Properties

Label 343.2.g.d.312.1
Level $343$
Weight $2$
Character 343.312
Analytic conductor $2.739$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [343,2,Mod(30,343)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("343.30"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(343, base_ring=CyclotomicField(42)) chi = DirichletCharacter(H, H._module([32])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 343 = 7^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 343.g (of order \(21\), degree \(12\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,1,0,-1,14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.73886878933\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{21})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + x^{9} - x^{8} + x^{6} - x^{4} + x^{3} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 49)
Sato-Tate group: $\mathrm{SU}(2)[C_{21}]$

Embedding invariants

Embedding label 312.1
Root \(-0.988831 + 0.149042i\) of defining polynomial
Character \(\chi\) \(=\) 343.312
Dual form 343.2.g.d.177.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.109562 - 0.101659i) q^{2} +(2.87863 - 0.433884i) q^{3} +(-0.147791 + 1.97213i) q^{4} +(0.802576 - 2.04493i) q^{5} +(0.271281 - 0.340175i) q^{6} +(0.370666 + 0.464800i) q^{8} +(5.23154 - 1.61372i) q^{9} +(-0.119953 - 0.305636i) q^{10} +(-3.27960 - 1.01162i) q^{11} +(0.430241 + 5.74116i) q^{12} +(-0.103718 - 0.454418i) q^{13} +(1.42306 - 6.23482i) q^{15} +(-3.82328 - 0.576267i) q^{16} +(-1.26239 + 0.860686i) q^{17} +(0.409130 - 0.708634i) q^{18} +(2.16885 + 3.75656i) q^{19} +(3.91426 + 1.88501i) q^{20} +(-0.462160 + 0.222565i) q^{22} +(-0.181049 - 0.123437i) q^{23} +(1.26868 + 1.17716i) q^{24} +(0.127648 + 0.118440i) q^{25} +(-0.0575591 - 0.0392431i) q^{26} +(6.49095 - 3.12588i) q^{27} +(-7.82477 - 3.76821i) q^{29} +(-0.477911 - 0.827766i) q^{30} +(-2.04523 + 3.54245i) q^{31} +(-1.45987 + 0.995323i) q^{32} +(-9.87968 - 1.48912i) q^{33} +(-0.0508143 + 0.222632i) q^{34} +(2.40929 + 10.5558i) q^{36} +(0.483324 + 6.44950i) q^{37} +(0.619511 + 0.191094i) q^{38} +(-0.495730 - 1.26310i) q^{39} +(1.24797 - 0.384948i) q^{40} +(-1.77240 - 2.22252i) q^{41} +(2.00772 - 2.51761i) q^{43} +(2.47975 - 6.31829i) q^{44} +(0.898771 - 11.9933i) q^{45} +(-0.0323845 + 0.00488118i) q^{46} +(8.26184 - 7.66586i) q^{47} -11.2559 q^{48} +0.0260258 q^{50} +(-3.26053 + 3.02533i) q^{51} +(0.911500 - 0.137386i) q^{52} +(0.342907 - 4.57578i) q^{53} +(0.393389 - 1.00234i) q^{54} +(-4.70082 + 5.89465i) q^{55} +(7.87324 + 9.87273i) q^{57} +(-1.24037 + 0.382603i) q^{58} +(2.63207 + 6.70640i) q^{59} +(12.0856 + 3.72791i) q^{60} +(-0.358884 - 4.78897i) q^{61} +(0.136041 + 0.596034i) q^{62} +(1.66198 - 7.28160i) q^{64} +(-1.01249 - 0.152609i) q^{65} +(-1.23382 + 0.841205i) q^{66} +(-3.14905 + 5.45432i) q^{67} +(-1.51081 - 2.61681i) q^{68} +(-0.574730 - 0.276775i) q^{69} +(-5.98346 + 2.88148i) q^{71} +(2.68921 + 1.83347i) q^{72} +(-2.69341 - 2.49912i) q^{73} +(0.708603 + 0.657487i) q^{74} +(0.418840 + 0.285561i) q^{75} +(-7.72897 + 3.72208i) q^{76} +(-0.182718 - 0.0879925i) q^{78} +(-1.73277 - 3.00124i) q^{79} +(-4.24690 + 7.35585i) q^{80} +(3.75838 - 2.56242i) q^{81} +(-0.420126 - 0.0633238i) q^{82} +(0.948934 - 4.15755i) q^{83} +(0.746875 + 3.27227i) q^{85} +(-0.0359663 - 0.479937i) q^{86} +(-24.1596 - 7.45224i) q^{87} +(-0.745433 - 1.89933i) q^{88} +(-4.02653 + 1.24202i) q^{89} +(-1.12075 - 1.40537i) q^{90} +(0.270191 - 0.338809i) q^{92} +(-4.35046 + 11.0848i) q^{93} +(0.125882 - 1.67978i) q^{94} +(9.42258 - 1.42023i) q^{95} +(-3.77057 + 3.49858i) q^{96} +7.50450 q^{97} -18.7898 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + q^{2} - q^{4} + 14 q^{5} - 7 q^{6} + 6 q^{8} + 25 q^{9} - 7 q^{10} + 4 q^{11} + 7 q^{12} + 7 q^{13} - 7 q^{15} - 29 q^{16} - 10 q^{18} + 7 q^{19} + 7 q^{20} + 13 q^{22} + q^{23} + 9 q^{25} - 7 q^{26}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/343\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(e\left(\frac{20}{21}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.109562 0.101659i 0.0774721 0.0718836i −0.640486 0.767970i \(-0.721267\pi\)
0.717958 + 0.696086i \(0.245077\pi\)
\(3\) 2.87863 0.433884i 1.66198 0.250503i 0.750207 0.661203i \(-0.229954\pi\)
0.911771 + 0.410700i \(0.134716\pi\)
\(4\) −0.147791 + 1.97213i −0.0738954 + 0.986066i
\(5\) 0.802576 2.04493i 0.358923 0.914521i −0.631365 0.775486i \(-0.717505\pi\)
0.990288 0.139035i \(-0.0443999\pi\)
\(6\) 0.271281 0.340175i 0.110750 0.138876i
\(7\) 0 0
\(8\) 0.370666 + 0.464800i 0.131050 + 0.164332i
\(9\) 5.23154 1.61372i 1.74385 0.537905i
\(10\) −0.119953 0.305636i −0.0379325 0.0966505i
\(11\) −3.27960 1.01162i −0.988836 0.305016i −0.242184 0.970230i \(-0.577864\pi\)
−0.746652 + 0.665215i \(0.768340\pi\)
\(12\) 0.430241 + 5.74116i 0.124200 + 1.65733i
\(13\) −0.103718 0.454418i −0.0287662 0.126033i 0.958506 0.285072i \(-0.0920175\pi\)
−0.987272 + 0.159039i \(0.949160\pi\)
\(14\) 0 0
\(15\) 1.42306 6.23482i 0.367432 1.60982i
\(16\) −3.82328 0.576267i −0.955821 0.144067i
\(17\) −1.26239 + 0.860686i −0.306175 + 0.208747i −0.706654 0.707559i \(-0.749796\pi\)
0.400479 + 0.916306i \(0.368844\pi\)
\(18\) 0.409130 0.708634i 0.0964329 0.167027i
\(19\) 2.16885 + 3.75656i 0.497569 + 0.861815i 0.999996 0.00280488i \(-0.000892822\pi\)
−0.502427 + 0.864620i \(0.667559\pi\)
\(20\) 3.91426 + 1.88501i 0.875255 + 0.421500i
\(21\) 0 0
\(22\) −0.462160 + 0.222565i −0.0985328 + 0.0474509i
\(23\) −0.181049 0.123437i −0.0377513 0.0257384i 0.544297 0.838892i \(-0.316796\pi\)
−0.582049 + 0.813154i \(0.697749\pi\)
\(24\) 1.26868 + 1.17716i 0.258968 + 0.240287i
\(25\) 0.127648 + 0.118440i 0.0255296 + 0.0236880i
\(26\) −0.0575591 0.0392431i −0.0112883 0.00769621i
\(27\) 6.49095 3.12588i 1.24918 0.601575i
\(28\) 0 0
\(29\) −7.82477 3.76821i −1.45302 0.699739i −0.469906 0.882717i \(-0.655712\pi\)
−0.983117 + 0.182978i \(0.941426\pi\)
\(30\) −0.477911 0.827766i −0.0872542 0.151129i
\(31\) −2.04523 + 3.54245i −0.367335 + 0.636242i −0.989148 0.146923i \(-0.953063\pi\)
0.621813 + 0.783166i \(0.286396\pi\)
\(32\) −1.45987 + 0.995323i −0.258071 + 0.175950i
\(33\) −9.87968 1.48912i −1.71983 0.259223i
\(34\) −0.0508143 + 0.222632i −0.00871458 + 0.0381810i
\(35\) 0 0
\(36\) 2.40929 + 10.5558i 0.401548 + 1.75930i
\(37\) 0.483324 + 6.44950i 0.0794579 + 1.06029i 0.884336 + 0.466852i \(0.154612\pi\)
−0.804878 + 0.593441i \(0.797769\pi\)
\(38\) 0.619511 + 0.191094i 0.100498 + 0.0309995i
\(39\) −0.495730 1.26310i −0.0793803 0.202258i
\(40\) 1.24797 0.384948i 0.197322 0.0608657i
\(41\) −1.77240 2.22252i −0.276802 0.347099i 0.623925 0.781484i \(-0.285537\pi\)
−0.900727 + 0.434385i \(0.856966\pi\)
\(42\) 0 0
\(43\) 2.00772 2.51761i 0.306175 0.383931i −0.604811 0.796369i \(-0.706751\pi\)
0.910986 + 0.412438i \(0.135323\pi\)
\(44\) 2.47975 6.31829i 0.373836 0.952519i
\(45\) 0.898771 11.9933i 0.133981 1.78785i
\(46\) −0.0323845 + 0.00488118i −0.00477484 + 0.000719691i
\(47\) 8.26184 7.66586i 1.20511 1.11818i 0.215190 0.976572i \(-0.430963\pi\)
0.989923 0.141609i \(-0.0452276\pi\)
\(48\) −11.2559 −1.62464
\(49\) 0 0
\(50\) 0.0260258 0.00368061
\(51\) −3.26053 + 3.02533i −0.456565 + 0.423631i
\(52\) 0.911500 0.137386i 0.126402 0.0190521i
\(53\) 0.342907 4.57578i 0.0471019 0.628532i −0.922838 0.385188i \(-0.874137\pi\)
0.969940 0.243344i \(-0.0782443\pi\)
\(54\) 0.393389 1.00234i 0.0535335 0.136401i
\(55\) −4.70082 + 5.89465i −0.633859 + 0.794834i
\(56\) 0 0
\(57\) 7.87324 + 9.87273i 1.04284 + 1.30767i
\(58\) −1.24037 + 0.382603i −0.162868 + 0.0502383i
\(59\) 2.63207 + 6.70640i 0.342666 + 0.873099i 0.993495 + 0.113874i \(0.0363262\pi\)
−0.650829 + 0.759224i \(0.725579\pi\)
\(60\) 12.0856 + 3.72791i 1.56024 + 0.481271i
\(61\) −0.358884 4.78897i −0.0459504 0.613165i −0.971881 0.235472i \(-0.924336\pi\)
0.925931 0.377693i \(-0.123283\pi\)
\(62\) 0.136041 + 0.596034i 0.0172772 + 0.0756963i
\(63\) 0 0
\(64\) 1.66198 7.28160i 0.207747 0.910200i
\(65\) −1.01249 0.152609i −0.125584 0.0189288i
\(66\) −1.23382 + 0.841205i −0.151873 + 0.103545i
\(67\) −3.14905 + 5.45432i −0.384718 + 0.666351i −0.991730 0.128341i \(-0.959035\pi\)
0.607012 + 0.794693i \(0.292368\pi\)
\(68\) −1.51081 2.61681i −0.183213 0.317335i
\(69\) −0.574730 0.276775i −0.0691894 0.0333198i
\(70\) 0 0
\(71\) −5.98346 + 2.88148i −0.710106 + 0.341969i −0.753825 0.657075i \(-0.771793\pi\)
0.0437196 + 0.999044i \(0.486079\pi\)
\(72\) 2.68921 + 1.83347i 0.316926 + 0.216077i
\(73\) −2.69341 2.49912i −0.315240 0.292500i 0.506643 0.862156i \(-0.330886\pi\)
−0.821884 + 0.569656i \(0.807077\pi\)
\(74\) 0.708603 + 0.657487i 0.0823734 + 0.0764313i
\(75\) 0.418840 + 0.285561i 0.0483635 + 0.0329737i
\(76\) −7.72897 + 3.72208i −0.886574 + 0.426952i
\(77\) 0 0
\(78\) −0.182718 0.0879925i −0.0206888 0.00996318i
\(79\) −1.73277 3.00124i −0.194952 0.337666i 0.751933 0.659239i \(-0.229122\pi\)
−0.946885 + 0.321573i \(0.895788\pi\)
\(80\) −4.24690 + 7.35585i −0.474818 + 0.822409i
\(81\) 3.75838 2.56242i 0.417598 0.284714i
\(82\) −0.420126 0.0633238i −0.0463952 0.00699295i
\(83\) 0.948934 4.15755i 0.104159 0.456351i −0.895771 0.444516i \(-0.853376\pi\)
0.999930 0.0118347i \(-0.00376719\pi\)
\(84\) 0 0
\(85\) 0.746875 + 3.27227i 0.0810100 + 0.354928i
\(86\) −0.0359663 0.479937i −0.00387835 0.0517529i
\(87\) −24.1596 7.45224i −2.59018 0.798964i
\(88\) −0.745433 1.89933i −0.0794635 0.202470i
\(89\) −4.02653 + 1.24202i −0.426811 + 0.131654i −0.500716 0.865612i \(-0.666930\pi\)
0.0739052 + 0.997265i \(0.476454\pi\)
\(90\) −1.12075 1.40537i −0.118137 0.148140i
\(91\) 0 0
\(92\) 0.270191 0.338809i 0.0281694 0.0353233i
\(93\) −4.35046 + 11.0848i −0.451122 + 1.14944i
\(94\) 0.125882 1.67978i 0.0129837 0.173256i
\(95\) 9.42258 1.42023i 0.966736 0.145712i
\(96\) −3.77057 + 3.49858i −0.384833 + 0.357072i
\(97\) 7.50450 0.761966 0.380983 0.924582i \(-0.375586\pi\)
0.380983 + 0.924582i \(0.375586\pi\)
\(98\) 0 0
\(99\) −18.7898 −1.88845
\(100\) −0.252444 + 0.234234i −0.0252444 + 0.0234234i
\(101\) 12.2776 1.85055i 1.22167 0.184137i 0.493628 0.869673i \(-0.335670\pi\)
0.728038 + 0.685536i \(0.240432\pi\)
\(102\) −0.0496792 + 0.662922i −0.00491897 + 0.0656391i
\(103\) −0.807400 + 2.05722i −0.0795554 + 0.202704i −0.965118 0.261817i \(-0.915678\pi\)
0.885562 + 0.464521i \(0.153774\pi\)
\(104\) 0.172769 0.216645i 0.0169414 0.0212438i
\(105\) 0 0
\(106\) −0.427598 0.536191i −0.0415320 0.0520795i
\(107\) −13.5265 + 4.17237i −1.30766 + 0.403358i −0.868784 0.495191i \(-0.835098\pi\)
−0.438872 + 0.898550i \(0.644622\pi\)
\(108\) 5.20534 + 13.2630i 0.500884 + 1.27623i
\(109\) −12.2291 3.77217i −1.17133 0.361308i −0.352762 0.935713i \(-0.614757\pi\)
−0.818571 + 0.574405i \(0.805234\pi\)
\(110\) 0.0842104 + 1.12371i 0.00802915 + 0.107142i
\(111\) 4.18965 + 18.3560i 0.397664 + 1.74228i
\(112\) 0 0
\(113\) −2.27119 + 9.95071i −0.213655 + 0.936084i 0.748404 + 0.663243i \(0.230820\pi\)
−0.962059 + 0.272841i \(0.912037\pi\)
\(114\) 1.86626 + 0.281293i 0.174791 + 0.0263455i
\(115\) −0.397726 + 0.271165i −0.0370881 + 0.0252862i
\(116\) 8.58783 14.8746i 0.797360 1.38107i
\(117\) −1.27591 2.20993i −0.117957 0.204308i
\(118\) 0.970139 + 0.467194i 0.0893085 + 0.0430087i
\(119\) 0 0
\(120\) 3.42543 1.64960i 0.312697 0.150587i
\(121\) 0.643766 + 0.438912i 0.0585242 + 0.0399011i
\(122\) −0.526161 0.488206i −0.0476364 0.0442001i
\(123\) −6.06640 5.62879i −0.546989 0.507531i
\(124\) −6.68390 4.55701i −0.600232 0.409231i
\(125\) 10.2408 4.93172i 0.915967 0.441107i
\(126\) 0 0
\(127\) 2.61806 + 1.26079i 0.232315 + 0.111877i 0.546420 0.837511i \(-0.315990\pi\)
−0.314105 + 0.949388i \(0.601704\pi\)
\(128\) −2.32504 4.02708i −0.205506 0.355947i
\(129\) 4.68715 8.11838i 0.412680 0.714783i
\(130\) −0.126445 + 0.0862087i −0.0110900 + 0.00756100i
\(131\) 20.6650 + 3.11475i 1.80551 + 0.272137i 0.963574 0.267440i \(-0.0861777\pi\)
0.841936 + 0.539577i \(0.181416\pi\)
\(132\) 4.39687 19.2640i 0.382699 1.67671i
\(133\) 0 0
\(134\) 0.209463 + 0.917715i 0.0180948 + 0.0792785i
\(135\) −1.18272 15.7823i −0.101792 1.35832i
\(136\) −0.867973 0.267734i −0.0744281 0.0229580i
\(137\) 4.69174 + 11.9544i 0.400843 + 1.02133i 0.978719 + 0.205206i \(0.0657864\pi\)
−0.577876 + 0.816124i \(0.696118\pi\)
\(138\) −0.0911053 + 0.0281023i −0.00775539 + 0.00239222i
\(139\) −12.4426 15.6026i −1.05537 1.32339i −0.944120 0.329602i \(-0.893085\pi\)
−0.111252 0.993792i \(-0.535486\pi\)
\(140\) 0 0
\(141\) 20.4567 25.6519i 1.72276 2.16028i
\(142\) −0.362632 + 0.923972i −0.0304314 + 0.0775380i
\(143\) −0.119546 + 1.59523i −0.00999694 + 0.133400i
\(144\) −20.9316 + 3.15493i −1.74430 + 0.262911i
\(145\) −13.9857 + 12.9768i −1.16145 + 1.07767i
\(146\) −0.549154 −0.0454483
\(147\) 0 0
\(148\) −12.7907 −1.05139
\(149\) 9.35856 8.68348i 0.766683 0.711378i −0.196417 0.980520i \(-0.562931\pi\)
0.963100 + 0.269142i \(0.0867401\pi\)
\(150\) 0.0749187 0.0112922i 0.00611709 0.000922003i
\(151\) −0.498015 + 6.64555i −0.0405279 + 0.540807i 0.939578 + 0.342334i \(0.111217\pi\)
−0.980106 + 0.198474i \(0.936402\pi\)
\(152\) −0.942132 + 2.40051i −0.0764170 + 0.194707i
\(153\) −5.21536 + 6.53986i −0.421637 + 0.528716i
\(154\) 0 0
\(155\) 5.60260 + 7.02544i 0.450012 + 0.564297i
\(156\) 2.56426 0.790970i 0.205305 0.0633283i
\(157\) −2.93891 7.48823i −0.234551 0.597626i 0.764335 0.644819i \(-0.223067\pi\)
−0.998886 + 0.0471937i \(0.984972\pi\)
\(158\) −0.494948 0.152671i −0.0393760 0.0121459i
\(159\) −0.998253 13.3208i −0.0791666 1.05641i
\(160\) 0.863709 + 3.78416i 0.0682822 + 0.299164i
\(161\) 0 0
\(162\) 0.151284 0.662817i 0.0118860 0.0520758i
\(163\) 24.2979 + 3.66231i 1.90315 + 0.286854i 0.992102 0.125435i \(-0.0400326\pi\)
0.911053 + 0.412289i \(0.135271\pi\)
\(164\) 4.64504 3.16694i 0.362717 0.247296i
\(165\) −10.9743 + 19.0081i −0.854352 + 1.47978i
\(166\) −0.318684 0.551978i −0.0247347 0.0428418i
\(167\) 7.50517 + 3.61430i 0.580768 + 0.279683i 0.701114 0.713049i \(-0.252686\pi\)
−0.120346 + 0.992732i \(0.538401\pi\)
\(168\) 0 0
\(169\) 11.5169 5.54623i 0.885912 0.426633i
\(170\) 0.414484 + 0.282591i 0.0317895 + 0.0216737i
\(171\) 17.4085 + 16.1527i 1.33126 + 1.23523i
\(172\) 4.66833 + 4.33158i 0.355957 + 0.330280i
\(173\) 8.89580 + 6.06506i 0.676336 + 0.461118i 0.852144 0.523307i \(-0.175302\pi\)
−0.175809 + 0.984424i \(0.556254\pi\)
\(174\) −3.40456 + 1.63955i −0.258099 + 0.124294i
\(175\) 0 0
\(176\) 11.9559 + 5.75765i 0.901208 + 0.433999i
\(177\) 10.4865 + 18.1632i 0.788217 + 1.36523i
\(178\) −0.314893 + 0.545410i −0.0236022 + 0.0408802i
\(179\) 6.84139 4.66438i 0.511350 0.348632i −0.279996 0.960001i \(-0.590333\pi\)
0.791346 + 0.611369i \(0.209381\pi\)
\(180\) 23.5195 + 3.54499i 1.75304 + 0.264228i
\(181\) −1.41369 + 6.19379i −0.105079 + 0.460381i 0.894824 + 0.446420i \(0.147301\pi\)
−0.999903 + 0.0139610i \(0.995556\pi\)
\(182\) 0 0
\(183\) −3.11095 13.6300i −0.229968 1.00756i
\(184\) −0.00973507 0.129905i −0.000717679 0.00957676i
\(185\) 13.5767 + 4.18785i 0.998178 + 0.307897i
\(186\) 0.650220 + 1.65673i 0.0476765 + 0.121478i
\(187\) 5.01083 1.54564i 0.366429 0.113028i
\(188\) 13.8971 + 17.4264i 1.01355 + 1.27095i
\(189\) 0 0
\(190\) 0.887979 1.11349i 0.0644208 0.0807811i
\(191\) 8.11936 20.6878i 0.587496 1.49692i −0.259728 0.965682i \(-0.583633\pi\)
0.847225 0.531235i \(-0.178272\pi\)
\(192\) 1.62485 21.6821i 0.117264 1.56477i
\(193\) 6.56004 0.988768i 0.472202 0.0711730i 0.0913697 0.995817i \(-0.470876\pi\)
0.380833 + 0.924644i \(0.375637\pi\)
\(194\) 0.822208 0.762898i 0.0590311 0.0547729i
\(195\) −2.98081 −0.213460
\(196\) 0 0
\(197\) −10.0402 −0.715332 −0.357666 0.933850i \(-0.616427\pi\)
−0.357666 + 0.933850i \(0.616427\pi\)
\(198\) −2.05865 + 1.91015i −0.146302 + 0.135748i
\(199\) 17.2003 2.59252i 1.21929 0.183779i 0.492302 0.870424i \(-0.336156\pi\)
0.726993 + 0.686645i \(0.240917\pi\)
\(200\) −0.00773620 + 0.103232i −0.000547032 + 0.00729964i
\(201\) −6.69842 + 17.0673i −0.472470 + 1.20383i
\(202\) 1.15703 1.45088i 0.0814086 0.102083i
\(203\) 0 0
\(204\) −5.48447 6.87731i −0.383990 0.481508i
\(205\) −5.96738 + 1.84069i −0.416780 + 0.128560i
\(206\) 0.120674 + 0.307473i 0.00840776 + 0.0214226i
\(207\) −1.14636 0.353604i −0.0796773 0.0245772i
\(208\) 0.134677 + 1.79714i 0.00933815 + 0.124609i
\(209\) −3.31274 14.5141i −0.229147 1.00396i
\(210\) 0 0
\(211\) −1.44188 + 6.31729i −0.0992632 + 0.434900i 0.900737 + 0.434366i \(0.143027\pi\)
−1.00000 0.000534816i \(0.999830\pi\)
\(212\) 8.97336 + 1.35252i 0.616293 + 0.0928912i
\(213\) −15.9739 + 10.8908i −1.09452 + 0.746228i
\(214\) −1.05783 + 1.83222i −0.0723120 + 0.125248i
\(215\) −3.53698 6.12623i −0.241220 0.417805i
\(216\) 3.85888 + 1.85834i 0.262564 + 0.126444i
\(217\) 0 0
\(218\) −1.72332 + 0.829906i −0.116718 + 0.0562083i
\(219\) −8.83767 6.02542i −0.597195 0.407160i
\(220\) −10.9303 10.1418i −0.736920 0.683761i
\(221\) 0.522043 + 0.484385i 0.0351164 + 0.0325833i
\(222\) 2.32508 + 1.58521i 0.156049 + 0.106392i
\(223\) 13.7827 6.63738i 0.922956 0.444472i 0.0888303 0.996047i \(-0.471687\pi\)
0.834125 + 0.551575i \(0.185973\pi\)
\(224\) 0 0
\(225\) 0.858924 + 0.413636i 0.0572616 + 0.0275757i
\(226\) 0.762741 + 1.32111i 0.0507368 + 0.0878787i
\(227\) −9.30113 + 16.1100i −0.617338 + 1.06926i 0.372632 + 0.927979i \(0.378456\pi\)
−0.989969 + 0.141281i \(0.954878\pi\)
\(228\) −20.6339 + 14.0680i −1.36651 + 0.931674i
\(229\) −18.4731 2.78437i −1.22074 0.183997i −0.493109 0.869967i \(-0.664140\pi\)
−0.727629 + 0.685971i \(0.759378\pi\)
\(230\) −0.0160094 + 0.0701416i −0.00105563 + 0.00462500i
\(231\) 0 0
\(232\) −1.14891 5.03370i −0.0754296 0.330479i
\(233\) −0.581603 7.76095i −0.0381021 0.508437i −0.983306 0.181957i \(-0.941757\pi\)
0.945204 0.326479i \(-0.105862\pi\)
\(234\) −0.364450 0.112418i −0.0238248 0.00734899i
\(235\) −9.04541 23.0473i −0.590057 1.50344i
\(236\) −13.6149 + 4.19964i −0.886254 + 0.273373i
\(237\) −6.29019 7.88765i −0.408592 0.512358i
\(238\) 0 0
\(239\) −3.84245 + 4.81828i −0.248547 + 0.311668i −0.890417 0.455145i \(-0.849587\pi\)
0.641870 + 0.766813i \(0.278159\pi\)
\(240\) −9.03368 + 23.0174i −0.583121 + 1.48577i
\(241\) −0.257401 + 3.43478i −0.0165807 + 0.221254i 0.982758 + 0.184896i \(0.0591947\pi\)
−0.999339 + 0.0363581i \(0.988424\pi\)
\(242\) 0.115152 0.0173563i 0.00740222 0.00111571i
\(243\) −6.13642 + 5.69376i −0.393651 + 0.365255i
\(244\) 9.49752 0.608017
\(245\) 0 0
\(246\) −1.23686 −0.0788595
\(247\) 1.48210 1.37519i 0.0943037 0.0875011i
\(248\) −2.40463 + 0.362439i −0.152694 + 0.0230149i
\(249\) 0.927737 12.3798i 0.0587929 0.784537i
\(250\) 0.620653 1.58140i 0.0392536 0.100016i
\(251\) 5.83985 7.32294i 0.368608 0.462220i −0.562589 0.826737i \(-0.690194\pi\)
0.931197 + 0.364517i \(0.118766\pi\)
\(252\) 0 0
\(253\) 0.468896 + 0.587977i 0.0294792 + 0.0369658i
\(254\) 0.415010 0.128014i 0.0260400 0.00803229i
\(255\) 3.56976 + 9.09561i 0.223547 + 0.569589i
\(256\) 13.6100 + 4.19811i 0.850622 + 0.262382i
\(257\) −0.462303 6.16900i −0.0288376 0.384812i −0.992885 0.119080i \(-0.962006\pi\)
0.964047 0.265732i \(-0.0856135\pi\)
\(258\) −0.311770 1.36596i −0.0194100 0.0850407i
\(259\) 0 0
\(260\) 0.450602 1.97422i 0.0279452 0.122436i
\(261\) −47.0164 7.08658i −2.91024 0.438648i
\(262\) 2.58074 1.75952i 0.159439 0.108704i
\(263\) 11.0880 19.2050i 0.683715 1.18423i −0.290123 0.956989i \(-0.593696\pi\)
0.973839 0.227241i \(-0.0729704\pi\)
\(264\) −2.96992 5.14405i −0.182786 0.316594i
\(265\) −9.08194 4.37363i −0.557899 0.268670i
\(266\) 0 0
\(267\) −11.0520 + 5.32236i −0.676371 + 0.325723i
\(268\) −10.2912 7.01645i −0.628637 0.428598i
\(269\) −8.74924 8.11811i −0.533450 0.494970i 0.366825 0.930290i \(-0.380445\pi\)
−0.900276 + 0.435320i \(0.856635\pi\)
\(270\) −1.73399 1.60891i −0.105527 0.0979150i
\(271\) 12.2680 + 8.36419i 0.745228 + 0.508088i 0.875398 0.483404i \(-0.160600\pi\)
−0.130169 + 0.991492i \(0.541552\pi\)
\(272\) 5.32247 2.56317i 0.322722 0.155415i
\(273\) 0 0
\(274\) 1.72930 + 0.832788i 0.104471 + 0.0503106i
\(275\) −0.298818 0.517567i −0.0180194 0.0312105i
\(276\) 0.630777 1.09254i 0.0379683 0.0657631i
\(277\) −2.06395 + 1.40718i −0.124011 + 0.0845493i −0.623737 0.781634i \(-0.714386\pi\)
0.499726 + 0.866184i \(0.333434\pi\)
\(278\) −2.94938 0.444548i −0.176892 0.0266622i
\(279\) −4.98321 + 21.8329i −0.298337 + 1.30710i
\(280\) 0 0
\(281\) 2.47839 + 10.8585i 0.147848 + 0.647766i 0.993481 + 0.114000i \(0.0363665\pi\)
−0.845632 + 0.533766i \(0.820776\pi\)
\(282\) −0.366460 4.89007i −0.0218224 0.291200i
\(283\) −4.35012 1.34183i −0.258588 0.0797637i 0.162751 0.986667i \(-0.447963\pi\)
−0.421338 + 0.906904i \(0.638440\pi\)
\(284\) −4.79836 12.2260i −0.284730 0.725481i
\(285\) 26.5079 8.17661i 1.57019 0.484340i
\(286\) 0.149071 + 0.186930i 0.00881478 + 0.0110534i
\(287\) 0 0
\(288\) −6.03120 + 7.56289i −0.355392 + 0.445648i
\(289\) −5.35794 + 13.6518i −0.315173 + 0.803047i
\(290\) −0.213094 + 2.84354i −0.0125133 + 0.166978i
\(291\) 21.6027 3.25608i 1.26637 0.190875i
\(292\) 5.32666 4.94242i 0.311719 0.289233i
\(293\) −26.1249 −1.52623 −0.763116 0.646262i \(-0.776331\pi\)
−0.763116 + 0.646262i \(0.776331\pi\)
\(294\) 0 0
\(295\) 15.8266 0.921457
\(296\) −2.81858 + 2.61526i −0.163827 + 0.152009i
\(297\) −24.4499 + 3.68523i −1.41873 + 0.213839i
\(298\) 0.142592 1.90276i 0.00826014 0.110224i
\(299\) −0.0373140 + 0.0950744i −0.00215792 + 0.00549829i
\(300\) −0.625064 + 0.783805i −0.0360881 + 0.0452530i
\(301\) 0 0
\(302\) 0.621015 + 0.778728i 0.0357354 + 0.0448108i
\(303\) 34.5397 10.6541i 1.98426 0.612062i
\(304\) −6.12735 15.6122i −0.351428 0.895424i
\(305\) −10.0811 3.10962i −0.577245 0.178056i
\(306\) 0.0934278 + 1.24671i 0.00534091 + 0.0712695i
\(307\) −0.488612 2.14075i −0.0278866 0.122179i 0.959069 0.283173i \(-0.0913871\pi\)
−0.986955 + 0.160994i \(0.948530\pi\)
\(308\) 0 0
\(309\) −1.43161 + 6.27229i −0.0814415 + 0.356818i
\(310\) 1.32803 + 0.200168i 0.0754270 + 0.0113688i
\(311\) 13.2189 9.01249i 0.749575 0.511051i −0.127245 0.991871i \(-0.540613\pi\)
0.876819 + 0.480820i \(0.159661\pi\)
\(312\) 0.403339 0.698603i 0.0228346 0.0395506i
\(313\) −0.458062 0.793387i −0.0258912 0.0448449i 0.852789 0.522255i \(-0.174909\pi\)
−0.878681 + 0.477410i \(0.841576\pi\)
\(314\) −1.08324 0.521660i −0.0611306 0.0294390i
\(315\) 0 0
\(316\) 6.17493 2.97369i 0.347367 0.167283i
\(317\) 8.89509 + 6.06457i 0.499598 + 0.340620i 0.786757 0.617263i \(-0.211758\pi\)
−0.287159 + 0.957883i \(0.592711\pi\)
\(318\) −1.46354 1.35797i −0.0820714 0.0761511i
\(319\) 21.8501 + 20.2739i 1.22337 + 1.13512i
\(320\) −13.5565 9.24266i −0.757831 0.516681i
\(321\) −37.1275 + 17.8796i −2.07225 + 0.997944i
\(322\) 0 0
\(323\) −5.97117 2.87556i −0.332245 0.160001i
\(324\) 4.49798 + 7.79073i 0.249888 + 0.432818i
\(325\) 0.0405818 0.0702898i 0.00225107 0.00389898i
\(326\) 3.03443 2.06884i 0.168061 0.114582i
\(327\) −36.8397 5.55269i −2.03724 0.307064i
\(328\) 0.376059 1.64762i 0.0207644 0.0909748i
\(329\) 0 0
\(330\) 0.729970 + 3.19821i 0.0401835 + 0.176056i
\(331\) 2.46620 + 32.9091i 0.135554 + 1.80885i 0.487817 + 0.872946i \(0.337793\pi\)
−0.352262 + 0.935901i \(0.614588\pi\)
\(332\) 8.05900 + 2.48587i 0.442295 + 0.136430i
\(333\) 12.9362 + 32.9609i 0.708899 + 1.80625i
\(334\) 1.18971 0.366976i 0.0650979 0.0200800i
\(335\) 8.62635 + 10.8171i 0.471308 + 0.591001i
\(336\) 0 0
\(337\) −11.7365 + 14.7171i −0.639328 + 0.801692i −0.990919 0.134462i \(-0.957069\pi\)
0.351591 + 0.936154i \(0.385641\pi\)
\(338\) 0.697988 1.77845i 0.0379656 0.0967347i
\(339\) −2.22045 + 29.6299i −0.120598 + 1.60927i
\(340\) −6.56373 + 0.989324i −0.355968 + 0.0536536i
\(341\) 10.2912 9.54880i 0.557298 0.517097i
\(342\) 3.54937 0.191928
\(343\) 0 0
\(344\) 1.91438 0.103216
\(345\) −1.02725 + 0.953150i −0.0553053 + 0.0513159i
\(346\) 1.59121 0.239836i 0.0855439 0.0128937i
\(347\) −2.40314 + 32.0677i −0.129007 + 1.72148i 0.439024 + 0.898476i \(0.355324\pi\)
−0.568031 + 0.823007i \(0.692295\pi\)
\(348\) 18.2674 46.5445i 0.979234 2.49505i
\(349\) −6.40434 + 8.03078i −0.342816 + 0.429878i −0.923114 0.384526i \(-0.874365\pi\)
0.580298 + 0.814404i \(0.302936\pi\)
\(350\) 0 0
\(351\) −2.09368 2.62539i −0.111752 0.140133i
\(352\) 5.79468 1.78742i 0.308858 0.0952700i
\(353\) −10.0068 25.4968i −0.532607 1.35706i −0.903581 0.428417i \(-0.859072\pi\)
0.370975 0.928643i \(-0.379024\pi\)
\(354\) 2.99538 + 0.923952i 0.159203 + 0.0491075i
\(355\) 1.09025 + 14.5484i 0.0578644 + 0.772147i
\(356\) −1.85434 8.12440i −0.0982799 0.430592i
\(357\) 0 0
\(358\) 0.275382 1.20653i 0.0145544 0.0637669i
\(359\) 4.67270 + 0.704297i 0.246616 + 0.0371714i 0.271187 0.962527i \(-0.412584\pi\)
−0.0245710 + 0.999698i \(0.507822\pi\)
\(360\) 5.90762 4.02775i 0.311359 0.212281i
\(361\) 0.0921558 0.159619i 0.00485030 0.00840097i
\(362\) 0.474766 + 0.822319i 0.0249531 + 0.0432201i
\(363\) 2.04360 + 0.984146i 0.107261 + 0.0516543i
\(364\) 0 0
\(365\) −7.27220 + 3.50211i −0.380644 + 0.183309i
\(366\) −1.72645 1.17707i −0.0902429 0.0615265i
\(367\) 2.37827 + 2.20671i 0.124145 + 0.115190i 0.739802 0.672824i \(-0.234919\pi\)
−0.615657 + 0.788014i \(0.711109\pi\)
\(368\) 0.621068 + 0.576267i 0.0323754 + 0.0300400i
\(369\) −12.8589 8.76704i −0.669407 0.456394i
\(370\) 1.91322 0.921359i 0.0994637 0.0478992i
\(371\) 0 0
\(372\) −21.2177 10.2179i −1.10009 0.529774i
\(373\) −17.7184 30.6892i −0.917424 1.58903i −0.803313 0.595557i \(-0.796931\pi\)
−0.114111 0.993468i \(-0.536402\pi\)
\(374\) 0.391870 0.678738i 0.0202631 0.0350967i
\(375\) 27.3398 18.6399i 1.41182 0.962562i
\(376\) 6.62548 + 0.998630i 0.341683 + 0.0515004i
\(377\) −0.900772 + 3.94654i −0.0463921 + 0.203257i
\(378\) 0 0
\(379\) 5.47579 + 23.9910i 0.281272 + 1.23233i 0.896164 + 0.443723i \(0.146343\pi\)
−0.614892 + 0.788611i \(0.710800\pi\)
\(380\) 1.40830 + 18.7925i 0.0722443 + 0.964033i
\(381\) 8.08345 + 2.49341i 0.414128 + 0.127741i
\(382\) −1.21352 3.09200i −0.0620892 0.158201i
\(383\) −4.86286 + 1.49999i −0.248480 + 0.0766460i −0.416493 0.909139i \(-0.636741\pi\)
0.168013 + 0.985785i \(0.446265\pi\)
\(384\) −8.44020 10.5837i −0.430712 0.540096i
\(385\) 0 0
\(386\) 0.618215 0.775217i 0.0314663 0.0394575i
\(387\) 6.44079 16.4109i 0.327404 0.834211i
\(388\) −1.10910 + 14.7999i −0.0563058 + 0.751349i
\(389\) −14.9686 + 2.25615i −0.758936 + 0.114391i −0.517099 0.855926i \(-0.672988\pi\)
−0.241837 + 0.970317i \(0.577750\pi\)
\(390\) −0.326584 + 0.303025i −0.0165372 + 0.0153443i
\(391\) 0.334795 0.0169313
\(392\) 0 0
\(393\) 60.8384 3.06889
\(394\) −1.10002 + 1.02067i −0.0554182 + 0.0514206i
\(395\) −7.52801 + 1.13466i −0.378775 + 0.0570912i
\(396\) 2.77696 37.0560i 0.139548 1.86213i
\(397\) 2.60679 6.64199i 0.130831 0.333352i −0.850415 0.526113i \(-0.823649\pi\)
0.981246 + 0.192761i \(0.0617441\pi\)
\(398\) 1.62094 2.03260i 0.0812506 0.101885i
\(399\) 0 0
\(400\) −0.419781 0.526389i −0.0209891 0.0263194i
\(401\) −27.5103 + 8.48580i −1.37380 + 0.423760i −0.891807 0.452416i \(-0.850562\pi\)
−0.481991 + 0.876176i \(0.660086\pi\)
\(402\) 1.00115 + 2.55088i 0.0499327 + 0.127226i
\(403\) 1.82188 + 0.561975i 0.0907542 + 0.0279939i
\(404\) 1.83501 + 24.4865i 0.0912953 + 1.21825i
\(405\) −2.22359 9.74217i −0.110491 0.484092i
\(406\) 0 0
\(407\) 4.93936 21.6407i 0.244835 1.07269i
\(408\) −2.61474 0.394109i −0.129449 0.0195113i
\(409\) −24.2046 + 16.5024i −1.19684 + 0.815990i −0.986838 0.161711i \(-0.948299\pi\)
−0.210000 + 0.977701i \(0.567346\pi\)
\(410\) −0.466676 + 0.808306i −0.0230475 + 0.0399194i
\(411\) 18.6926 + 32.3765i 0.922038 + 1.59702i
\(412\) −3.93778 1.89634i −0.194001 0.0934258i
\(413\) 0 0
\(414\) −0.161544 + 0.0777956i −0.00793946 + 0.00382344i
\(415\) −7.74031 5.27726i −0.379957 0.259050i
\(416\) 0.603707 + 0.560158i 0.0295992 + 0.0274640i
\(417\) −42.5875 39.5154i −2.08552 1.93508i
\(418\) −1.83843 1.25342i −0.0899208 0.0613069i
\(419\) 19.5831 9.43072i 0.956697 0.460721i 0.110668 0.993857i \(-0.464701\pi\)
0.846029 + 0.533136i \(0.178987\pi\)
\(420\) 0 0
\(421\) −3.60206 1.73466i −0.175554 0.0845423i 0.344043 0.938954i \(-0.388203\pi\)
−0.519597 + 0.854412i \(0.673918\pi\)
\(422\) 0.484233 + 0.838715i 0.0235721 + 0.0408280i
\(423\) 30.8516 53.4365i 1.50006 2.59817i
\(424\) 2.25393 1.53670i 0.109460 0.0746289i
\(425\) −0.263082 0.0396532i −0.0127613 0.00192346i
\(426\) −0.642988 + 2.81711i −0.0311529 + 0.136490i
\(427\) 0 0
\(428\) −6.22937 27.2927i −0.301108 1.31924i
\(429\) 0.348016 + 4.64395i 0.0168024 + 0.224212i
\(430\) −1.01030 0.311637i −0.0487211 0.0150285i
\(431\) 3.12111 + 7.95247i 0.150339 + 0.383057i 0.986126 0.165996i \(-0.0530838\pi\)
−0.835788 + 0.549053i \(0.814989\pi\)
\(432\) −26.6181 + 8.21059i −1.28066 + 0.395032i
\(433\) 15.9991 + 20.0623i 0.768868 + 0.964131i 0.999961 0.00880118i \(-0.00280154\pi\)
−0.231093 + 0.972932i \(0.574230\pi\)
\(434\) 0 0
\(435\) −34.6292 + 43.4237i −1.66034 + 2.08200i
\(436\) 9.24656 23.5599i 0.442830 1.12831i
\(437\) 0.0710307 0.947838i 0.00339786 0.0453412i
\(438\) −1.58081 + 0.238269i −0.0755341 + 0.0113849i
\(439\) 12.0236 11.1563i 0.573855 0.532460i −0.338977 0.940795i \(-0.610081\pi\)
0.912832 + 0.408335i \(0.133890\pi\)
\(440\) −4.48227 −0.213684
\(441\) 0 0
\(442\) 0.106438 0.00506275
\(443\) −17.5883 + 16.3196i −0.835647 + 0.775367i −0.976694 0.214636i \(-0.931143\pi\)
0.141048 + 0.990003i \(0.454953\pi\)
\(444\) −36.8197 + 5.54968i −1.74739 + 0.263376i
\(445\) −0.691751 + 9.23078i −0.0327922 + 0.437581i
\(446\) 0.835310 2.12833i 0.0395531 0.100780i
\(447\) 23.1722 29.0571i 1.09601 1.37435i
\(448\) 0 0
\(449\) −18.0813 22.6732i −0.853309 1.07002i −0.996766 0.0803595i \(-0.974393\pi\)
0.143457 0.989657i \(-0.454178\pi\)
\(450\) 0.136155 0.0419983i 0.00641842 0.00197982i
\(451\) 3.56441 + 9.08197i 0.167842 + 0.427653i
\(452\) −19.2885 5.94970i −0.907253 0.279850i
\(453\) 1.44980 + 19.3462i 0.0681173 + 0.908963i
\(454\) 0.618675 + 2.71059i 0.0290358 + 0.127214i
\(455\) 0 0
\(456\) −1.67051 + 7.31897i −0.0782286 + 0.342742i
\(457\) −0.959121 0.144564i −0.0448658 0.00676243i 0.126571 0.991958i \(-0.459603\pi\)
−0.171437 + 0.985195i \(0.554841\pi\)
\(458\) −2.30701 + 1.57289i −0.107799 + 0.0734964i
\(459\) −5.50374 + 9.53276i −0.256893 + 0.444951i
\(460\) −0.475992 0.824443i −0.0221933 0.0384398i
\(461\) −18.6091 8.96165i −0.866710 0.417386i −0.0529575 0.998597i \(-0.516865\pi\)
−0.813753 + 0.581211i \(0.802579\pi\)
\(462\) 0 0
\(463\) −11.6576 + 5.61401i −0.541776 + 0.260905i −0.684696 0.728829i \(-0.740065\pi\)
0.142920 + 0.989734i \(0.454351\pi\)
\(464\) 27.7448 + 18.9161i 1.28802 + 0.878157i
\(465\) 19.1760 + 17.7928i 0.889268 + 0.825120i
\(466\) −0.852690 0.791181i −0.0395001 0.0366507i
\(467\) −14.8209 10.1047i −0.685831 0.467592i 0.169597 0.985514i \(-0.445754\pi\)
−0.855428 + 0.517922i \(0.826706\pi\)
\(468\) 4.54685 2.18965i 0.210178 0.101216i
\(469\) 0 0
\(470\) −3.33399 1.60557i −0.153786 0.0740593i
\(471\) −11.7091 20.2807i −0.539525 0.934485i
\(472\) −2.14152 + 3.70922i −0.0985714 + 0.170731i
\(473\) −9.13140 + 6.22568i −0.419862 + 0.286257i
\(474\) −1.49101 0.224734i −0.0684846 0.0103224i
\(475\) −0.168078 + 0.736396i −0.00771193 + 0.0337882i
\(476\) 0 0
\(477\) −5.59008 24.4917i −0.255952 1.12140i
\(478\) 0.0688335 + 0.918519i 0.00314837 + 0.0420121i
\(479\) −8.90872 2.74798i −0.407050 0.125558i 0.0844670 0.996426i \(-0.473081\pi\)
−0.491517 + 0.870868i \(0.663557\pi\)
\(480\) 4.12818 + 10.5184i 0.188425 + 0.480099i
\(481\) 2.88064 0.888559i 0.131346 0.0405148i
\(482\) 0.320974 + 0.402489i 0.0146200 + 0.0183329i
\(483\) 0 0
\(484\) −0.960735 + 1.20472i −0.0436698 + 0.0547602i
\(485\) 6.02293 15.3462i 0.273487 0.696834i
\(486\) −0.0934978 + 1.24764i −0.00424115 + 0.0565942i
\(487\) −0.388846 + 0.0586091i −0.0176203 + 0.00265583i −0.157846 0.987464i \(-0.550455\pi\)
0.140226 + 0.990119i \(0.455217\pi\)
\(488\) 2.09289 1.94192i 0.0947407 0.0879065i
\(489\) 71.5336 3.23486
\(490\) 0 0
\(491\) 25.1698 1.13590 0.567948 0.823065i \(-0.307738\pi\)
0.567948 + 0.823065i \(0.307738\pi\)
\(492\) 11.9973 11.1318i 0.540879 0.501863i
\(493\) 13.1212 1.97770i 0.590948 0.0890711i
\(494\) 0.0225821 0.301337i 0.00101602 0.0135578i
\(495\) −15.0803 + 38.4239i −0.677807 + 1.72703i
\(496\) 9.86090 12.3652i 0.442767 0.555213i
\(497\) 0 0
\(498\) −1.15687 1.45067i −0.0518405 0.0650060i
\(499\) 2.31812 0.715045i 0.103773 0.0320098i −0.242434 0.970168i \(-0.577946\pi\)
0.346207 + 0.938158i \(0.387470\pi\)
\(500\) 8.21251 + 20.9251i 0.367274 + 0.935800i
\(501\) 23.1728 + 7.14786i 1.03528 + 0.319343i
\(502\) −0.104615 1.39599i −0.00466919 0.0623060i
\(503\) −3.94989 17.3056i −0.176117 0.771618i −0.983400 0.181453i \(-0.941920\pi\)
0.807283 0.590165i \(-0.200937\pi\)
\(504\) 0 0
\(505\) 6.06946 26.5920i 0.270087 1.18333i
\(506\) 0.111146 + 0.0167526i 0.00494105 + 0.000744744i
\(507\) 30.7464 20.9625i 1.36549 0.930978i
\(508\) −2.87337 + 4.97682i −0.127485 + 0.220811i
\(509\) 13.1109 + 22.7087i 0.581130 + 1.00655i 0.995346 + 0.0963683i \(0.0307227\pi\)
−0.414215 + 0.910179i \(0.635944\pi\)
\(510\) 1.31576 + 0.633636i 0.0582628 + 0.0280579i
\(511\) 0 0
\(512\) 10.2970 4.95880i 0.455070 0.219150i
\(513\) 25.8205 + 17.6041i 1.14000 + 0.777240i
\(514\) −0.677783 0.628891i −0.0298957 0.0277392i
\(515\) 3.55887 + 3.30215i 0.156823 + 0.145510i
\(516\) 15.3178 + 10.4435i 0.674328 + 0.459749i
\(517\) −34.8505 + 16.7831i −1.53272 + 0.738120i
\(518\) 0 0
\(519\) 28.2393 + 13.5993i 1.23957 + 0.596944i
\(520\) −0.304364 0.527174i −0.0133473 0.0231181i
\(521\) −2.37745 + 4.11786i −0.104158 + 0.180407i −0.913394 0.407077i \(-0.866548\pi\)
0.809236 + 0.587484i \(0.199881\pi\)
\(522\) −5.87163 + 4.00321i −0.256994 + 0.175216i
\(523\) 0.389809 + 0.0587543i 0.0170452 + 0.00256915i 0.157559 0.987510i \(-0.449637\pi\)
−0.140514 + 0.990079i \(0.544876\pi\)
\(524\) −9.19680 + 40.2938i −0.401764 + 1.76024i
\(525\) 0 0
\(526\) −0.737530 3.23133i −0.0321578 0.140893i
\(527\) −0.467044 6.23226i −0.0203447 0.271482i
\(528\) 36.9147 + 11.3867i 1.60651 + 0.495541i
\(529\) −8.38530 21.3654i −0.364578 0.928930i
\(530\) −1.43965 + 0.444075i −0.0625346 + 0.0192894i
\(531\) 24.5920 + 30.8374i 1.06720 + 1.33823i
\(532\) 0 0
\(533\) −0.826122 + 1.03592i −0.0357833 + 0.0448709i
\(534\) −0.669815 + 1.70666i −0.0289857 + 0.0738544i
\(535\) −2.32383 + 31.0094i −0.100468 + 1.34065i
\(536\) −3.70242 + 0.558050i −0.159920 + 0.0241041i
\(537\) 17.6700 16.3954i 0.762518 0.707514i
\(538\) −1.78386 −0.0769077
\(539\) 0 0
\(540\) 31.2996 1.34692
\(541\) 11.6410 10.8013i 0.500487 0.464384i −0.389070 0.921208i \(-0.627204\pi\)
0.889557 + 0.456824i \(0.151013\pi\)
\(542\) 2.19440 0.330753i 0.0942576 0.0142070i
\(543\) −1.38211 + 18.4430i −0.0593121 + 0.791466i
\(544\) 0.986272 2.51298i 0.0422861 0.107743i
\(545\) −17.5286 + 21.9802i −0.750842 + 0.941526i
\(546\) 0 0
\(547\) −21.5460 27.0178i −0.921239 1.15520i −0.987535 0.157397i \(-0.949690\pi\)
0.0662966 0.997800i \(-0.478882\pi\)
\(548\) −24.2690 + 7.48599i −1.03672 + 0.319786i
\(549\) −9.60556 24.4746i −0.409955 1.04455i
\(550\) −0.0853543 0.0263283i −0.00363952 0.00112264i
\(551\) −2.81525 37.5669i −0.119934 1.60040i
\(552\) −0.0843876 0.369726i −0.00359177 0.0157366i
\(553\) 0 0
\(554\) −0.0830789 + 0.363993i −0.00352969 + 0.0154646i
\(555\) 40.8993 + 6.16458i 1.73608 + 0.261672i
\(556\) 32.6093 22.2326i 1.38294 0.942873i
\(557\) −13.2184 + 22.8950i −0.560084 + 0.970093i 0.437405 + 0.899265i \(0.355898\pi\)
−0.997489 + 0.0708285i \(0.977436\pi\)
\(558\) 1.67353 + 2.89864i 0.0708462 + 0.122709i
\(559\) −1.35228 0.651224i −0.0571954 0.0275439i
\(560\) 0 0
\(561\) 13.7537 6.62344i 0.580682 0.279642i
\(562\) 1.37540 + 0.937734i 0.0580179 + 0.0395559i
\(563\) −30.3648 28.1745i −1.27973 1.18741i −0.971749 0.236018i \(-0.924158\pi\)
−0.307977 0.951394i \(-0.599652\pi\)
\(564\) 47.5655 + 44.1344i 2.00287 + 1.85839i
\(565\) 18.5257 + 12.6306i 0.779383 + 0.531374i
\(566\) −0.613017 + 0.295213i −0.0257670 + 0.0124087i
\(567\) 0 0
\(568\) −3.55718 1.71305i −0.149256 0.0718778i
\(569\) 14.2483 + 24.6788i 0.597321 + 1.03459i 0.993215 + 0.116294i \(0.0371015\pi\)
−0.395894 + 0.918296i \(0.629565\pi\)
\(570\) 2.07304 3.59061i 0.0868300 0.150394i
\(571\) −24.0432 + 16.3924i −1.00618 + 0.686000i −0.949945 0.312417i \(-0.898861\pi\)
−0.0562327 + 0.998418i \(0.517909\pi\)
\(572\) −3.12834 0.471521i −0.130802 0.0197153i
\(573\) 14.3965 63.0754i 0.601424 2.63501i
\(574\) 0 0
\(575\) −0.00849063 0.0371999i −0.000354084 0.00155134i
\(576\) −3.05573 40.7759i −0.127322 1.69900i
\(577\) 38.3623 + 11.8332i 1.59704 + 0.492622i 0.960421 0.278554i \(-0.0898551\pi\)
0.636622 + 0.771176i \(0.280331\pi\)
\(578\) 0.800799 + 2.04040i 0.0333088 + 0.0848695i
\(579\) 18.4549 5.69259i 0.766961 0.236576i
\(580\) −23.5251 29.4995i −0.976825 1.22490i
\(581\) 0 0
\(582\) 2.03582 2.55284i 0.0843876 0.105819i
\(583\) −5.75356 + 14.6598i −0.238288 + 0.607148i
\(584\) 0.163237 2.17824i 0.00675478 0.0901362i
\(585\) −5.54317 + 0.835498i −0.229182 + 0.0345436i
\(586\) −2.86229 + 2.65582i −0.118240 + 0.109711i
\(587\) −23.9240 −0.987449 −0.493724 0.869618i \(-0.664365\pi\)
−0.493724 + 0.869618i \(0.664365\pi\)
\(588\) 0 0
\(589\) −17.7432 −0.731097
\(590\) 1.73399 1.60891i 0.0713872 0.0662377i
\(591\) −28.9019 + 4.35626i −1.18887 + 0.179193i
\(592\) 1.86876 24.9368i 0.0768054 1.02490i
\(593\) −10.3241 + 26.3054i −0.423960 + 1.08023i 0.546176 + 0.837670i \(0.316083\pi\)
−0.970136 + 0.242562i \(0.922012\pi\)
\(594\) −2.30415 + 2.88931i −0.0945404 + 0.118550i
\(595\) 0 0
\(596\) 15.7419 + 19.7397i 0.644811 + 0.808568i
\(597\) 48.3884 14.9258i 1.98040 0.610874i
\(598\) 0.00557695 + 0.0142098i 0.000228058 + 0.000581083i
\(599\) −4.51079 1.39139i −0.184306 0.0568508i 0.201228 0.979544i \(-0.435507\pi\)
−0.385534 + 0.922694i \(0.625983\pi\)
\(600\) 0.0225212 + 0.300525i 0.000919425 + 0.0122689i
\(601\) 7.41533 + 32.4887i 0.302478 + 1.32524i 0.866374 + 0.499396i \(0.166445\pi\)
−0.563896 + 0.825846i \(0.690698\pi\)
\(602\) 0 0
\(603\) −7.67267 + 33.6162i −0.312455 + 1.36896i
\(604\) −13.0323 1.96430i −0.530277 0.0799264i
\(605\) 1.41422 0.964196i 0.0574960 0.0392001i
\(606\) 2.70116 4.67855i 0.109727 0.190053i
\(607\) −16.8576 29.1983i −0.684230 1.18512i −0.973678 0.227927i \(-0.926805\pi\)
0.289448 0.957194i \(-0.406528\pi\)
\(608\) −6.90524 3.32539i −0.280044 0.134862i
\(609\) 0 0
\(610\) −1.42063 + 0.684140i −0.0575197 + 0.0277000i
\(611\) −4.34040 2.95924i −0.175594 0.119718i
\(612\) −12.1267 11.2519i −0.490192 0.454832i
\(613\) −26.4593 24.5506i −1.06868 0.991590i −0.0686976 0.997638i \(-0.521884\pi\)
−0.999982 + 0.00604802i \(0.998075\pi\)
\(614\) −0.271159 0.184873i −0.0109431 0.00746088i
\(615\) −16.3792 + 7.88782i −0.660475 + 0.318068i
\(616\) 0 0
\(617\) 2.28017 + 1.09807i 0.0917961 + 0.0442067i 0.479218 0.877696i \(-0.340920\pi\)
−0.387422 + 0.921902i \(0.626634\pi\)
\(618\) 0.480783 + 0.832741i 0.0193399 + 0.0334978i
\(619\) −1.34133 + 2.32325i −0.0539126 + 0.0933794i −0.891722 0.452583i \(-0.850503\pi\)
0.837810 + 0.545963i \(0.183836\pi\)
\(620\) −14.6831 + 10.0108i −0.589688 + 0.402042i
\(621\) −1.56103 0.235287i −0.0626419 0.00944175i
\(622\) 0.532091 2.33124i 0.0213349 0.0934743i
\(623\) 0 0
\(624\) 1.16743 + 5.11486i 0.0467347 + 0.204758i
\(625\) −1.80092 24.0316i −0.0720369 0.961265i
\(626\) −0.130841 0.0403591i −0.00522946 0.00161307i
\(627\) −15.8336 40.3433i −0.632333 1.61116i
\(628\) 15.2021 4.68923i 0.606631 0.187121i
\(629\) −6.16114 7.72583i −0.245661 0.308049i
\(630\) 0 0
\(631\) 10.5445 13.2224i 0.419772 0.526377i −0.526315 0.850289i \(-0.676427\pi\)
0.946087 + 0.323912i \(0.104998\pi\)
\(632\) 0.752700 1.91785i 0.0299408 0.0762880i
\(633\) −1.40967 + 18.8108i −0.0560294 + 0.747661i
\(634\) 1.59108 0.239817i 0.0631899 0.00952435i
\(635\) 4.67941 4.34186i 0.185697 0.172302i
\(636\) 26.4178 1.04754
\(637\) 0 0
\(638\) 4.45496 0.176374
\(639\) −26.6528 + 24.7302i −1.05437 + 0.978311i
\(640\) −10.1011 + 1.52250i −0.399282 + 0.0601820i
\(641\) −0.681070 + 9.08824i −0.0269006 + 0.358964i 0.967468 + 0.252992i \(0.0814145\pi\)
−0.994369 + 0.105972i \(0.966205\pi\)
\(642\) −2.25014 + 5.73326i −0.0888059 + 0.226274i
\(643\) 23.7264 29.7520i 0.935679 1.17330i −0.0489769 0.998800i \(-0.515596\pi\)
0.984656 0.174505i \(-0.0558325\pi\)
\(644\) 0 0
\(645\) −12.8397 16.1005i −0.505564 0.633957i
\(646\) −0.946539 + 0.291969i −0.0372411 + 0.0114874i
\(647\) −8.85663 22.5663i −0.348190 0.887174i −0.992482 0.122394i \(-0.960943\pi\)
0.644291 0.764780i \(-0.277152\pi\)
\(648\) 2.58412 + 0.797096i 0.101514 + 0.0313129i
\(649\) −1.84778 24.6570i −0.0725318 0.967870i
\(650\) −0.00269934 0.0118266i −0.000105877 0.000463877i
\(651\) 0 0
\(652\) −10.8136 + 47.3773i −0.423492 + 1.85544i
\(653\) −25.8055 3.88956i −1.00985 0.152210i −0.376778 0.926304i \(-0.622968\pi\)
−0.633071 + 0.774093i \(0.718206\pi\)
\(654\) −4.60071 + 3.13671i −0.179902 + 0.122655i
\(655\) 22.9547 39.7587i 0.896914 1.55350i
\(656\) 5.49562 + 9.51869i 0.214568 + 0.371643i
\(657\) −18.1236 8.72786i −0.707068 0.340506i
\(658\) 0 0
\(659\) 35.4630 17.0781i 1.38144 0.665268i 0.412136 0.911122i \(-0.364783\pi\)
0.969307 + 0.245855i \(0.0790687\pi\)
\(660\) −35.8646 24.4521i −1.39603 0.951796i
\(661\) 13.5704 + 12.5915i 0.527828 + 0.489753i 0.898477 0.439020i \(-0.144674\pi\)
−0.370649 + 0.928773i \(0.620865\pi\)
\(662\) 3.61570 + 3.35488i 0.140528 + 0.130391i
\(663\) 1.71294 + 1.16786i 0.0665250 + 0.0453559i
\(664\) 2.28417 1.10000i 0.0886430 0.0426882i
\(665\) 0 0
\(666\) 4.76808 + 2.29619i 0.184759 + 0.0889754i
\(667\) 0.951528 + 1.64810i 0.0368433 + 0.0638145i
\(668\) −8.23707 + 14.2670i −0.318702 + 0.552008i
\(669\) 36.7954 25.0866i 1.42259 0.969906i
\(670\) 2.04477 + 0.308200i 0.0789965 + 0.0119068i
\(671\) −3.66764 + 16.0690i −0.141588 + 0.620335i
\(672\) 0 0
\(673\) −7.07769 31.0094i −0.272825 1.19532i −0.906662 0.421857i \(-0.861378\pi\)
0.633838 0.773466i \(-0.281479\pi\)
\(674\) 0.210247 + 2.80555i 0.00809842 + 0.108066i
\(675\) 1.19879 + 0.369776i 0.0461413 + 0.0142327i
\(676\) 9.23580 + 23.5324i 0.355223 + 0.905094i
\(677\) −35.9465 + 11.0880i −1.38154 + 0.426148i −0.894436 0.447197i \(-0.852422\pi\)
−0.487102 + 0.873345i \(0.661946\pi\)
\(678\) 2.76886 + 3.47204i 0.106337 + 0.133343i
\(679\) 0 0
\(680\) −1.24411 + 1.56007i −0.0477095 + 0.0598259i
\(681\) −19.7846 + 50.4105i −0.758149 + 1.93173i
\(682\) 0.156802 2.09237i 0.00600425 0.0801211i
\(683\) 14.3846 2.16813i 0.550413 0.0829613i 0.132053 0.991243i \(-0.457843\pi\)
0.418360 + 0.908281i \(0.362605\pi\)
\(684\) −34.4281 + 31.9446i −1.31639 + 1.22143i
\(685\) 28.2113 1.07790
\(686\) 0 0
\(687\) −54.3854 −2.07493
\(688\) −9.12691 + 8.46854i −0.347960 + 0.322860i
\(689\) −2.11488 + 0.318767i −0.0805705 + 0.0121441i
\(690\) −0.0156518 + 0.208858i −0.000595852 + 0.00795109i
\(691\) 6.96378 17.7434i 0.264915 0.674992i −0.735081 0.677980i \(-0.762856\pi\)
0.999996 + 0.00298766i \(0.000951003\pi\)
\(692\) −13.2758 + 16.6473i −0.504671 + 0.632837i
\(693\) 0 0
\(694\) 2.99667 + 3.75770i 0.113752 + 0.142640i
\(695\) −41.8924 + 12.9221i −1.58907 + 0.490163i
\(696\) −5.49133 13.9917i −0.208148 0.530353i
\(697\) 4.15036 + 1.28022i 0.157206 + 0.0484916i
\(698\) 0.114727 + 1.53093i 0.00434248 + 0.0579464i
\(699\) −5.04157 22.0886i −0.190690 0.835466i
\(700\) 0 0
\(701\) −3.63929 + 15.9448i −0.137454 + 0.602225i 0.858535 + 0.512754i \(0.171375\pi\)
−0.995989 + 0.0894711i \(0.971482\pi\)
\(702\) −0.496282 0.0748025i −0.0187310 0.00282324i
\(703\) −23.1797 + 15.8037i −0.874239 + 0.596046i
\(704\) −12.8168 + 22.1994i −0.483053 + 0.836673i
\(705\) −36.0382 62.4201i −1.35728 2.35088i
\(706\) −3.68834 1.77621i −0.138812 0.0668486i
\(707\) 0 0
\(708\) −37.3701 + 17.9965i −1.40445 + 0.676350i
\(709\) −7.49143 5.10757i −0.281347 0.191819i 0.414422 0.910085i \(-0.363984\pi\)
−0.695769 + 0.718266i \(0.744936\pi\)
\(710\) 1.59842 + 1.48311i 0.0599875 + 0.0556603i
\(711\) −13.9082 12.9049i −0.521598 0.483972i
\(712\) −2.06979 1.41116i −0.0775686 0.0528854i
\(713\) 0.807556 0.388898i 0.0302432 0.0145644i
\(714\) 0 0
\(715\) 3.16619 + 1.52476i 0.118409 + 0.0570227i
\(716\) 8.18768 + 14.1815i 0.305988 + 0.529987i
\(717\) −8.97041 + 15.5372i −0.335006 + 0.580248i
\(718\) 0.583549 0.397857i 0.0217779 0.0148479i
\(719\) 37.5757 + 5.66362i 1.40134 + 0.211217i 0.805836 0.592139i \(-0.201716\pi\)
0.595499 + 0.803356i \(0.296954\pi\)
\(720\) −10.3476 + 45.3357i −0.385632 + 1.68956i
\(721\) 0 0
\(722\) −0.00612984 0.0268566i −0.000228129 0.000999498i
\(723\) 0.749333 + 9.99915i 0.0278680 + 0.371872i
\(724\) −12.0060 3.70337i −0.446201 0.137635i
\(725\) −0.552509 1.40777i −0.0205197 0.0522832i
\(726\) 0.323948 0.0999248i 0.0120228 0.00370856i
\(727\) 9.93554 + 12.4588i 0.368489 + 0.462070i 0.931160 0.364610i \(-0.118798\pi\)
−0.562671 + 0.826681i \(0.690226\pi\)
\(728\) 0 0
\(729\) −23.7024 + 29.7219i −0.877867 + 1.10081i
\(730\) −0.440738 + 1.12298i −0.0163124 + 0.0415634i
\(731\) −0.367671 + 4.90623i −0.0135988 + 0.181463i
\(732\) 27.3399 4.12082i 1.01051 0.152310i
\(733\) −28.8768 + 26.7937i −1.06659 + 0.989650i −0.999967 0.00812872i \(-0.997413\pi\)
−0.0666216 + 0.997778i \(0.521222\pi\)
\(734\) 0.484900 0.0178980
\(735\) 0 0
\(736\) 0.387168 0.0142712
\(737\) 15.8453 14.7023i 0.583671 0.541567i
\(738\) −2.30009 + 0.346683i −0.0846676 + 0.0127616i
\(739\) −1.28528 + 17.1508i −0.0472797 + 0.630904i 0.922355 + 0.386344i \(0.126262\pi\)
−0.969634 + 0.244559i \(0.921357\pi\)
\(740\) −10.2655 + 26.1561i −0.377368 + 0.961517i
\(741\) 3.66975 4.60172i 0.134811 0.169048i
\(742\) 0 0
\(743\) −12.1490 15.2344i −0.445704 0.558896i 0.507332 0.861750i \(-0.330632\pi\)
−0.953037 + 0.302855i \(0.902060\pi\)
\(744\) −6.76478 + 2.08666i −0.248009 + 0.0765006i
\(745\) −10.2461 26.1068i −0.375390 0.956478i
\(746\) −5.06109 1.56114i −0.185300 0.0571574i
\(747\) −1.74472 23.2817i −0.0638361 0.851833i
\(748\) 2.30765 + 10.1105i 0.0843759 + 0.369675i
\(749\) 0 0
\(750\) 1.10049 4.82156i 0.0401842 0.176058i
\(751\) 34.9847 + 5.27309i 1.27661 + 0.192418i 0.752135 0.659009i \(-0.229024\pi\)
0.524473 + 0.851427i \(0.324262\pi\)
\(752\) −36.0049 + 24.5477i −1.31296 + 0.895164i
\(753\) 13.6335 23.6139i 0.496831 0.860537i
\(754\) 0.302510 + 0.523963i 0.0110168 + 0.0190816i
\(755\) 13.1900 + 6.35197i 0.480033 + 0.231172i
\(756\) 0 0
\(757\) −19.5973 + 9.43757i −0.712276 + 0.343014i −0.754686 0.656086i \(-0.772211\pi\)
0.0424098 + 0.999100i \(0.486497\pi\)
\(758\) 3.03883 + 2.07184i 0.110375 + 0.0752526i
\(759\) 1.60489 + 1.48912i 0.0582539 + 0.0540517i
\(760\) 4.15275 + 3.85319i 0.150636 + 0.139770i
\(761\) −10.3120 7.03058i −0.373808 0.254858i 0.361814 0.932250i \(-0.382158\pi\)
−0.735622 + 0.677392i \(0.763110\pi\)
\(762\) 1.13912 0.548570i 0.0412658 0.0198726i
\(763\) 0 0
\(764\) 39.5991 + 19.0699i 1.43264 + 0.689925i
\(765\) 9.18783 + 15.9138i 0.332187 + 0.575364i
\(766\) −0.380297 + 0.658694i −0.0137407 + 0.0237996i
\(767\) 2.77451 1.89163i 0.100182 0.0683028i
\(768\) 40.9995 + 6.17968i 1.47944 + 0.222990i
\(769\) 4.89228 21.4345i 0.176420 0.772947i −0.806844 0.590764i \(-0.798826\pi\)
0.983265 0.182183i \(-0.0583164\pi\)
\(770\) 0 0
\(771\) −4.00743 17.5577i −0.144324 0.632324i
\(772\) 0.980465 + 13.0834i 0.0352877 + 0.470882i
\(773\) −18.8456 5.81308i −0.677828 0.209082i −0.0633203 0.997993i \(-0.520169\pi\)
−0.614507 + 0.788911i \(0.710645\pi\)
\(774\) −0.962641 2.45277i −0.0346014 0.0881630i
\(775\) −0.680637 + 0.209949i −0.0244492 + 0.00754158i
\(776\) 2.78166 + 3.48809i 0.0998558 + 0.125215i
\(777\) 0 0
\(778\) −1.41063 + 1.76887i −0.0505735 + 0.0634172i
\(779\) 4.50496 11.4784i 0.161407 0.411258i
\(780\) 0.440536 5.87855i 0.0157737 0.210486i
\(781\) 22.5383 3.39710i 0.806484 0.121558i
\(782\) 0.0366809 0.0340349i 0.00131171 0.00121708i
\(783\) −62.5691 −2.23604
\(784\) 0 0
\(785\) −17.6716 −0.630727
\(786\) 6.66558 6.18475i 0.237753 0.220603i
\(787\) −15.2188 + 2.29386i −0.542490 + 0.0817672i −0.414570 0.910017i \(-0.636068\pi\)
−0.127920 + 0.991785i \(0.540830\pi\)
\(788\) 1.48384 19.8005i 0.0528597 0.705364i
\(789\) 23.5855 60.0950i 0.839667 2.13944i
\(790\) −0.709436 + 0.889604i −0.0252406 + 0.0316507i
\(791\) 0 0
\(792\) −6.96475 8.73352i −0.247482 0.310332i
\(793\) −2.13897 + 0.659785i −0.0759571 + 0.0234296i
\(794\) −0.389611 0.992714i −0.0138268 0.0352301i
\(795\) −28.0412 8.64956i −0.994519 0.306768i
\(796\) 2.57075 + 34.3043i 0.0911180 + 1.21589i
\(797\) −4.92695 21.5864i −0.174522 0.764629i −0.984100 0.177617i \(-0.943161\pi\)
0.809578 0.587012i \(-0.199696\pi\)
\(798\) 0 0
\(799\) −3.83179 + 16.7882i −0.135559 + 0.593923i
\(800\) −0.304235 0.0458561i −0.0107563 0.00162126i
\(801\) −19.0607 + 12.9953i −0.673476 + 0.459168i
\(802\) −2.15143 + 3.72638i −0.0759695 + 0.131583i
\(803\) 6.30515 + 10.9208i 0.222504 + 0.385388i
\(804\) −32.6690 15.7326i −1.15215 0.554844i
\(805\) 0 0
\(806\) 0.256738 0.123639i 0.00904322 0.00435498i
\(807\) −28.7081 19.5729i −1.01057 0.688998i
\(808\) 5.41102 + 5.02070i 0.190359 + 0.176627i
\(809\) 13.6431 + 12.6590i 0.479667 + 0.445066i 0.882573 0.470176i \(-0.155809\pi\)
−0.402906 + 0.915241i \(0.632000\pi\)
\(810\) −1.23400 0.841325i −0.0433583 0.0295612i
\(811\) −28.7892 + 13.8641i −1.01092 + 0.486835i −0.864632 0.502406i \(-0.832448\pi\)
−0.146292 + 0.989241i \(0.546734\pi\)
\(812\) 0 0
\(813\) 38.9441 + 18.7545i 1.36583 + 0.657749i
\(814\) −1.65880 2.87313i −0.0581410 0.100703i
\(815\) 26.9900 46.7481i 0.945420 1.63752i
\(816\) 14.2093 9.68775i 0.497426 0.339139i
\(817\) 13.8120 + 2.08182i 0.483221 + 0.0728338i
\(818\) −0.974289 + 4.26864i −0.0340652 + 0.149249i
\(819\) 0 0
\(820\) −2.74816 12.0405i −0.0959701 0.420472i
\(821\) −1.25307 16.7211i −0.0437324 0.583569i −0.975427 0.220325i \(-0.929288\pi\)
0.931694 0.363244i \(-0.118331\pi\)
\(822\) 5.33936 + 1.64697i 0.186231 + 0.0574448i
\(823\) 17.7420 + 45.2058i 0.618447 + 1.57578i 0.804963 + 0.593325i \(0.202185\pi\)
−0.186516 + 0.982452i \(0.559720\pi\)
\(824\) −1.25547 + 0.387262i −0.0437365 + 0.0134909i
\(825\) −1.08475 1.36023i −0.0377661 0.0473572i
\(826\) 0 0
\(827\) 27.7978 34.8574i 0.966625 1.21211i −0.0106085 0.999944i \(-0.503377\pi\)
0.977234 0.212166i \(-0.0680517\pi\)
\(828\) 0.866775 2.20851i 0.0301225 0.0767509i
\(829\) 3.14121 41.9165i 0.109099 1.45582i −0.627038 0.778989i \(-0.715733\pi\)
0.736137 0.676833i \(-0.236648\pi\)
\(830\) −1.38452 + 0.208683i −0.0480575 + 0.00724351i
\(831\) −5.33081 + 4.94627i −0.184924 + 0.171584i
\(832\) −3.48126 −0.120691
\(833\) 0 0
\(834\) −8.68306 −0.300670
\(835\) 13.4145 12.4468i 0.464227 0.430739i
\(836\) 29.1133 4.38812i 1.00690 0.151766i
\(837\) −2.20225 + 29.3870i −0.0761209 + 1.01576i
\(838\) 1.18685 3.02404i 0.0409990 0.104464i
\(839\) −14.7280 + 18.4683i −0.508466 + 0.637596i −0.968116 0.250504i \(-0.919404\pi\)
0.459650 + 0.888100i \(0.347975\pi\)
\(840\) 0 0
\(841\) 28.9464 + 36.2976i 0.998150 + 1.25164i
\(842\) −0.570993 + 0.176128i −0.0196777 + 0.00606978i
\(843\) 11.8457 + 30.1824i 0.407988 + 1.03954i
\(844\) −12.2454 3.77722i −0.421505 0.130017i
\(845\) −2.09849 28.0024i −0.0721903 0.963313i
\(846\) −2.05213 8.99095i −0.0705536 0.309115i
\(847\) 0 0
\(848\) −3.94790 + 17.2969i −0.135572 + 0.593978i
\(849\) −13.1046 1.97520i −0.449748 0.0677886i
\(850\) −0.0328548 + 0.0224001i −0.00112691 + 0.000768316i
\(851\) 0.708603 1.22734i 0.0242906 0.0420725i
\(852\) −19.1174 33.1123i −0.654950 1.13441i
\(853\) 41.7615 + 20.1113i 1.42989 + 0.688597i 0.978976 0.203973i \(-0.0653855\pi\)
0.450909 + 0.892570i \(0.351100\pi\)
\(854\) 0 0
\(855\) 47.0028 22.6353i 1.60746 0.774112i
\(856\) −6.95313 4.74057i −0.237653 0.162029i
\(857\) 13.4724 + 12.5005i 0.460208 + 0.427011i 0.875898 0.482496i \(-0.160270\pi\)
−0.415690 + 0.909506i \(0.636460\pi\)
\(858\) 0.510227 + 0.473422i 0.0174189 + 0.0161624i
\(859\) 1.71855 + 1.17169i 0.0586361 + 0.0399774i 0.592283 0.805730i \(-0.298227\pi\)
−0.533647 + 0.845707i \(0.679179\pi\)
\(860\) 12.6045 6.06999i 0.429808 0.206985i
\(861\) 0 0
\(862\) 1.15039 + 0.554000i 0.0391826 + 0.0188693i
\(863\) 25.1040 + 43.4815i 0.854552 + 1.48013i 0.877060 + 0.480380i \(0.159501\pi\)
−0.0225085 + 0.999747i \(0.507165\pi\)
\(864\) −6.36469 + 11.0240i −0.216531 + 0.375043i
\(865\) 19.5422 13.3236i 0.664454 0.453017i
\(866\) 3.79240 + 0.571612i 0.128871 + 0.0194242i
\(867\) −9.50023 + 41.6232i −0.322645 + 1.41360i
\(868\) 0 0
\(869\) 2.64666 + 11.5958i 0.0897818 + 0.393360i
\(870\) 0.620346 + 8.27795i 0.0210317 + 0.280649i
\(871\) 2.80515 + 0.865275i 0.0950489 + 0.0293187i
\(872\) −2.77960 7.08229i −0.0941290 0.239837i
\(873\) 39.2601 12.1101i 1.32875 0.409866i
\(874\) −0.0885738 0.111068i −0.00299605 0.00375693i
\(875\) 0 0
\(876\) 13.1891 16.5386i 0.445617 0.558786i
\(877\) −1.18424 + 3.01740i −0.0399890 + 0.101890i −0.949473 0.313848i \(-0.898382\pi\)
0.909484 + 0.415739i \(0.136477\pi\)
\(878\) 0.183198 2.44461i 0.00618263 0.0825015i
\(879\) −75.2038 + 11.3352i −2.53656 + 0.382325i
\(880\) 21.3695 19.8280i 0.720365 0.668401i
\(881\) −47.0450 −1.58499 −0.792494 0.609880i \(-0.791218\pi\)
−0.792494 + 0.609880i \(0.791218\pi\)
\(882\) 0 0
\(883\) 20.9572 0.705266 0.352633 0.935762i \(-0.385286\pi\)
0.352633 + 0.935762i \(0.385286\pi\)
\(884\) −1.03243 + 0.957951i −0.0347242 + 0.0322194i
\(885\) 45.5588 6.86688i 1.53144 0.230828i
\(886\) −0.267985 + 3.57601i −0.00900314 + 0.120139i
\(887\) −13.0428 + 33.2325i −0.437934 + 1.11584i 0.526185 + 0.850370i \(0.323622\pi\)
−0.964120 + 0.265468i \(0.914473\pi\)
\(888\) −6.97893 + 8.75131i −0.234198 + 0.293675i
\(889\) 0 0
\(890\) 0.862600 + 1.08167i 0.0289144 + 0.0362575i
\(891\) −14.9182 + 4.60165i −0.499778 + 0.154161i
\(892\) 11.0528 + 28.1622i 0.370077 + 0.942940i
\(893\) 46.7160 + 14.4100i 1.56329 + 0.482212i
\(894\) −0.415106 5.53921i −0.0138832 0.185259i
\(895\) −4.04760 17.7337i −0.135296 0.592772i
\(896\) 0 0
\(897\) −0.0661618 + 0.289874i −0.00220908 + 0.00967861i
\(898\) −4.28596 0.646004i −0.143024 0.0215574i
\(899\) 29.3521 20.0120i 0.978949 0.667436i
\(900\) −0.942685 + 1.63278i −0.0314228 + 0.0544260i
\(901\) 3.50542 + 6.07157i 0.116783 + 0.202273i
\(902\) 1.31379 + 0.632686i 0.0437443 + 0.0210661i
\(903\) 0 0
\(904\) −5.46695 + 2.63274i −0.181828 + 0.0875637i
\(905\) 11.5313 + 7.86189i 0.383313 + 0.261338i
\(906\) 2.12555 + 1.97222i 0.0706167 + 0.0655227i
\(907\) −20.2424 18.7822i −0.672137 0.623652i 0.268415 0.963303i \(-0.413500\pi\)
−0.940551 + 0.339652i \(0.889691\pi\)
\(908\) −30.3965 20.7240i −1.00874 0.687749i
\(909\) 61.2445 29.4938i 2.03135 0.978247i
\(910\) 0 0
\(911\) −32.8752 15.8319i −1.08920 0.524533i −0.198955 0.980009i \(-0.563755\pi\)
−0.890248 + 0.455476i \(0.849469\pi\)
\(912\) −24.4123 42.2833i −0.808372 1.40014i
\(913\) −7.31800 + 12.6751i −0.242190 + 0.419486i
\(914\) −0.119779 + 0.0816643i −0.00396195 + 0.00270121i
\(915\) −30.3691 4.57741i −1.00397 0.151324i
\(916\) 8.22131 36.0199i 0.271640 1.19013i
\(917\) 0 0
\(918\) 0.366087 + 1.60393i 0.0120827 + 0.0529376i
\(919\) −0.243462 3.24877i −0.00803106 0.107167i 0.991748 0.128206i \(-0.0409217\pi\)
−0.999779 + 0.0210386i \(0.993303\pi\)
\(920\) −0.273461 0.0843515i −0.00901574 0.00278099i
\(921\) −2.33537 5.95043i −0.0769531 0.196073i
\(922\) −2.94988 + 0.909917i −0.0971490 + 0.0299665i
\(923\) 1.92999 + 2.42013i 0.0635263 + 0.0796594i
\(924\) 0 0
\(925\) −0.702184 + 0.880511i −0.0230877 + 0.0289510i
\(926\) −0.706519 + 1.80018i −0.0232177 + 0.0591577i
\(927\) −0.904173 + 12.0653i −0.0296969 + 0.396278i
\(928\) 15.1737 2.28707i 0.498102 0.0750768i
\(929\) −36.0167 + 33.4186i −1.18167 + 1.09643i −0.188223 + 0.982126i \(0.560273\pi\)
−0.993446 + 0.114302i \(0.963537\pi\)
\(930\) 3.90976 0.128206
\(931\) 0 0
\(932\) 15.3916 0.504168
\(933\) 34.1419 31.6791i 1.11776 1.03713i
\(934\) −2.65105 + 0.399581i −0.0867450 + 0.0130747i
\(935\) 0.860854 11.4873i 0.0281529 0.375675i
\(936\) 0.554243 1.41219i 0.0181160 0.0461588i
\(937\) 20.6062 25.8394i 0.673177 0.844137i −0.321529 0.946900i \(-0.604197\pi\)
0.994706 + 0.102763i \(0.0327682\pi\)
\(938\) 0 0
\(939\) −1.66283 2.08512i −0.0542644 0.0680454i
\(940\) 46.7892 14.4325i 1.52609 0.470738i
\(941\) −6.89526 17.5688i −0.224779 0.572728i 0.773343 0.633988i \(-0.218583\pi\)
−0.998122 + 0.0612605i \(0.980488\pi\)
\(942\) −3.34458 1.03167i −0.108972 0.0336135i
\(943\) 0.0465498 + 0.621164i 0.00151587 + 0.0202279i
\(944\) −6.19846 27.1572i −0.201743 0.883893i
\(945\) 0 0
\(946\) −0.367560 + 1.61039i −0.0119504 + 0.0523581i
\(947\) −5.44333 0.820450i −0.176884 0.0266610i 0.0600027 0.998198i \(-0.480889\pi\)
−0.236887 + 0.971537i \(0.576127\pi\)
\(948\) 16.4851 11.2394i 0.535412 0.365037i
\(949\) −0.856290 + 1.48314i −0.0277964 + 0.0481447i
\(950\) 0.0564462 + 0.0977677i 0.00183136 + 0.00317200i
\(951\) 28.2370 + 13.5982i 0.915648 + 0.440953i
\(952\) 0 0
\(953\) −22.6943 + 10.9290i −0.735140 + 0.354025i −0.763703 0.645567i \(-0.776621\pi\)
0.0285637 + 0.999592i \(0.490907\pi\)
\(954\) −3.10226 2.11508i −0.100439 0.0684784i
\(955\) −35.7887 33.2071i −1.15810 1.07456i
\(956\) −8.93440 8.28991i −0.288959 0.268115i
\(957\) 71.6949 + 48.8807i 2.31757 + 1.58009i
\(958\) −1.25541 + 0.604576i −0.0405606 + 0.0195329i
\(959\) 0 0
\(960\) −43.0344 20.7243i −1.38893 0.668873i
\(961\) 7.13405 + 12.3565i 0.230131 + 0.398598i
\(962\) 0.225279 0.390195i 0.00726328 0.0125804i
\(963\) −64.0314 + 43.6559i −2.06338 + 1.40679i
\(964\) −6.73580 1.01526i −0.216946 0.0326993i
\(965\) 3.24297 14.2084i 0.104395 0.457384i
\(966\) 0 0
\(967\) 4.88076 + 21.3840i 0.156955 + 0.687664i 0.990762 + 0.135609i \(0.0432990\pi\)
−0.833808 + 0.552055i \(0.813844\pi\)
\(968\) 0.0346155 + 0.461912i 0.00111259 + 0.0148464i
\(969\) −18.4364 5.68689i −0.592264 0.182689i
\(970\) −0.900188 2.29364i −0.0289033 0.0736444i
\(971\) 5.39894 1.66535i 0.173260 0.0534437i −0.206911 0.978360i \(-0.566341\pi\)
0.380171 + 0.924916i \(0.375865\pi\)
\(972\) −10.3219 12.9433i −0.331077 0.415157i
\(973\) 0 0
\(974\) −0.0366446 + 0.0459509i −0.00117417 + 0.00147236i
\(975\) 0.0863225 0.219946i 0.00276453 0.00704391i
\(976\) −1.38761 + 18.5164i −0.0444164 + 0.592696i
\(977\) 4.10160 0.618216i 0.131222 0.0197785i −0.0831030 0.996541i \(-0.526483\pi\)
0.214325 + 0.976762i \(0.431245\pi\)
\(978\) 7.83737 7.27201i 0.250611 0.232533i
\(979\) 14.4619 0.462203
\(980\) 0 0
\(981\) −70.0641 −2.23697
\(982\) 2.75765 2.55873i 0.0880002 0.0816523i
\(983\) −19.4655 + 2.93395i −0.620853 + 0.0935786i −0.451934 0.892051i \(-0.649266\pi\)
−0.168919 + 0.985630i \(0.554028\pi\)
\(984\) 0.367659 4.90607i 0.0117205 0.156400i
\(985\) −8.05799 + 20.5314i −0.256749 + 0.654186i
\(986\) 1.23653 1.55056i 0.0393792 0.0493800i
\(987\) 0 0
\(988\) 2.49301 + 3.12614i 0.0793132 + 0.0994556i
\(989\) −0.674262 + 0.207982i −0.0214403 + 0.00661345i
\(990\) 2.25390 + 5.74284i 0.0716336 + 0.182519i
\(991\) −12.7523 3.93355i −0.405089 0.124953i 0.0855132 0.996337i \(-0.472747\pi\)
−0.490602 + 0.871384i \(0.663223\pi\)
\(992\) −0.540104 7.20718i −0.0171483 0.228828i
\(993\) 21.3780 + 93.6631i 0.678410 + 2.97231i
\(994\) 0 0
\(995\) 8.50299 37.2540i 0.269563 1.18103i
\(996\) 24.2775 + 3.65924i 0.769261 + 0.115947i
\(997\) 40.3598 27.5168i 1.27821 0.871467i 0.282080 0.959391i \(-0.408976\pi\)
0.996127 + 0.0879241i \(0.0280233\pi\)
\(998\) 0.181287 0.313999i 0.00573855 0.00993946i
\(999\) 23.2976 + 40.3526i 0.737103 + 1.27670i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 343.2.g.d.312.1 12
7.2 even 3 343.2.g.b.128.1 12
7.3 odd 6 343.2.e.b.246.1 12
7.4 even 3 49.2.e.b.36.1 yes 12
7.5 odd 6 343.2.g.c.128.1 12
7.6 odd 2 343.2.g.a.312.1 12
21.11 odd 6 441.2.u.b.379.2 12
28.11 odd 6 784.2.u.b.673.2 12
49.3 odd 42 2401.2.a.d.1.4 6
49.9 even 21 inner 343.2.g.d.177.1 12
49.15 even 7 343.2.g.b.67.1 12
49.24 odd 42 343.2.e.b.99.1 12
49.25 even 21 49.2.e.b.15.1 12
49.34 odd 14 343.2.g.c.67.1 12
49.40 odd 42 343.2.g.a.177.1 12
49.46 even 21 2401.2.a.c.1.4 6
147.74 odd 42 441.2.u.b.64.2 12
196.123 odd 42 784.2.u.b.113.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.2.e.b.15.1 12 49.25 even 21
49.2.e.b.36.1 yes 12 7.4 even 3
343.2.e.b.99.1 12 49.24 odd 42
343.2.e.b.246.1 12 7.3 odd 6
343.2.g.a.177.1 12 49.40 odd 42
343.2.g.a.312.1 12 7.6 odd 2
343.2.g.b.67.1 12 49.15 even 7
343.2.g.b.128.1 12 7.2 even 3
343.2.g.c.67.1 12 49.34 odd 14
343.2.g.c.128.1 12 7.5 odd 6
343.2.g.d.177.1 12 49.9 even 21 inner
343.2.g.d.312.1 12 1.1 even 1 trivial
441.2.u.b.64.2 12 147.74 odd 42
441.2.u.b.379.2 12 21.11 odd 6
784.2.u.b.113.2 12 196.123 odd 42
784.2.u.b.673.2 12 28.11 odd 6
2401.2.a.c.1.4 6 49.46 even 21
2401.2.a.d.1.4 6 49.3 odd 42