Properties

Label 350.2.o.c.257.3
Level $350$
Weight $2$
Character 350.257
Analytic conductor $2.795$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [350,2,Mod(143,350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("350.143"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(350, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([9, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 350 = 2 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 350.o (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,-8,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.79476407074\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{14} + 61x^{12} + 266x^{10} + 852x^{8} + 1438x^{6} + 1933x^{4} + 3038x^{2} + 2401 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 257.3
Root \(-0.144868 - 1.25092i\) of defining polynomial
Character \(\chi\) \(=\) 350.257
Dual form 350.2.o.c.143.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.965926 - 0.258819i) q^{2} +(-0.523277 + 1.95290i) q^{3} +(0.866025 - 0.500000i) q^{4} +2.02179i q^{6} +(-1.83959 + 1.90155i) q^{7} +(0.707107 - 0.707107i) q^{8} +(-0.941911 - 0.543813i) q^{9} +(2.01999 + 3.49872i) q^{11} +(0.523277 + 1.95290i) q^{12} +(-0.204875 - 0.204875i) q^{13} +(-1.28475 + 2.31288i) q^{14} +(0.500000 - 0.866025i) q^{16} +(1.97024 + 0.527924i) q^{17} +(-1.05057 - 0.281498i) q^{18} +(-3.10166 + 5.37224i) q^{19} +(-2.75092 - 4.58757i) q^{21} +(2.85669 + 2.85669i) q^{22} +(-1.17456 - 4.38350i) q^{23} +(1.01089 + 1.75092i) q^{24} +(-0.250919 - 0.144868i) q^{26} +(-2.73397 + 2.73397i) q^{27} +(-0.642357 + 2.56659i) q^{28} -7.15869i q^{29} +(6.33287 - 3.65628i) q^{31} +(0.258819 - 0.965926i) q^{32} +(-7.88965 + 2.11403i) q^{33} +2.03974 q^{34} -1.08763 q^{36} +(4.46814 - 1.19723i) q^{37} +(-1.60554 + 5.99195i) q^{38} +(0.507306 - 0.292893i) q^{39} +2.58745i q^{41} +(-3.84454 - 3.71926i) q^{42} +(4.97801 - 4.97801i) q^{43} +(3.49872 + 2.01999i) q^{44} +(-2.26907 - 3.93014i) q^{46} +(0.0815604 + 0.304388i) q^{47} +(1.42962 + 1.42962i) q^{48} +(-0.231803 - 6.99616i) q^{49} +(-2.06196 + 3.57142i) q^{51} +(-0.279864 - 0.0749894i) q^{52} +(8.00039 + 2.14370i) q^{53} +(-1.93321 + 3.34841i) q^{54} +(0.0438127 + 2.64539i) q^{56} +(-8.86840 - 8.86840i) q^{57} +(-1.85281 - 6.91477i) q^{58} +(0.427702 + 0.740802i) q^{59} +(-5.99356 - 3.46038i) q^{61} +(5.17076 - 5.17076i) q^{62} +(2.76682 - 0.790700i) q^{63} -1.00000i q^{64} +(-7.07367 + 4.08398i) q^{66} +(0.817530 - 3.05106i) q^{67} +(1.97024 - 0.527924i) q^{68} +9.17514 q^{69} +7.12240 q^{71} +(-1.05057 + 0.281498i) q^{72} +(2.98311 - 11.1331i) q^{73} +(4.00603 - 2.31288i) q^{74} +6.20333i q^{76} +(-10.3690 - 2.59511i) q^{77} +(0.414214 - 0.414214i) q^{78} +(-4.39618 - 2.53813i) q^{79} +(-5.53997 - 9.59552i) q^{81} +(0.669683 + 2.49929i) q^{82} +(3.85372 + 3.85372i) q^{83} +(-4.67615 - 2.59749i) q^{84} +(3.51999 - 6.09680i) q^{86} +(13.9802 + 3.74598i) q^{87} +(3.90231 + 1.04562i) q^{88} +(-1.53615 + 2.66069i) q^{89} +(0.766467 - 0.0126942i) q^{91} +(-3.20895 - 3.20895i) q^{92} +(3.82650 + 14.2807i) q^{93} +(0.157563 + 0.272906i) q^{94} +(1.75092 + 1.01089i) q^{96} +(6.63103 - 6.63103i) q^{97} +(-2.03464 - 6.69778i) q^{98} -4.39398i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} - 12 q^{11} + 8 q^{16} + 36 q^{17} + 8 q^{18} - 28 q^{21} + 8 q^{22} + 4 q^{23} + 12 q^{26} - 4 q^{28} + 24 q^{31} - 48 q^{33} - 8 q^{36} - 4 q^{37} - 24 q^{38} - 36 q^{42} + 8 q^{43} - 8 q^{46}+ \cdots - 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/350\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(127\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.965926 0.258819i 0.683013 0.183013i
\(3\) −0.523277 + 1.95290i −0.302114 + 1.12751i 0.633287 + 0.773917i \(0.281705\pi\)
−0.935401 + 0.353588i \(0.884961\pi\)
\(4\) 0.866025 0.500000i 0.433013 0.250000i
\(5\) 0 0
\(6\) 2.02179i 0.825391i
\(7\) −1.83959 + 1.90155i −0.695300 + 0.718719i
\(8\) 0.707107 0.707107i 0.250000 0.250000i
\(9\) −0.941911 0.543813i −0.313970 0.181271i
\(10\) 0 0
\(11\) 2.01999 + 3.49872i 0.609049 + 1.05490i 0.991397 + 0.130886i \(0.0417820\pi\)
−0.382349 + 0.924018i \(0.624885\pi\)
\(12\) 0.523277 + 1.95290i 0.151057 + 0.563753i
\(13\) −0.204875 0.204875i −0.0568221 0.0568221i 0.678125 0.734947i \(-0.262793\pi\)
−0.734947 + 0.678125i \(0.762793\pi\)
\(14\) −1.28475 + 2.31288i −0.343364 + 0.618143i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 1.97024 + 0.527924i 0.477853 + 0.128040i 0.489703 0.871890i \(-0.337105\pi\)
−0.0118498 + 0.999930i \(0.503772\pi\)
\(18\) −1.05057 0.281498i −0.247621 0.0663498i
\(19\) −3.10166 + 5.37224i −0.711571 + 1.23248i 0.252697 + 0.967545i \(0.418682\pi\)
−0.964267 + 0.264931i \(0.914651\pi\)
\(20\) 0 0
\(21\) −2.75092 4.58757i −0.600300 1.00109i
\(22\) 2.85669 + 2.85669i 0.609049 + 0.609049i
\(23\) −1.17456 4.38350i −0.244912 0.914023i −0.973428 0.228994i \(-0.926456\pi\)
0.728516 0.685029i \(-0.240210\pi\)
\(24\) 1.01089 + 1.75092i 0.206348 + 0.357405i
\(25\) 0 0
\(26\) −0.250919 0.144868i −0.0492094 0.0284110i
\(27\) −2.73397 + 2.73397i −0.526152 + 0.526152i
\(28\) −0.642357 + 2.56659i −0.121394 + 0.485040i
\(29\) 7.15869i 1.32934i −0.747139 0.664668i \(-0.768573\pi\)
0.747139 0.664668i \(-0.231427\pi\)
\(30\) 0 0
\(31\) 6.33287 3.65628i 1.13742 0.656688i 0.191627 0.981468i \(-0.438624\pi\)
0.945790 + 0.324780i \(0.105290\pi\)
\(32\) 0.258819 0.965926i 0.0457532 0.170753i
\(33\) −7.88965 + 2.11403i −1.37341 + 0.368005i
\(34\) 2.03974 0.349813
\(35\) 0 0
\(36\) −1.08763 −0.181271
\(37\) 4.46814 1.19723i 0.734558 0.196824i 0.127900 0.991787i \(-0.459176\pi\)
0.606658 + 0.794963i \(0.292510\pi\)
\(38\) −1.60554 + 5.99195i −0.260453 + 0.972023i
\(39\) 0.507306 0.292893i 0.0812340 0.0469005i
\(40\) 0 0
\(41\) 2.58745i 0.404093i 0.979376 + 0.202046i \(0.0647591\pi\)
−0.979376 + 0.202046i \(0.935241\pi\)
\(42\) −3.84454 3.71926i −0.593225 0.573895i
\(43\) 4.97801 4.97801i 0.759140 0.759140i −0.217026 0.976166i \(-0.569636\pi\)
0.976166 + 0.217026i \(0.0696356\pi\)
\(44\) 3.49872 + 2.01999i 0.527452 + 0.304524i
\(45\) 0 0
\(46\) −2.26907 3.93014i −0.334556 0.579468i
\(47\) 0.0815604 + 0.304388i 0.0118968 + 0.0443995i 0.971619 0.236551i \(-0.0760170\pi\)
−0.959722 + 0.280950i \(0.909350\pi\)
\(48\) 1.42962 + 1.42962i 0.206348 + 0.206348i
\(49\) −0.231803 6.99616i −0.0331148 0.999452i
\(50\) 0 0
\(51\) −2.06196 + 3.57142i −0.288732 + 0.500099i
\(52\) −0.279864 0.0749894i −0.0388102 0.0103992i
\(53\) 8.00039 + 2.14370i 1.09894 + 0.294460i 0.762332 0.647186i \(-0.224054\pi\)
0.336606 + 0.941646i \(0.390721\pi\)
\(54\) −1.93321 + 3.34841i −0.263076 + 0.455661i
\(55\) 0 0
\(56\) 0.0438127 + 2.64539i 0.00585472 + 0.353505i
\(57\) −8.86840 8.86840i −1.17465 1.17465i
\(58\) −1.85281 6.91477i −0.243285 0.907953i
\(59\) 0.427702 + 0.740802i 0.0556821 + 0.0964442i 0.892523 0.451002i \(-0.148933\pi\)
−0.836841 + 0.547446i \(0.815600\pi\)
\(60\) 0 0
\(61\) −5.99356 3.46038i −0.767397 0.443057i 0.0645484 0.997915i \(-0.479439\pi\)
−0.831945 + 0.554858i \(0.812773\pi\)
\(62\) 5.17076 5.17076i 0.656688 0.656688i
\(63\) 2.76682 0.790700i 0.348587 0.0996189i
\(64\) 1.00000i 0.125000i
\(65\) 0 0
\(66\) −7.07367 + 4.08398i −0.870708 + 0.502704i
\(67\) 0.817530 3.05106i 0.0998772 0.372747i −0.897837 0.440329i \(-0.854862\pi\)
0.997714 + 0.0675822i \(0.0215285\pi\)
\(68\) 1.97024 0.527924i 0.238926 0.0640201i
\(69\) 9.17514 1.10456
\(70\) 0 0
\(71\) 7.12240 0.845273 0.422637 0.906299i \(-0.361105\pi\)
0.422637 + 0.906299i \(0.361105\pi\)
\(72\) −1.05057 + 0.281498i −0.123810 + 0.0331749i
\(73\) 2.98311 11.1331i 0.349147 1.30303i −0.538545 0.842597i \(-0.681026\pi\)
0.887692 0.460438i \(-0.152307\pi\)
\(74\) 4.00603 2.31288i 0.465691 0.268867i
\(75\) 0 0
\(76\) 6.20333i 0.711571i
\(77\) −10.3690 2.59511i −1.18165 0.295740i
\(78\) 0.414214 0.414214i 0.0469005 0.0469005i
\(79\) −4.39618 2.53813i −0.494609 0.285562i 0.231876 0.972745i \(-0.425514\pi\)
−0.726484 + 0.687183i \(0.758847\pi\)
\(80\) 0 0
\(81\) −5.53997 9.59552i −0.615553 1.06617i
\(82\) 0.669683 + 2.49929i 0.0739541 + 0.276000i
\(83\) 3.85372 + 3.85372i 0.423001 + 0.423001i 0.886236 0.463235i \(-0.153311\pi\)
−0.463235 + 0.886236i \(0.653311\pi\)
\(84\) −4.67615 2.59749i −0.510210 0.283410i
\(85\) 0 0
\(86\) 3.51999 6.09680i 0.379570 0.657434i
\(87\) 13.9802 + 3.74598i 1.49883 + 0.401611i
\(88\) 3.90231 + 1.04562i 0.415988 + 0.111464i
\(89\) −1.53615 + 2.66069i −0.162832 + 0.282033i −0.935883 0.352310i \(-0.885396\pi\)
0.773051 + 0.634343i \(0.218729\pi\)
\(90\) 0 0
\(91\) 0.766467 0.0126942i 0.0803475 0.00133071i
\(92\) −3.20895 3.20895i −0.334556 0.334556i
\(93\) 3.82650 + 14.2807i 0.396789 + 1.48084i
\(94\) 0.157563 + 0.272906i 0.0162513 + 0.0281481i
\(95\) 0 0
\(96\) 1.75092 + 1.01089i 0.178702 + 0.103174i
\(97\) 6.63103 6.63103i 0.673279 0.673279i −0.285191 0.958471i \(-0.592057\pi\)
0.958471 + 0.285191i \(0.0920572\pi\)
\(98\) −2.03464 6.69778i −0.205530 0.676578i
\(99\) 4.39398i 0.441611i
\(100\) 0 0
\(101\) −8.56364 + 4.94422i −0.852114 + 0.491968i −0.861364 0.507989i \(-0.830389\pi\)
0.00924966 + 0.999957i \(0.497056\pi\)
\(102\) −1.06735 + 3.98340i −0.105683 + 0.394416i
\(103\) −4.13612 + 1.10827i −0.407544 + 0.109201i −0.456766 0.889587i \(-0.650992\pi\)
0.0492221 + 0.998788i \(0.484326\pi\)
\(104\) −0.289737 −0.0284110
\(105\) 0 0
\(106\) 8.28261 0.804479
\(107\) −14.3653 + 3.84918i −1.38875 + 0.372114i −0.874291 0.485402i \(-0.838673\pi\)
−0.514457 + 0.857516i \(0.672007\pi\)
\(108\) −1.00070 + 3.73467i −0.0962926 + 0.359369i
\(109\) −11.4586 + 6.61564i −1.09754 + 0.633664i −0.935573 0.353133i \(-0.885116\pi\)
−0.161964 + 0.986797i \(0.551783\pi\)
\(110\) 0 0
\(111\) 9.35230i 0.887681i
\(112\) 0.726997 + 2.54391i 0.0686947 + 0.240377i
\(113\) −9.75336 + 9.75336i −0.917519 + 0.917519i −0.996848 0.0793296i \(-0.974722\pi\)
0.0793296 + 0.996848i \(0.474722\pi\)
\(114\) −10.8615 6.27091i −1.01728 0.587324i
\(115\) 0 0
\(116\) −3.57935 6.19961i −0.332334 0.575619i
\(117\) 0.0815604 + 0.304388i 0.00754026 + 0.0281406i
\(118\) 0.604862 + 0.604862i 0.0556821 + 0.0556821i
\(119\) −4.62831 + 2.77535i −0.424276 + 0.254416i
\(120\) 0 0
\(121\) −2.66069 + 4.60846i −0.241881 + 0.418951i
\(122\) −6.68495 1.79123i −0.605227 0.162170i
\(123\) −5.05303 1.35396i −0.455617 0.122082i
\(124\) 3.65628 6.33287i 0.328344 0.568708i
\(125\) 0 0
\(126\) 2.46790 1.47986i 0.219858 0.131837i
\(127\) 2.19984 + 2.19984i 0.195204 + 0.195204i 0.797940 0.602736i \(-0.205923\pi\)
−0.602736 + 0.797940i \(0.705923\pi\)
\(128\) −0.258819 0.965926i −0.0228766 0.0853766i
\(129\) 7.11667 + 12.3264i 0.626587 + 1.08528i
\(130\) 0 0
\(131\) −6.32091 3.64938i −0.552260 0.318848i 0.197773 0.980248i \(-0.436629\pi\)
−0.750033 + 0.661400i \(0.769963\pi\)
\(132\) −5.77563 + 5.77563i −0.502704 + 0.502704i
\(133\) −4.50980 15.7807i −0.391049 1.36836i
\(134\) 3.15869i 0.272870i
\(135\) 0 0
\(136\) 1.76647 1.01987i 0.151473 0.0874531i
\(137\) −1.85804 + 6.93431i −0.158743 + 0.592438i 0.840012 + 0.542567i \(0.182548\pi\)
−0.998756 + 0.0498710i \(0.984119\pi\)
\(138\) 8.86251 2.37470i 0.754427 0.202148i
\(139\) 12.4172 1.05321 0.526605 0.850110i \(-0.323465\pi\)
0.526605 + 0.850110i \(0.323465\pi\)
\(140\) 0 0
\(141\) −0.637116 −0.0536549
\(142\) 6.87971 1.84341i 0.577332 0.154696i
\(143\) 0.302955 1.13064i 0.0253344 0.0945492i
\(144\) −0.941911 + 0.543813i −0.0784926 + 0.0453177i
\(145\) 0 0
\(146\) 11.5259i 0.953887i
\(147\) 13.7841 + 3.20824i 1.13689 + 0.264611i
\(148\) 3.27091 3.27091i 0.268867 0.268867i
\(149\) 20.7399 + 11.9742i 1.69908 + 0.980963i 0.946637 + 0.322302i \(0.104457\pi\)
0.752440 + 0.658661i \(0.228877\pi\)
\(150\) 0 0
\(151\) 1.77167 + 3.06862i 0.144176 + 0.249721i 0.929065 0.369916i \(-0.120613\pi\)
−0.784889 + 0.619636i \(0.787280\pi\)
\(152\) 1.60554 + 5.99195i 0.130226 + 0.486012i
\(153\) −1.56870 1.56870i −0.126822 0.126822i
\(154\) −10.6873 + 0.177002i −0.861207 + 0.0142632i
\(155\) 0 0
\(156\) 0.292893 0.507306i 0.0234502 0.0406170i
\(157\) 5.91389 + 1.58462i 0.471980 + 0.126467i 0.486966 0.873421i \(-0.338104\pi\)
−0.0149859 + 0.999888i \(0.504770\pi\)
\(158\) −4.90330 1.31384i −0.390086 0.104523i
\(159\) −8.37284 + 14.5022i −0.664010 + 1.15010i
\(160\) 0 0
\(161\) 10.4962 + 5.83037i 0.827213 + 0.459498i
\(162\) −7.83471 7.83471i −0.615553 0.615553i
\(163\) 4.28549 + 15.9937i 0.335666 + 1.25272i 0.903146 + 0.429334i \(0.141252\pi\)
−0.567480 + 0.823387i \(0.692082\pi\)
\(164\) 1.29373 + 2.24080i 0.101023 + 0.174977i
\(165\) 0 0
\(166\) 4.71983 + 2.72499i 0.366329 + 0.211500i
\(167\) 10.2873 10.2873i 0.796056 0.796056i −0.186415 0.982471i \(-0.559687\pi\)
0.982471 + 0.186415i \(0.0596869\pi\)
\(168\) −5.18910 1.29871i −0.400348 0.100198i
\(169\) 12.9161i 0.993543i
\(170\) 0 0
\(171\) 5.84298 3.37345i 0.446824 0.257974i
\(172\) 1.82208 6.80009i 0.138932 0.518502i
\(173\) −7.50720 + 2.01155i −0.570762 + 0.152935i −0.532646 0.846338i \(-0.678802\pi\)
−0.0381159 + 0.999273i \(0.512136\pi\)
\(174\) 14.4734 1.09722
\(175\) 0 0
\(176\) 4.03997 0.304524
\(177\) −1.67052 + 0.447613i −0.125564 + 0.0336447i
\(178\) −0.795171 + 2.96762i −0.0596006 + 0.222432i
\(179\) 3.34695 1.93236i 0.250163 0.144431i −0.369676 0.929161i \(-0.620531\pi\)
0.619839 + 0.784729i \(0.287198\pi\)
\(180\) 0 0
\(181\) 6.99107i 0.519642i −0.965657 0.259821i \(-0.916336\pi\)
0.965657 0.259821i \(-0.0836636\pi\)
\(182\) 0.737064 0.210638i 0.0546348 0.0156135i
\(183\) 9.89407 9.89407i 0.731390 0.731390i
\(184\) −3.93014 2.26907i −0.289734 0.167278i
\(185\) 0 0
\(186\) 7.39223 + 12.8037i 0.542024 + 0.938814i
\(187\) 2.13280 + 7.95971i 0.155966 + 0.582071i
\(188\) 0.222827 + 0.222827i 0.0162513 + 0.0162513i
\(189\) −0.169398 10.2282i −0.0123219 0.743990i
\(190\) 0 0
\(191\) −2.23721 + 3.87496i −0.161879 + 0.280383i −0.935543 0.353214i \(-0.885089\pi\)
0.773664 + 0.633597i \(0.218422\pi\)
\(192\) 1.95290 + 0.523277i 0.140938 + 0.0377643i
\(193\) −19.3907 5.19573i −1.39577 0.373997i −0.518949 0.854805i \(-0.673676\pi\)
−0.876825 + 0.480809i \(0.840343\pi\)
\(194\) 4.68885 8.12132i 0.336640 0.583077i
\(195\) 0 0
\(196\) −3.69883 5.94295i −0.264202 0.424497i
\(197\) 7.84901 + 7.84901i 0.559219 + 0.559219i 0.929085 0.369866i \(-0.120596\pi\)
−0.369866 + 0.929085i \(0.620596\pi\)
\(198\) −1.13725 4.24426i −0.0808205 0.301626i
\(199\) −5.40103 9.35485i −0.382869 0.663148i 0.608602 0.793475i \(-0.291730\pi\)
−0.991471 + 0.130327i \(0.958397\pi\)
\(200\) 0 0
\(201\) 5.53062 + 3.19310i 0.390100 + 0.225224i
\(202\) −6.99218 + 6.99218i −0.491968 + 0.491968i
\(203\) 13.6126 + 13.1691i 0.955419 + 0.924288i
\(204\) 4.12392i 0.288732i
\(205\) 0 0
\(206\) −3.70835 + 2.14101i −0.258373 + 0.149172i
\(207\) −1.27748 + 4.76761i −0.0887908 + 0.331372i
\(208\) −0.279864 + 0.0749894i −0.0194051 + 0.00519958i
\(209\) −25.0613 −1.73353
\(210\) 0 0
\(211\) 7.56555 0.520834 0.260417 0.965496i \(-0.416140\pi\)
0.260417 + 0.965496i \(0.416140\pi\)
\(212\) 8.00039 2.14370i 0.549469 0.147230i
\(213\) −3.72699 + 13.9093i −0.255369 + 0.953050i
\(214\) −12.8796 + 7.43604i −0.880431 + 0.508317i
\(215\) 0 0
\(216\) 3.86642i 0.263076i
\(217\) −4.69728 + 18.7683i −0.318872 + 1.27408i
\(218\) −9.35593 + 9.35593i −0.633664 + 0.633664i
\(219\) 20.1809 + 11.6514i 1.36370 + 0.787330i
\(220\) 0 0
\(221\) −0.295494 0.511811i −0.0198771 0.0344281i
\(222\) 2.42055 + 9.03363i 0.162457 + 0.606298i
\(223\) −9.35230 9.35230i −0.626277 0.626277i 0.320853 0.947129i \(-0.396031\pi\)
−0.947129 + 0.320853i \(0.896031\pi\)
\(224\) 1.36064 + 2.26907i 0.0909114 + 0.151608i
\(225\) 0 0
\(226\) −6.89667 + 11.9454i −0.458759 + 0.794595i
\(227\) −15.6420 4.19127i −1.03820 0.278184i −0.300832 0.953677i \(-0.597264\pi\)
−0.737367 + 0.675493i \(0.763931\pi\)
\(228\) −12.1145 3.24606i −0.802300 0.214976i
\(229\) 5.88820 10.1987i 0.389103 0.673947i −0.603226 0.797570i \(-0.706118\pi\)
0.992329 + 0.123624i \(0.0394515\pi\)
\(230\) 0 0
\(231\) 10.4938 18.8915i 0.690442 1.24297i
\(232\) −5.06196 5.06196i −0.332334 0.332334i
\(233\) 1.48154 + 5.52920i 0.0970591 + 0.362230i 0.997324 0.0731138i \(-0.0232936\pi\)
−0.900264 + 0.435343i \(0.856627\pi\)
\(234\) 0.157563 + 0.272906i 0.0103002 + 0.0178405i
\(235\) 0 0
\(236\) 0.740802 + 0.427702i 0.0482221 + 0.0278410i
\(237\) 7.25713 7.25713i 0.471402 0.471402i
\(238\) −3.75229 + 3.87867i −0.243225 + 0.251417i
\(239\) 8.33794i 0.539337i 0.962953 + 0.269668i \(0.0869141\pi\)
−0.962953 + 0.269668i \(0.913086\pi\)
\(240\) 0 0
\(241\) 2.56723 1.48219i 0.165370 0.0954763i −0.415031 0.909807i \(-0.636229\pi\)
0.580401 + 0.814331i \(0.302896\pi\)
\(242\) −1.37728 + 5.14006i −0.0885347 + 0.330416i
\(243\) 10.4340 2.79578i 0.669340 0.179349i
\(244\) −6.92077 −0.443057
\(245\) 0 0
\(246\) −5.23128 −0.333535
\(247\) 1.73609 0.465184i 0.110465 0.0295989i
\(248\) 1.89263 7.06340i 0.120182 0.448526i
\(249\) −9.54248 + 5.50936i −0.604730 + 0.349141i
\(250\) 0 0
\(251\) 16.1800i 1.02127i 0.859796 + 0.510637i \(0.170590\pi\)
−0.859796 + 0.510637i \(0.829410\pi\)
\(252\) 2.00079 2.06818i 0.126038 0.130283i
\(253\) 12.9641 12.9641i 0.815043 0.815043i
\(254\) 2.69424 + 1.55552i 0.169052 + 0.0976020i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.50754 + 5.62621i 0.0940377 + 0.350954i 0.996872 0.0790355i \(-0.0251841\pi\)
−0.902834 + 0.429989i \(0.858517\pi\)
\(258\) 10.0645 + 10.0645i 0.626587 + 0.626587i
\(259\) −5.94295 + 10.6988i −0.369277 + 0.664793i
\(260\) 0 0
\(261\) −3.89299 + 6.74285i −0.240970 + 0.417372i
\(262\) −7.05006 1.88906i −0.435554 0.116706i
\(263\) 1.67793 + 0.449601i 0.103466 + 0.0277236i 0.310180 0.950678i \(-0.399611\pi\)
−0.206715 + 0.978401i \(0.566277\pi\)
\(264\) −4.08398 + 7.07367i −0.251352 + 0.435354i
\(265\) 0 0
\(266\) −8.44048 14.0758i −0.517519 0.863041i
\(267\) −4.39223 4.39223i −0.268800 0.268800i
\(268\) −0.817530 3.05106i −0.0499386 0.186373i
\(269\) −1.89169 3.27650i −0.115338 0.199772i 0.802577 0.596549i \(-0.203462\pi\)
−0.917915 + 0.396777i \(0.870128\pi\)
\(270\) 0 0
\(271\) −18.4029 10.6249i −1.11789 0.645416i −0.177032 0.984205i \(-0.556649\pi\)
−0.940862 + 0.338789i \(0.889983\pi\)
\(272\) 1.44231 1.44231i 0.0874531 0.0874531i
\(273\) −0.376284 + 1.50347i −0.0227737 + 0.0909943i
\(274\) 7.17893i 0.433695i
\(275\) 0 0
\(276\) 7.94591 4.58757i 0.478287 0.276139i
\(277\) 1.26567 4.72353i 0.0760465 0.283810i −0.917422 0.397916i \(-0.869734\pi\)
0.993469 + 0.114106i \(0.0364004\pi\)
\(278\) 11.9941 3.21380i 0.719356 0.192751i
\(279\) −7.95333 −0.476153
\(280\) 0 0
\(281\) −29.4776 −1.75849 −0.879243 0.476373i \(-0.841951\pi\)
−0.879243 + 0.476373i \(0.841951\pi\)
\(282\) −0.615407 + 0.164898i −0.0366470 + 0.00981952i
\(283\) 2.92041 10.8991i 0.173601 0.647886i −0.823185 0.567773i \(-0.807805\pi\)
0.996786 0.0801133i \(-0.0255282\pi\)
\(284\) 6.16818 3.56120i 0.366014 0.211318i
\(285\) 0 0
\(286\) 1.17053i 0.0692148i
\(287\) −4.92018 4.75986i −0.290429 0.280966i
\(288\) −0.769067 + 0.769067i −0.0453177 + 0.0453177i
\(289\) −11.1193 6.41973i −0.654076 0.377631i
\(290\) 0 0
\(291\) 9.47985 + 16.4196i 0.555719 + 0.962533i
\(292\) −2.98311 11.1331i −0.174573 0.651517i
\(293\) 7.23407 + 7.23407i 0.422619 + 0.422619i 0.886105 0.463485i \(-0.153401\pi\)
−0.463485 + 0.886105i \(0.653401\pi\)
\(294\) 14.1448 0.468657i 0.824939 0.0273326i
\(295\) 0 0
\(296\) 2.31288 4.00603i 0.134433 0.232846i
\(297\) −15.0880 4.04281i −0.875493 0.234588i
\(298\) 23.1323 + 6.19829i 1.34002 + 0.359057i
\(299\) −0.657432 + 1.13871i −0.0380203 + 0.0658531i
\(300\) 0 0
\(301\) 0.308440 + 18.6235i 0.0177782 + 1.07344i
\(302\) 2.50552 + 2.50552i 0.144176 + 0.144176i
\(303\) −5.17439 19.3111i −0.297261 1.10939i
\(304\) 3.10166 + 5.37224i 0.177893 + 0.308119i
\(305\) 0 0
\(306\) −1.92125 1.10924i −0.109831 0.0634108i
\(307\) 1.07859 1.07859i 0.0615584 0.0615584i −0.675657 0.737216i \(-0.736140\pi\)
0.737216 + 0.675657i \(0.236140\pi\)
\(308\) −10.2773 + 2.93705i −0.585605 + 0.167354i
\(309\) 8.65735i 0.492500i
\(310\) 0 0
\(311\) −8.33830 + 4.81412i −0.472821 + 0.272984i −0.717420 0.696641i \(-0.754677\pi\)
0.244599 + 0.969624i \(0.421344\pi\)
\(312\) 0.151613 0.565826i 0.00858338 0.0320336i
\(313\) −2.92361 + 0.783378i −0.165252 + 0.0442791i −0.340496 0.940246i \(-0.610595\pi\)
0.175244 + 0.984525i \(0.443928\pi\)
\(314\) 6.12251 0.345513
\(315\) 0 0
\(316\) −5.07627 −0.285562
\(317\) 1.88227 0.504353i 0.105719 0.0283273i −0.205572 0.978642i \(-0.565905\pi\)
0.311291 + 0.950315i \(0.399239\pi\)
\(318\) −4.33410 + 16.1751i −0.243044 + 0.907054i
\(319\) 25.0463 14.4605i 1.40232 0.809631i
\(320\) 0 0
\(321\) 30.0682i 1.67824i
\(322\) 11.6475 + 2.91510i 0.649091 + 0.162452i
\(323\) −8.94715 + 8.94715i −0.497833 + 0.497833i
\(324\) −9.59552 5.53997i −0.533084 0.307776i
\(325\) 0 0
\(326\) 8.27894 + 14.3395i 0.458528 + 0.794194i
\(327\) −6.92363 25.8393i −0.382878 1.42892i
\(328\) 1.82961 + 1.82961i 0.101023 + 0.101023i
\(329\) −0.728847 0.404858i −0.0401826 0.0223205i
\(330\) 0 0
\(331\) 14.4468 25.0225i 0.794066 1.37536i −0.129365 0.991597i \(-0.541294\pi\)
0.923431 0.383765i \(-0.125373\pi\)
\(332\) 5.26428 + 1.41056i 0.288915 + 0.0774145i
\(333\) −4.85966 1.30214i −0.266308 0.0713570i
\(334\) 7.27423 12.5993i 0.398028 0.689405i
\(335\) 0 0
\(336\) −5.34841 + 0.0885800i −0.291780 + 0.00483244i
\(337\) 0.823226 + 0.823226i 0.0448440 + 0.0448440i 0.729173 0.684329i \(-0.239905\pi\)
−0.684329 + 0.729173i \(0.739905\pi\)
\(338\) −3.34292 12.4759i −0.181831 0.678602i
\(339\) −13.9436 24.1510i −0.757312 1.31170i
\(340\) 0 0
\(341\) 25.5846 + 14.7713i 1.38548 + 0.799910i
\(342\) 4.77078 4.77078i 0.257974 0.257974i
\(343\) 13.7300 + 12.4293i 0.741350 + 0.671119i
\(344\) 7.03997i 0.379570i
\(345\) 0 0
\(346\) −6.73077 + 3.88601i −0.361849 + 0.208913i
\(347\) 4.32336 16.1350i 0.232090 0.866172i −0.747349 0.664432i \(-0.768674\pi\)
0.979439 0.201740i \(-0.0646597\pi\)
\(348\) 13.9802 3.74598i 0.749417 0.200806i
\(349\) 36.7146 1.96529 0.982644 0.185503i \(-0.0593916\pi\)
0.982644 + 0.185503i \(0.0593916\pi\)
\(350\) 0 0
\(351\) 1.12024 0.0597942
\(352\) 3.90231 1.04562i 0.207994 0.0557318i
\(353\) 3.69356 13.7845i 0.196588 0.733677i −0.795262 0.606266i \(-0.792667\pi\)
0.991850 0.127411i \(-0.0406667\pi\)
\(354\) −1.49774 + 0.864723i −0.0796042 + 0.0459595i
\(355\) 0 0
\(356\) 3.07230i 0.162832i
\(357\) −2.99808 10.4909i −0.158675 0.555236i
\(358\) 2.73277 2.73277i 0.144431 0.144431i
\(359\) −23.4596 13.5444i −1.23815 0.714847i −0.269435 0.963019i \(-0.586837\pi\)
−0.968716 + 0.248172i \(0.920170\pi\)
\(360\) 0 0
\(361\) −9.74064 16.8713i −0.512665 0.887962i
\(362\) −1.80942 6.75285i −0.0951011 0.354922i
\(363\) −7.60756 7.60756i −0.399293 0.399293i
\(364\) 0.657432 0.394227i 0.0344588 0.0206631i
\(365\) 0 0
\(366\) 6.99616 12.1177i 0.365695 0.633403i
\(367\) −21.8990 5.86782i −1.14312 0.306298i −0.362914 0.931823i \(-0.618218\pi\)
−0.780204 + 0.625525i \(0.784885\pi\)
\(368\) −4.38350 1.17456i −0.228506 0.0612279i
\(369\) 1.40709 2.43715i 0.0732502 0.126873i
\(370\) 0 0
\(371\) −18.7938 + 11.2696i −0.975726 + 0.585090i
\(372\) 10.4542 + 10.4542i 0.542024 + 0.542024i
\(373\) 3.32215 + 12.3984i 0.172014 + 0.641966i 0.997041 + 0.0768720i \(0.0244933\pi\)
−0.825027 + 0.565094i \(0.808840\pi\)
\(374\) 4.12025 + 7.13648i 0.213053 + 0.369019i
\(375\) 0 0
\(376\) 0.272906 + 0.157563i 0.0140741 + 0.00812567i
\(377\) −1.46664 + 1.46664i −0.0755356 + 0.0755356i
\(378\) −2.81087 9.83581i −0.144576 0.505900i
\(379\) 14.4739i 0.743476i 0.928338 + 0.371738i \(0.121238\pi\)
−0.928338 + 0.371738i \(0.878762\pi\)
\(380\) 0 0
\(381\) −5.44718 + 3.14493i −0.279068 + 0.161120i
\(382\) −1.15807 + 4.32196i −0.0592518 + 0.221131i
\(383\) −1.69189 + 0.453341i −0.0864517 + 0.0231647i −0.301786 0.953376i \(-0.597583\pi\)
0.215334 + 0.976540i \(0.430916\pi\)
\(384\) 2.02179 0.103174
\(385\) 0 0
\(386\) −20.0747 −1.02178
\(387\) −7.39595 + 1.98174i −0.375957 + 0.100737i
\(388\) 2.42713 9.05816i 0.123219 0.459858i
\(389\) −2.40954 + 1.39115i −0.122169 + 0.0705341i −0.559839 0.828601i \(-0.689137\pi\)
0.437670 + 0.899135i \(0.355804\pi\)
\(390\) 0 0
\(391\) 9.25661i 0.468127i
\(392\) −5.11094 4.78312i −0.258142 0.241584i
\(393\) 10.4344 10.4344i 0.526348 0.526348i
\(394\) 9.61304 + 5.55009i 0.484298 + 0.279610i
\(395\) 0 0
\(396\) −2.19699 3.80530i −0.110403 0.191223i
\(397\) −10.2668 38.3163i −0.515277 1.92304i −0.349791 0.936828i \(-0.613747\pi\)
−0.165486 0.986212i \(-0.552919\pi\)
\(398\) −7.63821 7.63821i −0.382869 0.382869i
\(399\) 33.1780 0.549491i 1.66098 0.0275089i
\(400\) 0 0
\(401\) 9.98528 17.2950i 0.498641 0.863672i −0.501358 0.865240i \(-0.667166\pi\)
0.999999 + 0.00156835i \(0.000499221\pi\)
\(402\) 6.16860 + 1.65287i 0.307662 + 0.0824378i
\(403\) −2.04653 0.548365i −0.101945 0.0273160i
\(404\) −4.94422 + 8.56364i −0.245984 + 0.426057i
\(405\) 0 0
\(406\) 16.5572 + 9.19714i 0.821720 + 0.456446i
\(407\) 13.2144 + 13.2144i 0.655012 + 0.655012i
\(408\) 1.06735 + 3.98340i 0.0528417 + 0.197208i
\(409\) −7.65280 13.2550i −0.378407 0.655419i 0.612424 0.790529i \(-0.290195\pi\)
−0.990831 + 0.135110i \(0.956861\pi\)
\(410\) 0 0
\(411\) −12.5697 7.25713i −0.620019 0.357968i
\(412\) −3.02785 + 3.02785i −0.149172 + 0.149172i
\(413\) −2.19547 0.549475i −0.108032 0.0270379i
\(414\) 4.93579i 0.242581i
\(415\) 0 0
\(416\) −0.250919 + 0.144868i −0.0123023 + 0.00710276i
\(417\) −6.49762 + 24.2495i −0.318190 + 1.18750i
\(418\) −24.2073 + 6.48634i −1.18402 + 0.317257i
\(419\) −27.7027 −1.35337 −0.676684 0.736274i \(-0.736584\pi\)
−0.676684 + 0.736274i \(0.736584\pi\)
\(420\) 0 0
\(421\) 33.0159 1.60910 0.804549 0.593887i \(-0.202407\pi\)
0.804549 + 0.593887i \(0.202407\pi\)
\(422\) 7.30776 1.95811i 0.355736 0.0953192i
\(423\) 0.0887072 0.331060i 0.00431309 0.0160967i
\(424\) 7.17295 4.14131i 0.348349 0.201120i
\(425\) 0 0
\(426\) 14.4000i 0.697681i
\(427\) 17.6058 5.03138i 0.852005 0.243485i
\(428\) −10.5161 + 10.5161i −0.508317 + 0.508317i
\(429\) 2.04950 + 1.18328i 0.0989509 + 0.0571293i
\(430\) 0 0
\(431\) −11.9586 20.7129i −0.576027 0.997708i −0.995929 0.0901384i \(-0.971269\pi\)
0.419902 0.907569i \(-0.362064\pi\)
\(432\) 1.00070 + 3.73467i 0.0481463 + 0.179684i
\(433\) 13.2515 + 13.2515i 0.636829 + 0.636829i 0.949772 0.312943i \(-0.101315\pi\)
−0.312943 + 0.949772i \(0.601315\pi\)
\(434\) 0.320383 + 19.3446i 0.0153789 + 0.928569i
\(435\) 0 0
\(436\) −6.61564 + 11.4586i −0.316832 + 0.548769i
\(437\) 27.1923 + 7.28615i 1.30078 + 0.348544i
\(438\) 22.5088 + 6.03122i 1.07551 + 0.288183i
\(439\) −7.05383 + 12.2176i −0.336661 + 0.583114i −0.983802 0.179256i \(-0.942631\pi\)
0.647141 + 0.762370i \(0.275964\pi\)
\(440\) 0 0
\(441\) −3.58626 + 6.71582i −0.170774 + 0.319801i
\(442\) −0.417892 0.417892i −0.0198771 0.0198771i
\(443\) −5.45161 20.3457i −0.259014 0.966652i −0.965813 0.259238i \(-0.916528\pi\)
0.706800 0.707414i \(-0.250138\pi\)
\(444\) 4.67615 + 8.09933i 0.221920 + 0.384377i
\(445\) 0 0
\(446\) −11.4542 6.61308i −0.542371 0.313138i
\(447\) −34.2370 + 34.2370i −1.61936 + 1.61936i
\(448\) 1.90155 + 1.83959i 0.0898399 + 0.0869125i
\(449\) 31.3247i 1.47831i 0.673538 + 0.739153i \(0.264774\pi\)
−0.673538 + 0.739153i \(0.735226\pi\)
\(450\) 0 0
\(451\) −9.05278 + 5.22662i −0.426279 + 0.246112i
\(452\) −3.56998 + 13.3233i −0.167918 + 0.626677i
\(453\) −6.91977 + 1.85415i −0.325119 + 0.0871154i
\(454\) −16.1938 −0.760014
\(455\) 0 0
\(456\) −12.5418 −0.587324
\(457\) −2.76404 + 0.740622i −0.129296 + 0.0346448i −0.322887 0.946438i \(-0.604653\pi\)
0.193591 + 0.981082i \(0.437987\pi\)
\(458\) 3.04796 11.3751i 0.142422 0.531525i
\(459\) −6.82989 + 3.94324i −0.318792 + 0.184055i
\(460\) 0 0
\(461\) 3.02674i 0.140969i −0.997513 0.0704846i \(-0.977545\pi\)
0.997513 0.0704846i \(-0.0224546\pi\)
\(462\) 5.24675 20.9638i 0.244101 0.975325i
\(463\) −19.2889 + 19.2889i −0.896431 + 0.896431i −0.995118 0.0986876i \(-0.968536\pi\)
0.0986876 + 0.995118i \(0.468536\pi\)
\(464\) −6.19961 3.57935i −0.287810 0.166167i
\(465\) 0 0
\(466\) 2.86212 + 4.95734i 0.132585 + 0.229644i
\(467\) 6.50385 + 24.2727i 0.300962 + 1.12321i 0.936366 + 0.351026i \(0.114167\pi\)
−0.635403 + 0.772180i \(0.719166\pi\)
\(468\) 0.222827 + 0.222827i 0.0103002 + 0.0103002i
\(469\) 4.29784 + 7.16729i 0.198456 + 0.330955i
\(470\) 0 0
\(471\) −6.18921 + 10.7200i −0.285184 + 0.493953i
\(472\) 0.826257 + 0.221395i 0.0380316 + 0.0101905i
\(473\) 27.4722 + 7.36115i 1.26317 + 0.338466i
\(474\) 5.13157 8.88814i 0.235701 0.408246i
\(475\) 0 0
\(476\) −2.62056 + 4.71767i −0.120113 + 0.216234i
\(477\) −6.36989 6.36989i −0.291657 0.291657i
\(478\) 2.15802 + 8.05384i 0.0987055 + 0.368374i
\(479\) −4.14346 7.17668i −0.189319 0.327911i 0.755704 0.654913i \(-0.227295\pi\)
−0.945024 + 0.327002i \(0.893961\pi\)
\(480\) 0 0
\(481\) −1.16069 0.670127i −0.0529231 0.0305551i
\(482\) 2.09613 2.09613i 0.0954763 0.0954763i
\(483\) −16.8785 + 17.4470i −0.767999 + 0.793867i
\(484\) 5.32139i 0.241881i
\(485\) 0 0
\(486\) 9.35485 5.40103i 0.424345 0.244996i
\(487\) −2.76375 + 10.3144i −0.125237 + 0.467392i −0.999848 0.0174340i \(-0.994450\pi\)
0.874611 + 0.484826i \(0.161117\pi\)
\(488\) −6.68495 + 1.79123i −0.302613 + 0.0810850i
\(489\) −33.4765 −1.51386
\(490\) 0 0
\(491\) 25.7259 1.16100 0.580498 0.814262i \(-0.302858\pi\)
0.580498 + 0.814262i \(0.302858\pi\)
\(492\) −5.05303 + 1.35396i −0.227808 + 0.0610411i
\(493\) 3.77924 14.1043i 0.170209 0.635227i
\(494\) 1.55654 0.898666i 0.0700319 0.0404329i
\(495\) 0 0
\(496\) 7.31256i 0.328344i
\(497\) −13.1023 + 13.5436i −0.587719 + 0.607514i
\(498\) −7.79141 + 7.79141i −0.349141 + 0.349141i
\(499\) −12.6429 7.29940i −0.565975 0.326766i 0.189565 0.981868i \(-0.439292\pi\)
−0.755540 + 0.655102i \(0.772626\pi\)
\(500\) 0 0
\(501\) 14.7069 + 25.4732i 0.657058 + 1.13806i
\(502\) 4.18770 + 15.6287i 0.186906 + 0.697543i
\(503\) −13.9891 13.9891i −0.623744 0.623744i 0.322743 0.946487i \(-0.395395\pi\)
−0.946487 + 0.322743i \(0.895395\pi\)
\(504\) 1.39733 2.51555i 0.0622419 0.112051i
\(505\) 0 0
\(506\) 9.16697 15.8777i 0.407522 0.705848i
\(507\) 25.2237 + 6.75868i 1.12022 + 0.300163i
\(508\) 3.00504 + 0.805197i 0.133327 + 0.0357248i
\(509\) 1.42883 2.47481i 0.0633319 0.109694i −0.832621 0.553843i \(-0.813161\pi\)
0.895953 + 0.444149i \(0.146494\pi\)
\(510\) 0 0
\(511\) 15.6825 + 26.1530i 0.693754 + 1.15694i
\(512\) −0.707107 0.707107i −0.0312500 0.0312500i
\(513\) −6.20768 23.1674i −0.274076 1.02287i
\(514\) 2.91234 + 5.04433i 0.128458 + 0.222496i
\(515\) 0 0
\(516\) 12.3264 + 7.11667i 0.542641 + 0.313294i
\(517\) −0.900216 + 0.900216i −0.0395914 + 0.0395914i
\(518\) −2.97139 + 11.8724i −0.130555 + 0.521644i
\(519\) 15.7134i 0.689741i
\(520\) 0 0
\(521\) 24.7917 14.3135i 1.08614 0.627084i 0.153595 0.988134i \(-0.450915\pi\)
0.932547 + 0.361049i \(0.117581\pi\)
\(522\) −2.01516 + 7.52068i −0.0882011 + 0.329171i
\(523\) −30.5069 + 8.17429i −1.33397 + 0.357437i −0.854195 0.519954i \(-0.825949\pi\)
−0.479777 + 0.877390i \(0.659283\pi\)
\(524\) −7.29876 −0.318848
\(525\) 0 0
\(526\) 1.73712 0.0757422
\(527\) 14.4075 3.86048i 0.627600 0.168165i
\(528\) −2.11403 + 7.88965i −0.0920012 + 0.343353i
\(529\) 2.08308 1.20267i 0.0905687 0.0522899i
\(530\) 0 0
\(531\) 0.930359i 0.0403742i
\(532\) −11.7960 11.4116i −0.511419 0.494755i
\(533\) 0.530105 0.530105i 0.0229614 0.0229614i
\(534\) −5.37936 3.10577i −0.232788 0.134400i
\(535\) 0 0
\(536\) −1.57935 2.73551i −0.0682174 0.118156i
\(537\) 2.02232 + 7.54741i 0.0872696 + 0.325695i
\(538\) −2.67525 2.67525i −0.115338 0.115338i
\(539\) 24.0094 14.9432i 1.03416 0.643648i
\(540\) 0 0
\(541\) −18.4994 + 32.0420i −0.795353 + 1.37759i 0.127262 + 0.991869i \(0.459381\pi\)
−0.922615 + 0.385722i \(0.873952\pi\)
\(542\) −20.5257 5.49985i −0.881655 0.236239i
\(543\) 13.6528 + 3.65827i 0.585899 + 0.156991i
\(544\) 1.01987 1.76647i 0.0437266 0.0757366i
\(545\) 0 0
\(546\) 0.0256649 + 1.54963i 0.00109836 + 0.0663182i
\(547\) 20.0765 + 20.0765i 0.858409 + 0.858409i 0.991151 0.132742i \(-0.0423781\pi\)
−0.132742 + 0.991151i \(0.542378\pi\)
\(548\) 1.85804 + 6.93431i 0.0793717 + 0.296219i
\(549\) 3.76360 + 6.51875i 0.160627 + 0.278213i
\(550\) 0 0
\(551\) 38.4582 + 22.2039i 1.63838 + 0.945916i
\(552\) 6.48781 6.48781i 0.276139 0.276139i
\(553\) 12.9136 3.69043i 0.549141 0.156933i
\(554\) 4.89016i 0.207763i
\(555\) 0 0
\(556\) 10.7536 6.20859i 0.456054 0.263303i
\(557\) 6.65499 24.8367i 0.281981 1.05237i −0.669037 0.743229i \(-0.733293\pi\)
0.951017 0.309137i \(-0.100040\pi\)
\(558\) −7.68233 + 2.05847i −0.325219 + 0.0871421i
\(559\) −2.03974 −0.0862718
\(560\) 0 0
\(561\) −16.6605 −0.703408
\(562\) −28.4732 + 7.62937i −1.20107 + 0.321825i
\(563\) −1.38907 + 5.18407i −0.0585422 + 0.218482i −0.989000 0.147917i \(-0.952743\pi\)
0.930458 + 0.366400i \(0.119410\pi\)
\(564\) −0.551759 + 0.318558i −0.0232332 + 0.0134137i
\(565\) 0 0
\(566\) 11.2836i 0.474286i
\(567\) 28.4377 + 7.11728i 1.19427 + 0.298898i
\(568\) 5.03630 5.03630i 0.211318 0.211318i
\(569\) 22.0839 + 12.7502i 0.925806 + 0.534514i 0.885483 0.464672i \(-0.153828\pi\)
0.0403234 + 0.999187i \(0.487161\pi\)
\(570\) 0 0
\(571\) −7.95235 13.7739i −0.332795 0.576419i 0.650263 0.759709i \(-0.274659\pi\)
−0.983059 + 0.183290i \(0.941325\pi\)
\(572\) −0.302955 1.13064i −0.0126672 0.0472746i
\(573\) −6.39672 6.39672i −0.267227 0.267227i
\(574\) −5.98447 3.32424i −0.249787 0.138751i
\(575\) 0 0
\(576\) −0.543813 + 0.941911i −0.0226589 + 0.0392463i
\(577\) 22.2641 + 5.96565i 0.926867 + 0.248353i 0.690518 0.723315i \(-0.257383\pi\)
0.236349 + 0.971668i \(0.424049\pi\)
\(578\) −12.4020 3.32310i −0.515854 0.138223i
\(579\) 20.2934 35.1493i 0.843366 1.46075i
\(580\) 0 0
\(581\) −14.4173 + 0.238779i −0.598132 + 0.00990621i
\(582\) 13.4065 + 13.4065i 0.555719 + 0.555719i
\(583\) 8.66048 + 32.3214i 0.358681 + 1.33861i
\(584\) −5.76293 9.98169i −0.238472 0.413045i
\(585\) 0 0
\(586\) 8.85989 + 5.11526i 0.365999 + 0.211310i
\(587\) −28.2277 + 28.2277i −1.16508 + 1.16508i −0.181734 + 0.983348i \(0.558171\pi\)
−0.983348 + 0.181734i \(0.941829\pi\)
\(588\) 13.5415 4.11362i 0.558441 0.169643i
\(589\) 45.3622i 1.86912i
\(590\) 0 0
\(591\) −19.4355 + 11.2211i −0.799471 + 0.461575i
\(592\) 1.19723 4.46814i 0.0492060 0.183639i
\(593\) 34.2220 9.16977i 1.40533 0.376557i 0.525075 0.851056i \(-0.324037\pi\)
0.880256 + 0.474499i \(0.157371\pi\)
\(594\) −15.6202 −0.640905
\(595\) 0 0
\(596\) 23.9483 0.980963
\(597\) 21.0953 5.65247i 0.863373 0.231340i
\(598\) −0.340312 + 1.27006i −0.0139164 + 0.0519367i
\(599\) 14.5339 8.39115i 0.593839 0.342853i −0.172775 0.984961i \(-0.555273\pi\)
0.766614 + 0.642108i \(0.221940\pi\)
\(600\) 0 0
\(601\) 1.73528i 0.0707833i −0.999374 0.0353917i \(-0.988732\pi\)
0.999374 0.0353917i \(-0.0112679\pi\)
\(602\) 5.11804 + 17.9091i 0.208596 + 0.729919i
\(603\) −2.42925 + 2.42925i −0.0989266 + 0.0989266i
\(604\) 3.06862 + 1.77167i 0.124860 + 0.0720881i
\(605\) 0 0
\(606\) −9.99616 17.3139i −0.406066 0.703327i
\(607\) −10.2070 38.0930i −0.414288 1.54615i −0.786257 0.617900i \(-0.787984\pi\)
0.371968 0.928245i \(-0.378683\pi\)
\(608\) 4.38642 + 4.38642i 0.177893 + 0.177893i
\(609\) −32.8410 + 19.6930i −1.33079 + 0.798000i
\(610\) 0 0
\(611\) 0.0456517 0.0790711i 0.00184687 0.00319887i
\(612\) −2.14288 0.574183i −0.0866208 0.0232100i
\(613\) 0.330293 + 0.0885018i 0.0133404 + 0.00357455i 0.265483 0.964116i \(-0.414469\pi\)
−0.252143 + 0.967690i \(0.581135\pi\)
\(614\) 0.762678 1.32100i 0.0307792 0.0533111i
\(615\) 0 0
\(616\) −9.16697 + 5.49694i −0.369348 + 0.221478i
\(617\) −11.1876 11.1876i −0.450397 0.450397i 0.445089 0.895486i \(-0.353172\pi\)
−0.895486 + 0.445089i \(0.853172\pi\)
\(618\) −2.24069 8.36236i −0.0901337 0.336383i
\(619\) 18.2682 + 31.6414i 0.734260 + 1.27178i 0.955047 + 0.296454i \(0.0958042\pi\)
−0.220787 + 0.975322i \(0.570862\pi\)
\(620\) 0 0
\(621\) 15.1956 + 8.77316i 0.609777 + 0.352055i
\(622\) −6.80819 + 6.80819i −0.272984 + 0.272984i
\(623\) −2.23356 7.81566i −0.0894855 0.313128i
\(624\) 0.585786i 0.0234502i
\(625\) 0 0
\(626\) −2.62123 + 1.51337i −0.104766 + 0.0604864i
\(627\) 13.1140 48.9421i 0.523723 1.95456i
\(628\) 5.91389 1.58462i 0.235990 0.0632333i
\(629\) 9.43535 0.376212
\(630\) 0 0
\(631\) −35.8189 −1.42593 −0.712964 0.701201i \(-0.752648\pi\)
−0.712964 + 0.701201i \(0.752648\pi\)
\(632\) −4.90330 + 1.31384i −0.195043 + 0.0522616i
\(633\) −3.95888 + 14.7747i −0.157351 + 0.587243i
\(634\) 1.68760 0.974335i 0.0670231 0.0386958i
\(635\) 0 0
\(636\) 16.7457i 0.664010i
\(637\) −1.38585 + 1.48083i −0.0549093 + 0.0586726i
\(638\) 20.4502 20.4502i 0.809631 0.809631i
\(639\) −6.70867 3.87325i −0.265391 0.153223i
\(640\) 0 0
\(641\) 7.16573 + 12.4114i 0.283029 + 0.490221i 0.972129 0.234445i \(-0.0753272\pi\)
−0.689100 + 0.724666i \(0.741994\pi\)
\(642\) −7.78222 29.0436i −0.307140 1.14626i
\(643\) −7.65201 7.65201i −0.301766 0.301766i 0.539939 0.841704i \(-0.318447\pi\)
−0.841704 + 0.539939i \(0.818447\pi\)
\(644\) 12.0051 0.198828i 0.473068 0.00783492i
\(645\) 0 0
\(646\) −6.32659 + 10.9580i −0.248916 + 0.431136i
\(647\) −31.2468 8.37254i −1.22844 0.329159i −0.414466 0.910065i \(-0.636032\pi\)
−0.813971 + 0.580906i \(0.802698\pi\)
\(648\) −10.7024 2.86770i −0.420430 0.112654i
\(649\) −1.72791 + 2.99282i −0.0678262 + 0.117478i
\(650\) 0 0
\(651\) −34.1947 18.9943i −1.34019 0.744447i
\(652\) 11.7082 + 11.7082i 0.458528 + 0.458528i
\(653\) 0.132578 + 0.494788i 0.00518818 + 0.0193625i 0.968471 0.249125i \(-0.0801429\pi\)
−0.963283 + 0.268487i \(0.913476\pi\)
\(654\) −13.3754 23.1669i −0.523020 0.905898i
\(655\) 0 0
\(656\) 2.24080 + 1.29373i 0.0874886 + 0.0505116i
\(657\) −8.86417 + 8.86417i −0.345824 + 0.345824i
\(658\) −0.808797 0.202423i −0.0315302 0.00789127i
\(659\) 19.5542i 0.761723i 0.924632 + 0.380862i \(0.124373\pi\)
−0.924632 + 0.380862i \(0.875627\pi\)
\(660\) 0 0
\(661\) 34.0324 19.6486i 1.32371 0.764242i 0.339388 0.940647i \(-0.389780\pi\)
0.984318 + 0.176405i \(0.0564468\pi\)
\(662\) 7.47819 27.9090i 0.290648 1.08471i
\(663\) 1.15414 0.309250i 0.0448230 0.0120103i
\(664\) 5.44998 0.211500
\(665\) 0 0
\(666\) −5.03109 −0.194951
\(667\) −31.3801 + 8.40828i −1.21504 + 0.325570i
\(668\) 3.76542 14.0527i 0.145688 0.543716i
\(669\) 23.1579 13.3702i 0.895337 0.516923i
\(670\) 0 0
\(671\) 27.9597i 1.07937i
\(672\) −5.14324 + 1.46983i −0.198405 + 0.0567000i
\(673\) −18.4813 + 18.4813i −0.712401 + 0.712401i −0.967037 0.254636i \(-0.918044\pi\)
0.254636 + 0.967037i \(0.418044\pi\)
\(674\) 1.00824 + 0.582108i 0.0388360 + 0.0224220i
\(675\) 0 0
\(676\) −6.45803 11.1856i −0.248386 0.430217i
\(677\) 10.6631 + 39.7951i 0.409815 + 1.52945i 0.794999 + 0.606611i \(0.207472\pi\)
−0.385183 + 0.922840i \(0.625862\pi\)
\(678\) −19.7192 19.7192i −0.757312 0.757312i
\(679\) 0.410862 + 24.8076i 0.0157674 + 0.952030i
\(680\) 0 0
\(681\) 16.3702 28.3541i 0.627309 1.08653i
\(682\) 28.5359 + 7.64618i 1.09270 + 0.292787i
\(683\) −8.81689 2.36248i −0.337369 0.0903978i 0.0861573 0.996282i \(-0.472541\pi\)
−0.423526 + 0.905884i \(0.639208\pi\)
\(684\) 3.37345 5.84298i 0.128987 0.223412i
\(685\) 0 0
\(686\) 16.4791 + 8.45219i 0.629175 + 0.322706i
\(687\) 16.8358 + 16.8358i 0.642325 + 0.642325i
\(688\) −1.82208 6.80009i −0.0694661 0.259251i
\(689\) −1.19989 2.07827i −0.0457121 0.0791758i
\(690\) 0 0
\(691\) −41.9971 24.2470i −1.59765 0.922401i −0.991940 0.126712i \(-0.959558\pi\)
−0.605706 0.795689i \(-0.707109\pi\)
\(692\) −5.49565 + 5.49565i −0.208913 + 0.208913i
\(693\) 8.35538 + 8.08313i 0.317395 + 0.307053i
\(694\) 16.7042i 0.634082i
\(695\) 0 0
\(696\) 12.5343 7.23668i 0.475111 0.274306i
\(697\) −1.36598 + 5.09790i −0.0517401 + 0.193097i
\(698\) 35.4636 9.50244i 1.34232 0.359673i
\(699\) −11.5732 −0.437739
\(700\) 0 0
\(701\) −30.8898 −1.16669 −0.583347 0.812223i \(-0.698257\pi\)
−0.583347 + 0.812223i \(0.698257\pi\)
\(702\) 1.08207 0.289940i 0.0408402 0.0109431i
\(703\) −7.42684 + 27.7173i −0.280109 + 1.04538i
\(704\) 3.49872 2.01999i 0.131863 0.0761311i
\(705\) 0 0
\(706\) 14.2708i 0.537089i
\(707\) 6.35191 25.3796i 0.238888 0.954496i
\(708\) −1.22290 + 1.22290i −0.0459595 + 0.0459595i
\(709\) −12.7354 7.35277i −0.478287 0.276139i 0.241416 0.970422i \(-0.422388\pi\)
−0.719702 + 0.694283i \(0.755722\pi\)
\(710\) 0 0
\(711\) 2.76054 + 4.78140i 0.103528 + 0.179316i
\(712\) 0.795171 + 2.96762i 0.0298003 + 0.111216i
\(713\) −23.4656 23.4656i −0.878795 0.878795i
\(714\) −5.61116 9.35745i −0.209992 0.350194i
\(715\) 0 0
\(716\) 1.93236 3.34695i 0.0722157 0.125081i
\(717\) −16.2831 4.36306i −0.608105 0.162941i
\(718\) −26.1658 7.01110i −0.976499 0.261652i
\(719\) 11.7360 20.3273i 0.437679 0.758082i −0.559831 0.828607i \(-0.689134\pi\)
0.997510 + 0.0705247i \(0.0224674\pi\)
\(720\) 0 0
\(721\) 5.50134 9.90382i 0.204881 0.368837i
\(722\) −13.7753 13.7753i −0.512665 0.512665i
\(723\) 1.55119 + 5.78913i 0.0576895 + 0.215300i
\(724\) −3.49553 6.05444i −0.129911 0.225012i
\(725\) 0 0
\(726\) −9.31732 5.37936i −0.345798 0.199647i
\(727\) 14.1380 14.1380i 0.524349 0.524349i −0.394533 0.918882i \(-0.629093\pi\)
0.918882 + 0.394533i \(0.129093\pi\)
\(728\) 0.532998 0.550950i 0.0197542 0.0204196i
\(729\) 11.4004i 0.422236i
\(730\) 0 0
\(731\) 12.4359 7.17986i 0.459958 0.265557i
\(732\) 3.62148 13.5155i 0.133854 0.499549i
\(733\) 26.7908 7.17859i 0.989543 0.265147i 0.272484 0.962160i \(-0.412155\pi\)
0.717058 + 0.697013i \(0.245488\pi\)
\(734\) −22.6715 −0.836821
\(735\) 0 0
\(736\) −4.53813 −0.167278
\(737\) 12.3262 3.30280i 0.454042 0.121660i
\(738\) 0.728364 2.71829i 0.0268114 0.100062i
\(739\) −11.7451 + 6.78102i −0.432050 + 0.249444i −0.700219 0.713928i \(-0.746915\pi\)
0.268170 + 0.963372i \(0.413581\pi\)
\(740\) 0 0
\(741\) 3.63383i 0.133492i
\(742\) −15.2366 + 15.7498i −0.559354 + 0.578194i
\(743\) −13.5961 + 13.5961i −0.498791 + 0.498791i −0.911062 0.412270i \(-0.864736\pi\)
0.412270 + 0.911062i \(0.364736\pi\)
\(744\) 12.8037 + 7.39223i 0.469407 + 0.271012i
\(745\) 0 0
\(746\) 6.41789 + 11.1161i 0.234976 + 0.406990i
\(747\) −1.53416 5.72557i −0.0561320 0.209488i
\(748\) 5.82691 + 5.82691i 0.213053 + 0.213053i
\(749\) 19.1069 34.3973i 0.698152 1.25685i
\(750\) 0 0
\(751\) −21.8309 + 37.8123i −0.796622 + 1.37979i 0.125182 + 0.992134i \(0.460049\pi\)
−0.921804 + 0.387656i \(0.873285\pi\)
\(752\) 0.304388 + 0.0815604i 0.0110999 + 0.00297420i
\(753\) −31.5979 8.46663i −1.15149 0.308541i
\(754\) −1.03707 + 1.79626i −0.0377678 + 0.0654158i
\(755\) 0 0
\(756\) −5.26079 8.77316i −0.191333 0.319077i
\(757\) −7.88896 7.88896i −0.286729 0.286729i 0.549056 0.835785i \(-0.314987\pi\)
−0.835785 + 0.549056i \(0.814987\pi\)
\(758\) 3.74613 + 13.9807i 0.136065 + 0.507803i
\(759\) 18.5337 + 32.1013i 0.672730 + 1.16520i
\(760\) 0 0
\(761\) −1.70923 0.986825i −0.0619596 0.0357724i 0.468700 0.883357i \(-0.344722\pi\)
−0.530660 + 0.847585i \(0.678056\pi\)
\(762\) −4.44761 + 4.44761i −0.161120 + 0.161120i
\(763\) 8.49921 33.9593i 0.307692 1.22941i
\(764\) 4.47442i 0.161879i
\(765\) 0 0
\(766\) −1.51691 + 0.875788i −0.0548082 + 0.0316435i
\(767\) 0.0641463 0.239397i 0.00231619 0.00864413i
\(768\) 1.95290 0.523277i 0.0704691 0.0188821i
\(769\) −17.4914 −0.630756 −0.315378 0.948966i \(-0.602131\pi\)
−0.315378 + 0.948966i \(0.602131\pi\)
\(770\) 0 0
\(771\) −11.7763 −0.424112
\(772\) −19.3907 + 5.19573i −0.697887 + 0.186998i
\(773\) −11.5736 + 43.1933i −0.416274 + 1.55355i 0.365997 + 0.930616i \(0.380728\pi\)
−0.782271 + 0.622939i \(0.785939\pi\)
\(774\) −6.63103 + 3.82843i −0.238347 + 0.137610i
\(775\) 0 0
\(776\) 9.37769i 0.336640i
\(777\) −17.7839 17.2044i −0.637994 0.617205i
\(778\) −1.96738 + 1.96738i −0.0705341 + 0.0705341i
\(779\) −13.9004 8.02542i −0.498035 0.287540i
\(780\) 0 0
\(781\) 14.3871 + 24.9193i 0.514813 + 0.891682i
\(782\) −2.39579 8.94120i −0.0856732 0.319737i
\(783\) 19.5716 + 19.5716i 0.699433 + 0.699433i
\(784\) −6.17475 3.29733i −0.220527 0.117762i
\(785\) 0 0
\(786\) 7.37827 12.7795i 0.263174 0.455831i
\(787\) −25.0643 6.71595i −0.893445 0.239398i −0.217246 0.976117i \(-0.569707\pi\)
−0.676199 + 0.736719i \(0.736374\pi\)
\(788\) 10.7220 + 2.87294i 0.381954 + 0.102344i
\(789\) −1.75605 + 3.04156i −0.0625170 + 0.108283i
\(790\) 0 0
\(791\) −0.604323 36.4887i −0.0214873 1.29739i
\(792\) −3.10701 3.10701i −0.110403 0.110403i
\(793\) 0.518984 + 1.93688i 0.0184297 + 0.0687805i
\(794\) −19.8340 34.3535i −0.703881 1.21916i
\(795\) 0 0
\(796\) −9.35485 5.40103i −0.331574 0.191434i
\(797\) 37.3374 37.3374i 1.32256 1.32256i 0.410861 0.911698i \(-0.365228\pi\)
0.911698 0.410861i \(-0.134772\pi\)
\(798\) 31.9052 9.11786i 1.12943 0.322769i
\(799\) 0.642773i 0.0227397i
\(800\) 0 0
\(801\) 2.89384 1.67076i 0.102249 0.0590333i
\(802\) 5.16876 19.2901i 0.182515 0.681156i
\(803\) 44.9776 12.0517i 1.58722 0.425295i
\(804\) 6.38621 0.225224
\(805\) 0 0
\(806\) −2.11872 −0.0746287
\(807\) 7.38854 1.97975i 0.260089 0.0696906i
\(808\) −2.55932 + 9.55150i −0.0900364 + 0.336021i
\(809\) −13.9001 + 8.02525i −0.488703 + 0.282153i −0.724036 0.689762i \(-0.757715\pi\)
0.235333 + 0.971915i \(0.424382\pi\)
\(810\) 0 0
\(811\) 35.4040i 1.24320i 0.783334 + 0.621602i \(0.213518\pi\)
−0.783334 + 0.621602i \(0.786482\pi\)
\(812\) 18.3734 + 4.59844i 0.644781 + 0.161374i
\(813\) 30.3791 30.3791i 1.06544 1.06544i
\(814\) 16.1842 + 9.34397i 0.567257 + 0.327506i
\(815\) 0 0
\(816\) 2.06196 + 3.57142i 0.0721831 + 0.125025i
\(817\) 11.3030 + 42.1832i 0.395440 + 1.47580i
\(818\) −10.8227 10.8227i −0.378407 0.378407i
\(819\) −0.728847 0.404858i −0.0254680 0.0141469i
\(820\) 0 0
\(821\) −13.4231 + 23.2495i −0.468469 + 0.811412i −0.999351 0.0360337i \(-0.988528\pi\)
0.530881 + 0.847446i \(0.321861\pi\)
\(822\) −14.0197 3.75657i −0.488993 0.131025i
\(823\) 27.0285 + 7.24225i 0.942153 + 0.252449i 0.697029 0.717043i \(-0.254505\pi\)
0.245124 + 0.969492i \(0.421171\pi\)
\(824\) −2.14101 + 3.70835i −0.0745858 + 0.129186i
\(825\) 0 0
\(826\) −2.26288 + 0.0374776i −0.0787355 + 0.00130401i
\(827\) −16.8901 16.8901i −0.587325 0.587325i 0.349581 0.936906i \(-0.386324\pi\)
−0.936906 + 0.349581i \(0.886324\pi\)
\(828\) 1.27748 + 4.76761i 0.0443954 + 0.165686i
\(829\) 7.08412 + 12.2701i 0.246042 + 0.426157i 0.962424 0.271551i \(-0.0875367\pi\)
−0.716382 + 0.697708i \(0.754203\pi\)
\(830\) 0 0
\(831\) 8.56228 + 4.94343i 0.297022 + 0.171486i
\(832\) −0.204875 + 0.204875i −0.00710276 + 0.00710276i
\(833\) 3.23673 13.9065i 0.112146 0.481831i
\(834\) 25.1049i 0.869311i
\(835\) 0 0
\(836\) −21.7037 + 12.5306i −0.750638 + 0.433381i
\(837\) −7.31770 + 27.3100i −0.252937 + 0.943972i
\(838\) −26.7588 + 7.17000i −0.924367 + 0.247683i
\(839\) 18.1874 0.627900 0.313950 0.949439i \(-0.398348\pi\)
0.313950 + 0.949439i \(0.398348\pi\)
\(840\) 0 0
\(841\) −22.2469 −0.767134
\(842\) 31.8909 8.54515i 1.09903 0.294485i
\(843\) 15.4250 57.5667i 0.531264 1.98270i
\(844\) 6.55196 3.78278i 0.225528 0.130209i
\(845\) 0 0
\(846\) 0.342738i 0.0117836i
\(847\) −3.86863 13.5371i −0.132928 0.465141i
\(848\) 5.85669 5.85669i 0.201120 0.201120i
\(849\) 19.7567 + 11.4065i 0.678048 + 0.391471i
\(850\) 0 0
\(851\) −10.4962 18.1799i −0.359804 0.623198i
\(852\) 3.72699 + 13.9093i 0.127685 + 0.476525i
\(853\) 17.4820 + 17.4820i 0.598574 + 0.598574i 0.939933 0.341359i \(-0.110887\pi\)
−0.341359 + 0.939933i \(0.610887\pi\)
\(854\) 15.7037 9.41665i 0.537369 0.322231i
\(855\) 0 0
\(856\) −7.43604 + 12.8796i −0.254159 + 0.440216i
\(857\) 25.2634 + 6.76932i 0.862982 + 0.231235i 0.663051 0.748574i \(-0.269261\pi\)
0.199932 + 0.979810i \(0.435928\pi\)
\(858\) 2.28592 + 0.612511i 0.0780401 + 0.0209108i
\(859\) 24.4126 42.2838i 0.832946 1.44271i −0.0627455 0.998030i \(-0.519986\pi\)
0.895692 0.444676i \(-0.146681\pi\)
\(860\) 0 0
\(861\) 11.8701 7.11788i 0.404533 0.242577i
\(862\) −16.9121 16.9121i −0.576027 0.576027i
\(863\) −3.97256 14.8258i −0.135228 0.504676i −0.999997 0.00250685i \(-0.999202\pi\)
0.864769 0.502169i \(-0.167465\pi\)
\(864\) 1.93321 + 3.34841i 0.0657691 + 0.113915i
\(865\) 0 0
\(866\) 16.2298 + 9.37026i 0.551510 + 0.318414i
\(867\) 18.3555 18.3555i 0.623387 0.623387i
\(868\) 5.31621 + 18.6025i 0.180444 + 0.631410i
\(869\) 20.5080i 0.695686i
\(870\) 0 0
\(871\) −0.792578 + 0.457595i −0.0268555 + 0.0155050i
\(872\) −3.42451 + 12.7804i −0.115968 + 0.432800i
\(873\) −9.85188 + 2.63980i −0.333436 + 0.0893438i
\(874\) 28.1515 0.952240
\(875\) 0 0
\(876\) 23.3028 0.787330
\(877\) −38.1169 + 10.2134i −1.28712 + 0.344882i −0.836565 0.547868i \(-0.815440\pi\)
−0.450552 + 0.892750i \(0.648773\pi\)
\(878\) −3.65133 + 13.6270i −0.123227 + 0.459888i
\(879\) −17.9128 + 10.3420i −0.604185 + 0.348826i
\(880\) 0 0
\(881\) 52.5926i 1.77189i 0.463791 + 0.885945i \(0.346489\pi\)
−0.463791 + 0.885945i \(0.653511\pi\)
\(882\) −1.72588 + 7.41518i −0.0581135 + 0.249682i
\(883\) −13.0940 + 13.0940i −0.440649 + 0.440649i −0.892230 0.451581i \(-0.850860\pi\)
0.451581 + 0.892230i \(0.350860\pi\)
\(884\) −0.511811 0.295494i −0.0172141 0.00993854i
\(885\) 0 0
\(886\) −10.5317 18.2414i −0.353819 0.612833i
\(887\) −9.56553 35.6990i −0.321179 1.19866i −0.918098 0.396354i \(-0.870275\pi\)
0.596919 0.802302i \(-0.296391\pi\)
\(888\) 6.61308 + 6.61308i 0.221920 + 0.221920i
\(889\) −8.22991 + 0.136303i −0.276022 + 0.00457146i
\(890\) 0 0
\(891\) 22.3813 38.7656i 0.749803 1.29870i
\(892\) −12.7755 3.42318i −0.427755 0.114617i
\(893\) −1.88822 0.505946i −0.0631867 0.0169308i
\(894\) −24.2092 + 41.9316i −0.809678 + 1.40240i
\(895\) 0 0
\(896\) 2.31288 + 1.28475i 0.0772679 + 0.0429205i
\(897\) −1.87976 1.87976i −0.0627633 0.0627633i
\(898\) 8.10744 + 30.2574i 0.270549 + 1.00970i
\(899\) −26.1742 45.3351i −0.872959 1.51201i
\(900\) 0 0
\(901\) 14.6310 + 8.44719i 0.487428 + 0.281417i
\(902\) −7.39156 + 7.39156i −0.246112 + 0.246112i
\(903\) −36.5311 9.14288i −1.21568 0.304256i
\(904\) 13.7933i 0.458759i
\(905\) 0 0
\(906\) −6.20410 + 3.58194i −0.206117 + 0.119002i
\(907\) 4.28883 16.0061i 0.142408 0.531474i −0.857449 0.514569i \(-0.827952\pi\)
0.999857 0.0169054i \(-0.00538141\pi\)
\(908\) −15.6420 + 4.19127i −0.519099 + 0.139092i
\(909\) 10.7549 0.356718
\(910\) 0 0
\(911\) −1.46770 −0.0486270 −0.0243135 0.999704i \(-0.507740\pi\)
−0.0243135 + 0.999704i \(0.507740\pi\)
\(912\) −12.1145 + 3.24606i −0.401150 + 0.107488i
\(913\) −5.69862 + 21.2676i −0.188597 + 0.703853i
\(914\) −2.47817 + 1.43077i −0.0819705 + 0.0473257i
\(915\) 0 0
\(916\) 11.7764i 0.389103i
\(917\) 18.5674 5.30617i 0.613149 0.175225i
\(918\) −5.57658 + 5.57658i −0.184055 + 0.184055i
\(919\) 24.1523 + 13.9443i 0.796710 + 0.459981i 0.842319 0.538979i \(-0.181190\pi\)
−0.0456096 + 0.998959i \(0.514523\pi\)
\(920\) 0 0
\(921\) 1.54197 + 2.67078i 0.0508098 + 0.0880051i
\(922\) −0.783378 2.92361i −0.0257992 0.0962838i
\(923\) −1.45920 1.45920i −0.0480302 0.0480302i
\(924\) −0.357861 21.6075i −0.0117728 0.710833i
\(925\) 0 0
\(926\) −13.6393 + 23.6240i −0.448215 + 0.776332i
\(927\) 4.49855 + 1.20538i 0.147752 + 0.0395900i
\(928\) −6.91477 1.85281i −0.226988 0.0608213i
\(929\) −16.6468 + 28.8331i −0.546164 + 0.945984i 0.452368 + 0.891831i \(0.350579\pi\)
−0.998533 + 0.0541530i \(0.982754\pi\)
\(930\) 0 0
\(931\) 38.3040 + 20.4544i 1.25536 + 0.670367i
\(932\) 4.04765 + 4.04765i 0.132585 + 0.132585i
\(933\) −5.03824 18.8030i −0.164944 0.615581i
\(934\) 12.5645 + 21.7623i 0.411122 + 0.712084i
\(935\) 0 0
\(936\) 0.272906 + 0.157563i 0.00892023 + 0.00515009i
\(937\) −25.6651 + 25.6651i −0.838442 + 0.838442i −0.988654 0.150212i \(-0.952004\pi\)
0.150212 + 0.988654i \(0.452004\pi\)
\(938\) 6.00642 + 5.81071i 0.196117 + 0.189726i
\(939\) 6.11942i 0.199700i
\(940\) 0 0
\(941\) −21.0732 + 12.1666i −0.686967 + 0.396621i −0.802475 0.596686i \(-0.796484\pi\)
0.115508 + 0.993307i \(0.463151\pi\)
\(942\) −3.20377 + 11.9566i −0.104384 + 0.389568i
\(943\) 11.3421 3.03911i 0.369350 0.0989670i
\(944\) 0.855404 0.0278410
\(945\) 0 0
\(946\) 28.4413 0.924707
\(947\) −2.07680 + 0.556477i −0.0674869 + 0.0180831i −0.292405 0.956295i \(-0.594455\pi\)
0.224918 + 0.974378i \(0.427789\pi\)
\(948\) 2.65630 9.91343i 0.0862725 0.321973i
\(949\) −2.89206 + 1.66973i −0.0938804 + 0.0542019i
\(950\) 0 0
\(951\) 3.93980i 0.127757i
\(952\) −1.31024 + 5.23517i −0.0424652 + 0.169673i
\(953\) 13.1863 13.1863i 0.427146 0.427146i −0.460509 0.887655i \(-0.652333\pi\)
0.887655 + 0.460509i \(0.152333\pi\)
\(954\) −7.80149 4.50419i −0.252582 0.145829i
\(955\) 0 0
\(956\) 4.16897 + 7.22087i 0.134834 + 0.233540i
\(957\) 15.1337 + 56.4796i 0.489202 + 1.82573i
\(958\) −5.85973 5.85973i −0.189319 0.189319i
\(959\) −9.76792 16.2895i −0.315423 0.526015i
\(960\) 0 0
\(961\) 11.2368 19.4627i 0.362477 0.627829i
\(962\) −1.29459 0.346883i −0.0417391 0.0111840i
\(963\) 15.6241 + 4.18646i 0.503479 + 0.134907i
\(964\) 1.48219 2.56723i 0.0477381 0.0826849i
\(965\) 0 0
\(966\) −11.7878 + 21.2210i −0.379266 + 0.682775i
\(967\) 27.7931 + 27.7931i 0.893766 + 0.893766i 0.994875 0.101109i \(-0.0322392\pi\)
−0.101109 + 0.994875i \(0.532239\pi\)
\(968\) 1.37728 + 5.14006i 0.0442673 + 0.165208i
\(969\) −12.7910 22.1547i −0.410907 0.711711i
\(970\) 0 0
\(971\) 12.1029 + 6.98760i 0.388400 + 0.224243i 0.681467 0.731849i \(-0.261342\pi\)
−0.293067 + 0.956092i \(0.594676\pi\)
\(972\) 7.63821 7.63821i 0.244996 0.244996i
\(973\) −22.8425 + 23.6119i −0.732298 + 0.756963i
\(974\) 10.6783i 0.342155i
\(975\) 0 0
\(976\) −5.99356 + 3.46038i −0.191849 + 0.110764i
\(977\) −2.16089 + 8.06456i −0.0691331 + 0.258008i −0.991839 0.127496i \(-0.959306\pi\)
0.922706 + 0.385505i \(0.125973\pi\)
\(978\) −32.3358 + 8.66436i −1.03399 + 0.277056i
\(979\) −12.4120 −0.396690
\(980\) 0 0
\(981\) 14.3907 0.459459
\(982\) 24.8494 6.65836i 0.792975 0.212477i
\(983\) 6.30383 23.5262i 0.201061 0.750370i −0.789553 0.613682i \(-0.789688\pi\)
0.990614 0.136688i \(-0.0436457\pi\)
\(984\) −4.53043 + 2.61564i −0.144425 + 0.0833836i
\(985\) 0 0
\(986\) 14.6019i 0.465018i
\(987\) 1.17203 1.21151i 0.0373062 0.0385628i
\(988\) 1.27091 1.27091i 0.0404329 0.0404329i
\(989\) −27.6681 15.9742i −0.879794 0.507949i
\(990\) 0 0
\(991\) −8.72002 15.1035i −0.277000 0.479779i 0.693637 0.720324i \(-0.256007\pi\)
−0.970638 + 0.240545i \(0.922674\pi\)
\(992\) −1.89263 7.06340i −0.0600911 0.224263i
\(993\) 41.3067 + 41.3067i 1.31083 + 1.31083i
\(994\) −9.15051 + 16.4733i −0.290237 + 0.522500i
\(995\) 0 0
\(996\) −5.50936 + 9.54248i −0.174571 + 0.302365i
\(997\) −25.2781 6.77324i −0.800565 0.214511i −0.164733 0.986338i \(-0.552676\pi\)
−0.635832 + 0.771827i \(0.719343\pi\)
\(998\) −14.1014 3.77845i −0.446371 0.119605i
\(999\) −8.94255 + 15.4890i −0.282930 + 0.490049i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 350.2.o.c.257.3 16
5.2 odd 4 70.2.k.a.33.4 yes 16
5.3 odd 4 inner 350.2.o.c.243.1 16
5.4 even 2 70.2.k.a.47.2 yes 16
7.3 odd 6 inner 350.2.o.c.157.1 16
15.2 even 4 630.2.bv.c.523.2 16
15.14 odd 2 630.2.bv.c.397.4 16
20.7 even 4 560.2.ci.c.33.1 16
20.19 odd 2 560.2.ci.c.257.1 16
35.2 odd 12 490.2.g.c.293.5 16
35.3 even 12 inner 350.2.o.c.143.3 16
35.4 even 6 490.2.l.c.227.3 16
35.9 even 6 490.2.g.c.97.8 16
35.12 even 12 490.2.g.c.293.8 16
35.17 even 12 70.2.k.a.3.2 16
35.19 odd 6 490.2.g.c.97.5 16
35.24 odd 6 70.2.k.a.17.4 yes 16
35.27 even 4 490.2.l.c.313.3 16
35.32 odd 12 490.2.l.c.423.1 16
35.34 odd 2 490.2.l.c.117.1 16
105.17 odd 12 630.2.bv.c.73.4 16
105.59 even 6 630.2.bv.c.577.2 16
140.59 even 6 560.2.ci.c.17.1 16
140.87 odd 12 560.2.ci.c.353.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
70.2.k.a.3.2 16 35.17 even 12
70.2.k.a.17.4 yes 16 35.24 odd 6
70.2.k.a.33.4 yes 16 5.2 odd 4
70.2.k.a.47.2 yes 16 5.4 even 2
350.2.o.c.143.3 16 35.3 even 12 inner
350.2.o.c.157.1 16 7.3 odd 6 inner
350.2.o.c.243.1 16 5.3 odd 4 inner
350.2.o.c.257.3 16 1.1 even 1 trivial
490.2.g.c.97.5 16 35.19 odd 6
490.2.g.c.97.8 16 35.9 even 6
490.2.g.c.293.5 16 35.2 odd 12
490.2.g.c.293.8 16 35.12 even 12
490.2.l.c.117.1 16 35.34 odd 2
490.2.l.c.227.3 16 35.4 even 6
490.2.l.c.313.3 16 35.27 even 4
490.2.l.c.423.1 16 35.32 odd 12
560.2.ci.c.17.1 16 140.59 even 6
560.2.ci.c.33.1 16 20.7 even 4
560.2.ci.c.257.1 16 20.19 odd 2
560.2.ci.c.353.1 16 140.87 odd 12
630.2.bv.c.73.4 16 105.17 odd 12
630.2.bv.c.397.4 16 15.14 odd 2
630.2.bv.c.523.2 16 15.2 even 4
630.2.bv.c.577.2 16 105.59 even 6