Defining parameters
Level: | \( N \) | = | \( 343 = 7^{3} \) |
Weight: | \( k \) | = | \( 2 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 25 \) | ||
Sturm bound: | \(19208\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(343))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5075 | 4824 | 251 |
Cusp forms | 4530 | 4392 | 138 |
Eisenstein series | 545 | 432 | 113 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(343))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
343.2.a | \(\chi_{343}(1, \cdot)\) | 343.2.a.a | 3 | 1 |
343.2.a.b | 3 | |||
343.2.a.c | 6 | |||
343.2.a.d | 6 | |||
343.2.a.e | 6 | |||
343.2.c | \(\chi_{343}(18, \cdot)\) | 343.2.c.a | 6 | 2 |
343.2.c.b | 6 | |||
343.2.c.c | 12 | |||
343.2.c.d | 12 | |||
343.2.c.e | 12 | |||
343.2.e | \(\chi_{343}(50, \cdot)\) | 343.2.e.a | 6 | 6 |
343.2.e.b | 12 | |||
343.2.e.c | 48 | |||
343.2.e.d | 48 | |||
343.2.g | \(\chi_{343}(30, \cdot)\) | 343.2.g.a | 12 | 12 |
343.2.g.b | 12 | |||
343.2.g.c | 12 | |||
343.2.g.d | 12 | |||
343.2.g.e | 12 | |||
343.2.g.f | 12 | |||
343.2.g.g | 48 | |||
343.2.g.h | 48 | |||
343.2.g.i | 48 | |||
343.2.i | \(\chi_{343}(8, \cdot)\) | 343.2.i.a | 1302 | 42 |
343.2.k | \(\chi_{343}(2, \cdot)\) | 343.2.k.a | 2688 | 84 |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(343))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(343)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)