Properties

Label 343.2
Level 343
Weight 2
Dimension 4392
Nonzero newspaces 6
Newform subspaces 25
Sturm bound 19208
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 343 = 7^{3} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 25 \)
Sturm bound: \(19208\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(343))\).

Total New Old
Modular forms 5075 4824 251
Cusp forms 4530 4392 138
Eisenstein series 545 432 113

Trace form

\( 4392 q - 108 q^{2} - 109 q^{3} - 112 q^{4} - 111 q^{5} - 117 q^{6} - 126 q^{7} - 210 q^{8} - 118 q^{9} - 123 q^{10} - 117 q^{11} - 133 q^{12} - 119 q^{13} - 126 q^{14} - 219 q^{15} - 136 q^{16} - 123 q^{17}+ \cdots - 99 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(343))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
343.2.a \(\chi_{343}(1, \cdot)\) 343.2.a.a 3 1
343.2.a.b 3
343.2.a.c 6
343.2.a.d 6
343.2.a.e 6
343.2.c \(\chi_{343}(18, \cdot)\) 343.2.c.a 6 2
343.2.c.b 6
343.2.c.c 12
343.2.c.d 12
343.2.c.e 12
343.2.e \(\chi_{343}(50, \cdot)\) 343.2.e.a 6 6
343.2.e.b 12
343.2.e.c 48
343.2.e.d 48
343.2.g \(\chi_{343}(30, \cdot)\) 343.2.g.a 12 12
343.2.g.b 12
343.2.g.c 12
343.2.g.d 12
343.2.g.e 12
343.2.g.f 12
343.2.g.g 48
343.2.g.h 48
343.2.g.i 48
343.2.i \(\chi_{343}(8, \cdot)\) 343.2.i.a 1302 42
343.2.k \(\chi_{343}(2, \cdot)\) 343.2.k.a 2688 84

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(343))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(343)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 2}\)