767.986 443.397i 0.875697 0.505584i 0.00645970 0.999979i \(-0.497944\pi\)
0.869237 + 0.494395i \(0.164610\pi\)
\(878\) 51.9268 89.9399i 0.0591422 0.102437i
\(879\) −214.262 + 371.113i −0.243757 + 0.422199i
\(880\) 0 0
\(881\) 387.945i 0.440346i −0.975461 0.220173i \(-0.929338\pi\)
0.975461 0.220173i \(-0.0706622\pi\)
\(882\) −449.651 499.765i −0.509808 0.566627i
\(883\) 840.331i 0.951677i −0.879533 0.475839i \(-0.842145\pi\)
0.879533 0.475839i \(-0.157855\pi\)
\(884\) −18.1175 31.3804i −0.0204949 0.0354982i
\(885\) 0 0
\(886\) 329.099 570.017i 0.371444 0.643360i
\(887\) −543.709 941.731i −0.612975 1.06170i −0.990736 0.135801i \(-0.956639\pi\)
0.377761 0.925903i \(-0.376694\pi\)
\(888\) −470.884 −0.530275
\(889\) 220.439 1390.11i 0.247963 1.56367i
\(890\) 0 0
\(891\) −258.962 448.536i −0.290642 0.503407i
\(892\) 109.738 190.072i 0.123025 0.213085i
\(893\) 2042.13 + 1179.03i 2.28682 + 1.32030i
\(894\) 483.460 279.126i 0.540783 0.312221i
\(895\) 0 0
\(896\) 73.9411 28.3674i 0.0825236 0.0316601i
\(897\) 541.879i 0.604102i
\(898\) −934.622 + 539.604i −1.04078 + 0.600896i
\(899\) −149.302 86.1995i −0.166076 0.0958838i
\(900\) 0 0
\(901\) 13.6929 7.90561i 0.0151975 0.00877426i
\(902\) 591.201 0.655434
\(903\) 711.494 + 576.378i 0.787922 + 0.638292i
\(904\) −336.512 −0.372247
\(905\) 0 0
\(906\) 1012.68 + 584.671i 1.11775 + 0.645332i
\(907\) 538.448 + 310.873i 0.593659 + 0.342749i 0.766543 0.642193i \(-0.221975\pi\)
−0.172884 + 0.984942i \(0.555309\pi\)
\(908\) 31.2599 + 54.1437i 0.0344272 + 0.0596296i
\(909\) 491.091i 0.540254i
\(910\) 0 0
\(911\) −389.751 −0.427828 −0.213914 0.976853i \(-0.568621\pi\)
−0.213914 + 0.976853i \(0.568621\pi\)
\(912\) −554.327 + 320.041i −0.607815 + 0.350922i
\(913\) 122.101 211.486i 0.133737 0.231639i
\(914\) 198.644 344.062i 0.217335 0.376435i
\(915\) 0 0
\(916\) 363.268i 0.396581i
\(917\) 984.280 377.618i 1.07337 0.411797i
\(918\) 3.52580i 0.00384075i
\(919\) −496.225 859.486i −0.539962 0.935241i −0.998905 0.0467756i \(-0.985105\pi\)
0.458944 0.888465i \(-0.348228\pi\)
\(920\) 0 0
\(921\) 726.311 1258.01i 0.788611 1.36591i
\(922\) −190.533 330.013i −0.206652 0.357932i
\(923\) −2179.04 −2.36082
\(924\) 417.409 + 66.1915i 0.451741 + 0.0716358i
\(925\) 0 0
\(926\) 261.444 + 452.835i 0.282337 + 0.489022i
\(927\) 630.240 1091.61i 0.679871 1.17757i
\(928\) −113.294 65.4103i −0.122084 0.0704852i
\(929\) −466.320 + 269.230i −0.501959 + 0.289806i −0.729522 0.683957i \(-0.760258\pi\)
0.227563 + 0.973763i \(0.426924\pi\)
\(930\) 0 0
\(931\) 1773.67 376.310i 1.90513 0.404199i
\(932\) 425.235i 0.456260i
\(933\) −141.269 + 81.5617i −0.151414 + 0.0874187i
\(934\) 355.900 + 205.479i 0.381049 + 0.219999i
\(935\) 0 0
\(936\) 523.811 302.423i 0.559628 0.323101i
\(937\) −309.686 −0.330508 −0.165254 0.986251i \(-0.552844\pi\)
−0.165254 + 0.986251i \(0.552844\pi\)
\(938\) 446.732 + 70.8415i 0.476261 + 0.0755239i
\(939\) 1266.92 1.34923
\(940\) 0 0
\(941\) 139.993 + 80.8250i 0.148770 + 0.0858927i 0.572537 0.819879i \(-0.305959\pi\)
−0.423767 + 0.905771i \(0.639292\pi\)
\(942\) 89.4983 + 51.6719i 0.0950088 + 0.0548533i
\(943\) 170.216 + 294.824i 0.180505 + 0.312644i
\(944\) 311.333i 0.329802i
\(945\) 0 0
\(946\) −298.610 −0.315655
\(947\) −4.36722 + 2.52141i −0.00461163 + 0.00266253i −0.502304 0.864691i \(-0.667514\pi\)
0.497692 + 0.867354i \(0.334181\pi\)
\(948\) 218.671 378.750i 0.230666 0.399525i
\(949\) −207.704 + 359.754i −0.218866 + 0.379088i
\(950\) 0 0
\(951\) 1174.95i 1.23548i
\(952\) −12.6448 10.2435i −0.0132824 0.0107600i
\(953\) 531.467i 0.557678i 0.960338 + 0.278839i \(0.0899495\pi\)
−0.960338 + 0.278839i \(0.910050\pi\)
\(954\) 131.963 + 228.566i 0.138326 + 0.239587i
\(955\) 0 0
\(956\) −173.604 + 300.692i −0.181595 + 0.314531i
\(957\) −349.058 604.587i −0.364742 0.631752i
\(958\) 850.510 0.887797
\(959\) −1025.13 830.453i −1.06896 0.865958i
\(960\) 0 0
\(961\) −452.713 784.122i −0.471086 0.815944i
\(962\) −600.041 + 1039.30i −0.623744 + 1.08036i
\(963\) −1029.87 594.594i −1.06944 0.617440i
\(964\) −128.349 + 74.1024i −0.133142 + 0.0768697i
\(965\) 0 0
\(966\) 87.1701 + 227.213i 0.0902382 + 0.235211i
\(967\) 666.012i 0.688740i 0.938834 + 0.344370i \(0.111907\pi\)
−0.938834 + 0.344370i \(0.888093\pi\)
\(968\) 177.029 102.208i 0.182881 0.105587i
\(969\) 113.904 + 65.7626i 0.117548 + 0.0678665i
\(970\) 0 0
\(971\) 12.6436 7.29978i 0.0130212 0.00751780i −0.493475 0.869760i \(-0.664274\pi\)
0.506496 + 0.862242i \(0.330940\pi\)
\(972\) −696.316 −0.716374
\(973\) −59.2438 + 373.596i −0.0608877 + 0.383963i
\(974\) −63.1417 −0.0648272
\(975\) 0 0
\(976\) 53.2639 + 30.7519i 0.0545736 + 0.0315081i
\(977\) −391.731 226.166i −0.400953 0.231490i 0.285942 0.958247i \(-0.407693\pi\)
−0.686895 + 0.726757i \(0.741027\pi\)
\(978\) −372.410 645.034i −0.380788 0.659544i
\(979\) 577.214i 0.589596i
\(980\) 0 0
\(981\) −67.5776 −0.0688864
\(982\) 577.471 333.403i 0.588056 0.339514i
\(983\) 466.290 807.639i 0.474354 0.821606i −0.525214 0.850970i \(-0.676015\pi\)
0.999569 + 0.0293640i \(0.00934819\pi\)
\(984\) 366.254 634.371i 0.372210 0.644686i
\(985\) 0 0
\(986\) 26.8813i 0.0272629i
\(987\) −1905.27 302.132i −1.93037 0.306112i
\(988\) 1631.30i 1.65111i
\(989\) −85.9746 148.912i −0.0869309 0.150569i
\(990\) 0 0
\(991\) −105.284 + 182.356i −0.106240 + 0.184013i −0.914244 0.405164i \(-0.867214\pi\)
0.808004 + 0.589177i \(0.200548\pi\)
\(992\) 21.0853 + 36.5207i 0.0212553 + 0.0368153i
\(993\) −1035.66 −1.04296
\(994\) −913.684 + 350.534i −0.919199 + 0.352650i
\(995\) 0 0
\(996\) −151.286 262.035i −0.151893 0.263087i
\(997\) 853.836 1478.89i 0.856405 1.48334i −0.0189301 0.999821i \(-0.506026\pi\)
0.875335 0.483516i \(-0.160641\pi\)
\(998\) −459.175 265.105i −0.460095 0.265636i
\(999\) −101.128 + 58.3863i −0.101229 + 0.0584448i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.3.i.b.199.8 16
5.2 odd 4 350.3.k.b.101.3 8
5.3 odd 4 70.3.j.a.31.2 8
5.4 even 2 inner 350.3.i.b.199.1 16
7.5 odd 6 inner 350.3.i.b.299.1 16
15.8 even 4 630.3.v.a.451.3 8
20.3 even 4 560.3.bx.a.241.1 8
35.3 even 12 490.3.b.b.391.8 8
35.12 even 12 350.3.k.b.201.3 8
35.13 even 4 490.3.j.a.31.1 8
35.18 odd 12 490.3.b.b.391.5 8
35.19 odd 6 inner 350.3.i.b.299.8 16
35.23 odd 12 490.3.j.a.411.1 8
35.33 even 12 70.3.j.a.61.2 yes 8
105.68 odd 12 630.3.v.a.271.3 8
140.103 odd 12 560.3.bx.a.481.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.3.j.a.31.2 8 5.3 odd 4
70.3.j.a.61.2 yes 8 35.33 even 12
350.3.i.b.199.1 16 5.4 even 2 inner
350.3.i.b.199.8 16 1.1 even 1 trivial
350.3.i.b.299.1 16 7.5 odd 6 inner
350.3.i.b.299.8 16 35.19 odd 6 inner
350.3.k.b.101.3 8 5.2 odd 4
350.3.k.b.201.3 8 35.12 even 12
490.3.b.b.391.5 8 35.18 odd 12
490.3.b.b.391.8 8 35.3 even 12
490.3.j.a.31.1 8 35.13 even 4
490.3.j.a.411.1 8 35.23 odd 12
560.3.bx.a.241.1 8 20.3 even 4
560.3.bx.a.481.1 8 140.103 odd 12
630.3.v.a.271.3 8 105.68 odd 12
630.3.v.a.451.3 8 15.8 even 4